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Chronic inflammatory skin diseases are multifactorial diseases that combine

genetic predisposition, environmental triggers, and metabolic disturbances

associated with abnormal immune responses. From an immunological

perspective, the better understanding of their physiopathology has

demonstrated a large complex network of immune cell subsets and related

cytokines that interact with both epidermal and dermal cells. For example, in

type-1-associated diseases such as alopecia areata, vitiligo, and localized

scleroderma, recent evidence suggests the presence of a type-2 inflammation

that is well known in atopic dermatitis. Whether this type-2 immune response has

a protective or detrimental impact on the development and chronicity of these

diseases remains to be fully elucidated, highlighting the need to better

understand its involvement for the management of patients. This mini-review

explores recent insights regarding the potential role of type-2-related immunity

in alopecia areata, vitiligo, and localized scleroderma.
KEYWORDS
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Introduction

The characterization of the diversity of immune cell subsets has extended our

understanding of the complexity of the mechanisms driving the development and

recurrence of chronic inflammatory disorders and hastened the subsequent use of

targeted therapies. Three major types of innate and adaptive cell-mediated effector

immunity have been identified (1, 2). While these immune responses are primarily

involved in protection against pathogens, their aberrant activation can also be harmful

and lead to the development of autoimmunity or to inflammatory or allergic diseases (1, 3).

Type-1 immunity mainly involves innate lymphoid type-1 cells (ILC1), natural killer

(NK) cells, CD4 Th1 and cytotoxic CD8 Tc1 cells, mainly inducing interferon (IFN)-g and
tumor necrosis factor (TNF)-a (1). Besides its protective role against intracellular
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pathogens such as viruses, it is also implicated in inflammatory

diseases such as alopecia areata (AA), localized scleroderma (LS),

and vitiligo.

Type-2-associated immune cells include ILC2, Th2 cells,

eosinophils, mast cells, basophils, and alternatively activated

macrophages, which are known to release cytokines like interleukin

(IL)-4, IL-5, IL-13, or IL-31 (3–6). These cells are critical for the

defense of the organism against extracellular pathogens (i.e. helminth

parasites) and for the maintenance of tissue homeostasis (tissue

regeneration and wound repair) (7). However, besides its protective

role, pathogenic activation of type-2 immune response contributes to

the development of allergic and inflammatory diseases such as

asthma, allergic rhinitis, and atopic dermatitis (AD) (5, 8, 9). AD is

characterized by skin barrier dysfunction contributing to an aberrant

sensitization to environmental allergens (10). In AD, type-2 cytokines

like IL-4 and IL-13 are directly implicated in the impairment of

epidermal barrier integrity observed in AD lesions by inhibiting the

synthesis of key structural proteins such as filaggrin, loricrin, honerin,

and involucrin (11–14). The role of type-2 inflammation in AD, and

especially that of IL-4/IL-13, is exemplified by the efficacy of therapies

targeting these cytokines, e.g. the anti-IL-4Ra antibody dupilumab

and the anti-IL-13 antibodies tralokinumab and lebrikizumab for

moderate to severe AD (15–30). However, the pathophysiology of

AD is more complex with heterogenous phenotypes underlying

different endotypes, with the involvement of type-1 (e.g. Th1 cells)

and/or type-3 (Th17 and Th22 cells) immune cell subsets (31–35).

