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A machine learning radiomics
based on enhanced computed
tomography to predict
neoadjuvant immunotherapy
for resectable esophageal
squamous cell carcinoma
Jia-Ling Wang1,2†, Lian-Sha Tang1,2†, Xia Zhong3†, Yi Wang2,
Yu-Jie Feng2, Yun Zhang 3* and Ji-Yan Liu 1*

1Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University,
Chengdu, China, 2West China School of Medicine, Sichuan University, Chengdu, China, 3Department
of Radiology, West China Hospital, Sichuan University, Chengdu, China
Background: Patients with resectable esophageal squamous cell carcinoma

(ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment

responses. The purpose of this study is to establish and validate a radiomics based

on enhanced computed tomography (CT) and combined with clinical data to

predict the major pathological response to NIT in ESCC patients.

Methods: This retrospective study included 82 ESCC patients who were

randomly divided into the training group (n = 57) and the validation group (n =

25). Radiomic features were derived from the tumor region in enhanced CT

images obtained before treatment. After feature reduction and screening,

radiomics was established. Logistic regression analysis was conducted to select

clinical variables. The predictive model integrating radiomics and clinical data

was constructed and presented as a nomogram. Area under curve (AUC) was

applied to evaluate the predictive ability of the models, and decision curve

analysis (DCA) and calibration curves were performed to test the application of

the models.

Results:One clinical data (radiotherapy) and 10 radiomic features were identified

and applied for the predictive model. The radiomics integrated with clinical data

could achieve excellent predictive performance, with AUC values of 0.93 (95% CI

0.87–0.99) and 0.85 (95% CI 0.69–1.00) in the training group and the validation

group, respectively. DCA and calibration curves demonstrated a good clinical

feasibility and utility of this model.
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Conclusion: Enhanced CT image-based radiomics could predict the response of

ESCC patients to NIT with high accuracy and robustness. The developed

predictive model offers a valuable tool for assessing treatment efficacy prior to

initiating therapy, thus providing individualized treatment regimens for patients.
KEYWORDS

neoadjuvant immunotherapy, esophageal squamous cell cancer, major pathological
response, radiomics, computed tomography
1 Introduction

Esophageal carcinoma (EC) is the sixth most common cause of

cancer-related mortality and a crucial threat to global public health

(1). In China, esophageal squamous cell carcinoma (ESCC) presents

the dominant histological subtype accounting for 85.29% of all the

ECs (2). Surgery remains the cornerstone of the treatment strategy

for early-stage patients. Nevertheless, some of the patients present

with locally advanced tumors at initial diagnosis due to insidious

symptoms, and it is challenging to achieve R0 resection for such a

population. Furthermore, the efficacy of surgery alone for locally

advanced patients is quite limited, with a 5-year survival rate of 25%

(3). Conventionally, neoadjuvant chemoradiotherapy or

neoadjuvant chemotherapy has been recognized as the standard

treatment for locally advanced patients. Although neoadjuvant

chemoradiotherapy or neoadjuvant chemotherapy achieved a

longer survival than surgery alone, the effects are not ideal

enough owing to a low pathological response rate and local

recurrence after surgery (4, 5). Hence, it is necessary to explore a

novel and highly effective neoadjuvant therapy mode to maximize

patient survival.

In recent years, immunotherapy has revolutionized the

treatment landscape of most malignant tumors. By reactivating

and enhancing the function of immune cells, immunotherapy could

realize a precision attack on tumor cells and a durable immune

response. Consequently, emerging trials have attempted to apply

immunotherapy in the neoadjuvant setting. Neoadjuvant

immunochemotherapy demonstrated satisfactory efficacy and

manageable safety, with pathologic complete response rates of

16.7% to 50.0% (6). Furthermore, patients with ESCC who

achieved major pathologic response (MPR) after neoadjuvant

immunochemotherapy had significantly longer overall

survival (91.4% vs. 47.7%) in the latest report (7). Despite this,

part of the patients do not respond to neoadjuvant immunotherapy

(NIT) and possibly bear high drug expenditure and the risk of

immunotherapy-related adverse events (irAEs). Therefore, it is

essential to predict the treatment response and identify the

priority population for NIT to avoid unnecessary adverse events

and costs. Many biomarkers have been used to judge the

applicability of immunotherapy in ECs such as programmed

death ligand 1 (PD-L1), CD8+ T infiltration, and tumor mutation
02
burden (TMB) (8–10). Nonetheless, the predicting effect of these

biomarkers has not been curtained in the NIT setting for ESCC.

Furthermore, these biomarkers are usually obtained from a small

proportion of tumor samples in an invasive, expensive, and time-

consuming way, which could not reflect a comprehensive tumor

information due to tumor heterogeneity (11, 12). Consequently,

novel and noninvasive forecasting tools still need to be developed.

Enhanced computed tomography (CT) plays an essential role in

disease diagnosis and efficacy evaluation with convenience and

rapid nature. However, due to the unique mechanism of

immunotherapy, radiologic patterns of response are diverse and

atypical, such as delayed response, pseudoprogression,

hyperprogression, and mixed response, which confound the

classical response evaluation based on the response evaluation

criteria in solid tumors criteria (13–15). Hence, relying solely on

enhanced CT to determine the response to immunotherapy is not

precise or adequate. Currently, radiomics has become a critical

technology in medical data mining by extracting abundant and

multidimensional image features to facilitate the process of

screening, diagnosis, and forecasting the treatment response and

survival of cancer (16). Moreover, radiomics provides an underlying

solution to the evaluation of intricate immune response and

represents a pivotal role in immunotherapy imaging. Several

studies have demonstrated reliable predicting capacity and

feasibility of the treatment response of NIT in several tumors

(17–20). However, there have been no studies using radiomics to

evaluate the response of NIT. Therefore, this study aims to

construct and validate a radiomics based on enhanced CT to

preoperatively predict the therapeutic response after NIT in ESCC

patients. Furthermore, this study integrated the clinicopathological

data with radiomics into a multidimensional prediction system to

assist the advancement of individual precision treatment.
2 Materials and methods