Likewise, an increasing body of evidence has shown that type-2-

associated immune response may also play a role in the development

of type1 or type-3-related skin diseases, hence increasing the

complexity of disease pathogenesis and patient stratification. This

mini-review examines recent insights into the role of type-2

inflammation in type-1-associated skin inflammatory diseases with

a focus on LS, AA, and vitiligo (Figure 1).
Localized scleroderma

LS is a rare autoimmune skin disorder characterized by

inflammation and fibrosis of the skin, with dense collagen deposition

in the dermis and underlying connective tissues (36). Inflammatory

patches and/or bands of thickened skin develop on the head and neck

region, trunk and extremities. Morphea is the most frequent subtype of

LS with onset between 40 and 50 years of age (37). LS is classified into

five main types according to the extent and depth of fibrosis: limited,

generalized, linear, deep and mixed (37, 38). Its pathogenesis is based

on genetic predisposition combined with external triggers such as

trauma, repeated friction, and surgery, that induce aberrant

inflammatory and profibrotic responses, fibroblasts being a critical

factor during the development of the disease (39–41). During the early

inflammatory stage of LS, CD4+ T cells, macrophages, and eosinophils

infiltrate the skin and adjacent blood vessels (36, 42, 43). Both Th1 and

Th17 responses seem implicated in this primary stage, with an

increased release of chemokine (C-X-C motif) ligand (CXCL)9/10,

IFN-g, TNF-a, IL-23, IL-17 and transforming growth factor (TGF)-b
(36, 44). CXCL9 and CXCL10 serum levels correlate with the disease

activity (45, 46). Interestingly, Werner et al. recently identified clusters
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of inflammatory fibroblasts prone to release CXCL12 or CXCL9/10 in

LS lesions. The same study also demonstrated the crosstalk between

fibroblasts and infiltrated immune cells (e.g. macrophages and T cells)

to perpetuate inflammatory signals in lesions (47). Indeed,

inflammatory fibrosis was shown to be dependent on CXCL9 and its

receptor CXCR3 in a mouse model of skin fibrosis, thereby confirming

the involvement of a type-1 immune response in the early phase of skin

fibrosis (48). In addition, the increased expression of several adhesion

molecules by endothelial cells, such as vascular cell adhesionmolecule 1

(VCAM1), Intercellular Adhesion Molecule1 (ICAM1) and E-selectin,

contributes to the recruitment of immune cells in the lesional

areas (49).

Fibrosis is a key mechanism defining LS lesions and is

characterized by excessive deposition of extracellular matrix (ECM)

components such as collagen in the tissue. TGF-b is considered as a

major profibrotic factor owing to its effects on fibroblast proliferation,

differentiation, migration, and the production of extracellular cellular

matrix components (50, 51). However, clinical trials blocking TGF-b
produced conflicting results (52, 53).

It has been postulated that as the disease progresses, a shift

occurs to a type-2 immune response that is associated with the

development of skin fibrosis. Type-2-related cytokines (IL-4, IL-5,

IL-6 and IL-13) are increased in the serum and skin of LS patients,

and IL-13 serum levels correlate with the number of lesions in LS

(54–56). Such type-2 immunity appears to be associated with the

fibrotic/sclerotic stage of the disease (36). In vitro studies showed

that IL-4 and IL-13 induce an excessive production of ECM

components such as collagen, periostin, proteoglycan synthesis,

and fibronectin by scleroderma and/or normal fibroblasts (57–

61). These cytokines also stimulate the production of TGF-b and

the synthesis of matrix metalloproteinase (MMP)1, MMP3 and

TIMP-1 (a tissue inhibitor of MMP), as well as the proliferation of

fibroblasts and their differentiation in myofibroblasts (62–64).

Interestingly, the inhibition of type-2 signaling prevents the

development of cutaneous fibrosis in vivo (65–67). A phase II

clinical trial is ongoing to test the efficacy of dupilumab in

localized scleroderma patients (NCT04200755).
Alopecia areata

AA is a chronic non-scarring hair loss condition affecting 0.5–

2% of the population and resulting from an autoimmune response

targeting the hair follicle (68). AA is predominantly driven by a

type-1 inflammatory response associated with the production of

IFNg by antigen-specific CD8+ NKG2D+ Tc1 and CD4+ Th1 cells in

response to an environmental trigger, such as stress, viral infection,

or trauma. This induces the collapse of the immune privilege of the

hair follicle leading to its growth arrest (69). IFNg also contributes

to the increased inflammation through the induction of CXCL9/10

by the hair follicle epithelium, leading to the recruitment of

CXCR3+ T cells to the bulb (70).

Recent data also suggest the contribution of the type-2 immune

response in AA pathogenesis. From a clinical perspective, AA is

associated with atopic dermatitis and allergic conditions, and an

atopic background increases the risk of developing it (71–75). Loss-
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of-function mutations in the gene encoding filaggrin are associated

with the severity of AA in patients with a history of AD, and genetic

studies identified the association of AA with polymorphisms for the

genes encoding IL-4 and IL-13 (76–78). An increase in mast cells

with a pro-inflammatory phenotype in the perifollicular area of AA

patients was reported. These mast cells display an increased

degranulation activity and could interact with CD8+ T cells to

provide co-stimulatory signals (via 4–1BBL, OX40L, ICAM1) and

possibly to present neo-autoantigens (79). In addition, AA skin

lesions display an increase in type-2-related cytokines and

chemokines, including IL-4, IL-5, IL-13, IL-33, chemokine (C-C

motif) ligand (CCL)-5, CCL13, CCL17, CCL18, CCL26, TSLP and

periostin (80–83). Interestingly, after intralesional corticosteroid

injection, a downregulation of CCL18 was associated with a clinical

improvement (82). Levels of IL-4, IL-5, IL-6, IL-13, CCL13, CCL17,

CCL22, CCL26, and IgE are also increased in AA patients’ sera (83–

88). Czarnowicki et al. observed an increase in circulating skin-
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homing cutaneous lymphocyte-associated antigen (CLA)+ Th2 and

CLA+ Tc2 cell subsets in AA patients compared to healthy controls

that correlated with disease activity. In contrast, IFNg was

associated with the chronicity of the disease (89). All these data

highlight the putative role of Th2 cells in disease pathogenesis.

However, the use of dupilumab in AA led to conflicting results,

some investigations showing a significant improvement while

others reporting exacerbation or new onset of the disease (90–

100). Patients with an atopic background and high IgE levels

exhibited a better response to dupilumab (101). Recent data

suggest that non-atopic AA patients display an increase in

circulating Tc1 cells while AA patients with concomitant AD

show a skewed Th2 profile (102). In addition, the infiltration of

CCR4+ Th2 cells around the hair bulb in skin lesions is more

extensive in AA patients with AD (102). Altogether, these data

suggest that as in AD, different clinical phenotypes and related

endotypes likely define AA patients.
FIGURE 1

Type-2 immunity in localized scleroderma, alopecia areata and vitiligo. Polymorphims with IL-4/IL-13 genes have been identified in alopecia areata
(AA) and vitiligo. In addition, these two diseases are associated with atopic dermatitis or allergic conditions. Type-2 immunity cells and markers
found in the skin and blood of patients withlocalized scleroderma (LS), AA, and vitiligo, suggesting their role in the immune network of these
pathologies. In LS, type-2 cytokines released by Th2 and Tc2 cell subsets (e.g. IL-4, IL-5, IL-13) infiltrating LS lesions promote the differentiation of
fibroblasts into myofibroblasts and the production of pro-fibrotic factors, like TGF-b. AA skin lesions display elevated levels of type-2 cytokines and
chemokines released by epidermal, dermal, and immune cells that will contribute to the recruitment of Th2/Tc2 and my influence hair loss. The

type-2 environment in vitiligo skin may regulate melanogenesis and the loss melanocytes. : comorbidities; polymorphisms. Created

with BioRender.com.
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Vitiligo

Vitiligo, the most common depigmenting skin disease, is defined

by a type-1 skewed immune bias, with the involvement of IFNa,
IFNg, TNFa, CXCL9, CXCL10, and CXCL16 (103–105). Melanocyte

loss results from the cytotoxic activity of CD8 T cells and detachment

of melanocytes from the basal layer of the epidermis in response to

the cytokinemicroenvironment (106). The perilesional skin of vitiligo

patients is characterized by the infiltration of CXCR3+ NKG2D+

melanocyte-specific resident memory CD8 T cells and recirculating

memory T cells producing IFNg and TNFa (107–112). These type-1

cytokines impair the expression of genes involved in melanocyte

adhesion, function, and melanogenesis (113, 114). IFNg and TNFa
also induce melanocyte detachment through the production

of MMP9 by keratinocytes, which cleaves E-cadherin, a

transmembrane glycoprotein important for melanocyte adhesion

(115). In addition, these cytokines amplify the local inflammation

through the release of CXCL9/10 by epidermal cells (105, 107). The

type-1 inflammation is not restricted to the perilesional skin but

concerns also the nonlesional skin of vitiligo patients (116).

Recent data suggest the involvement of a more complex

cytokine network in disease pathogenesis with the involvement of

type-2 cytokines. Epidemiological studies demonstrated the

association of vitiligo with atopic diseases driven by a type-2

immune response, like AD or asthma (117–120). Genome wide

association studies (GWAS) identified TSLP gene polymorphism in

patients with vitiligo (121). Despite the absence of evidence from

GWAS, smaller genetic studies identified polymorphisms of the

gene coding for IL-4 as a risk factor for developing vitiligo (122,

123). These polymorphisms correlate with an increase in IL-4 and

IgE levels in the serum of vitiligo patients. IL-4 receptor (IL-4R)-a
and TSLP gene polymorphisms are associated with an increased

susceptibility to vitiligo, reinforcing the putative role of type-2

cytokines in vitiligo (121, 124, 125). In addition, IL-4, IL-13, and

IL-33 levels are increased in the serum of vitiligo patients (126–

129). An increase in mast cells in vitiligo lesions was reported (130,

131). Czarnowocki et al. reported an increase in both circulating

skin-homing CLA+ T cells producing IFNg or IL-13 in patients. IL-

13 levels decreased with vitiligo duration, suggesting its potential

role in the early stages of the disease (132). We recently showed that

vitiligo skin T cells produce both type-1 and type-2 cytokines, and

in particular IL-13 (105). In addition, levels of chemokines that can

be associated with a type-2 immune response, such as CCL5,

CCL18, CXCL12, or CXCL16, are increased in vitiligo perilesional

skin (104, 105, 133). A recent study in a mouse vitiligo model

induced by the inoculation of melanoma cells, depletion of

regulatory T cells, and excision of the tumor showed that IFNg
induces the secretion of CCL2 and CCL8 by dermal fibroblasts

through JAK2/STAT1 signaling, resulting in type-2 cell attraction

(134). Indeed, CCL2 is implicated in Th2 polarization and CCL8 in

the recruitment of Th2 cells (135, 136). These data suggest the

interconnected role of type-1 and type-2 immune responses in the

inflammatory environment observed in vitiligo.

So far, the potential impact of type-2-related cytokines on

melanocytes has received little attention. IL-4 and IL-13 were

reported to inhibit melanogenesis (137, 138). Moreover, IL-13
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induces the production of matrix metalloproteinase (MMP)-9 by

keratinocytes (115, 139) and may therefore contribute to

melanocyte loss in vitiligo together with IFNg and TNFa. In
addition, melanocytes and fibroblasts present a senescence pattern

in vitiligo skin (140–142). IFNg and TNF-a were shown to induce

senescence in melanocytes (143, 144), and it would be interesting to

evaluate the impact of type-2 cytokines in senescence in vitiligo

given that IL-13 can promote senescence in submandibular glands

(145). Nonetheless, type-2-related cytokines may also be protective

in some subclinical subsets of vitiligo, since dupilumab induced or

worsened vitiligo in AD patients (100, 146–148).
Conclusion
Accumulating evidence is underlining the complexity of the

cellular and cytokine network involved in the pathogenesis and

flares of chronic autoimmune and inflammatory skin diseases. This

diversity is likely linked to subclinical phenotypes and associated

endotypes, as shown in AD. The role of the type-2 immune

response is well characterized in atopic dermatitis and other type-

2-related skin diseases. Recent data emphasize its role in other

inflammatory skin disorders like vitiligo, AA and LS, which may

explain the efficacy of small molecules like JAK inhibitors that target

multiple cytokine pathways. In addition, the efficacy of emerging

treatments targeting the type-2 response is being investigated,

especially the IL-4/IL-13 axis in scleroderma and more recently in

AA. The findings may be promising in a clinical subset of patients.

Future studies will undoubtedly further decipher the role of the

type-2 immune response in these diseases and provide insights into

how they are involved in their pathogenesis and how to stratify

patients. This may provide much needed guidance on choosing the

most appropriate targeted therapy for patients.
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