2.1 Patient selection

This study retrospectively selected ESCC patients who received

immunotherapy in the neoadjuvant setting from January 2020 to

October 2023 in West China Hospital, Sichuan University. The
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inclusion criteria were as follows: (i) pathologically confirmed, (ii)

stage I–stage Iva, (iii) treated with immunotherapy before surgery,

and (iv) available enhanced CT scan within 1 month prior to

neoadjuvant therapy. Patients were excluded for the following

reasons: (i) patients rejected surgery resulting in the absence of

efficacy evaluation; (ii) neoadjuvant treatment regimens contained

other drugs (such as targeted drugs) in addition to immunotherapy,

chemotherapy, and radiotherapy; and (iii) critical clinicopathological

data were missed. The flow chart of patient screening is shown in

Figure 1. The study was approved by the Institutional Review Board

of West China Hospital, Sichuan University (Approval number:

2024–0390). Informed consent from participants was waived, and

patients’ details were hidden.
2.2 Treatments and response evaluation

All patients received a series of pretreatment workups,

including lesion biopsy, disease evaluation, and related

examinations. Patients were staged according to the 8th Edition

of the American Joint Committee on Cancer TNM classification.

Subsequently, patients received immunochemotherapy or with

radiotherapy in the neoadjuvant setting. The specific strategy was

enacted by the multidisciplinary team decision and patients’

willingness. Following the neoadjuvant therapy, a radical

resection of tumors was performed. Based on the postoperative

pathological result, treatment response was determined as

pathologic complete response (defined as no residual tumor cells

in both tumor tissue and lymph node), MPR (defined as residual

tumor cells ≤10%), partial pathological response (defined as

residual tumor cells >10%), or no treatment response (defined as

abundant residual tumor cells). Then, patients with pathologic
Frontiers in Immunology 03
complete response or MPR were classified in the MPR group,

while the rest were classified in the non-MPR group.
2.3 Imaging acquisition and
feature extraction

CT scan was performed in West China Hospital, Sichuan

University, within 1 month prior to the first treatment. The target

CT images were exported from picture archiving and

communication systems and reserved in Picture Archiving and

Communication System in Digital Imaging and Communications

in Medicine format. The 3D slicer software (version 5.40) was used

to process the image data. The regions of interest in the image were

segmented by two radiologists, with 5 years of working experience,

who were blinded to the treatment response. The final result of

image segmentation would be checked and corrected by a third

radiologist with 10 years of working experience. Through 3D slicer

software, the image features of regions of interest were derived. A

total of 851 features (including four dimensions: shape feature, first-

order statistics features, texture-based features, and high-order

features) were packaged into R software (Version 4.1.1).
2.4 Model construction

We randomly divided the included patients by 7:3 ratio into the

training group and the validation group. The clinical data were first

evaluated with univariate logistic regression analysis to select

the potential predictive factors. Then, multivariate logistic

regression was performed to integrate and further determine the

clinical prediction parameters. For the image part, zero mean
FIGURE 1

Flow chart of patient selection. CT, computed tomography.
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normalization was used to normalize the image characteristic to

reduce the variability of patients. Inter-class correlation coefficient

(ICC) was used to test the reproducibility of data, and the feature

with an ICC value of more than 0.8 indicated good consistency and

could be further selected. Max-relevance and min-redundancy and

least absolute shrinkage and selection operator (LASSO) regression

were performed to reduce redundant features and select the most

meaningful features for prediction. Then, a radiomics score (Rad-

score) was calculated for each patient as a linear combination of

selected features that were weighted by their respective coefficients.

The receiver operating characteristic curve (ROC) to estimate the

ability of the Rad-score was plotted, and the area under the curve

(AUC) was calculated concurrently. Then, the radiomics model,

clinical model, and the combined model integrating image and

clinical data were established and verified using the data from the
Frontiers in Immunology 04
validation group. Additionally, an optimal predictive model would

be determined and presented as a nomogram. Decision curve

analysis was performed to test clinical utility, and calibration

curves were applied to evaluate the agreement between prediction

and clinical practice with the Hosmer–Lemeshow test.
2.5 Statistics analysis

The data analysis was handled in SPSS software and R language.

Categorical variables, expressed as counts and percentages, were

compared using the chi-square test or Fisher’s exact test, where

applicable. LASSO regression analysis was completed using the

“glmnet” package of R software, while ROC curve analysis was

performed in the R software with the “survive ROC” package. Odds
TABLE 1 The baseline clinicopathological characteristics of the included patients.

Variables

Training group
(n = 57)

Validation group
(n = 25)

MPRa

(n = 33)
Non-MPR
(n = 24)

p-Value MPR
(n = 13)

Non-MPR
(n = 12)

p-Value

Age (%) 1.00 0.57

≤60 12 (36.4) 9 (37.5) 4 (30.8) 6 (50.0)

>60 21 (63.6) 15 (62.5) 9 (69.2) 6 (50.0)

Gender (%) 0.57 1.00

Male 29 (87.9) 23 (95.8) 12 (92.3) 12 (100.0)

Female 4 (12.1) 1 (4.2) 1 (7.7) 0 (0.0)

BMIb (%) 1.00 1.00

≤24 8 (24.2) 5 (20.8) 3 (23.1) 3 (25.0)

>24 25 (75.8) 19 (79.2) 10 (76.9) 9 (75.0)

Tumor location (%) 0.79 0.95

Upper thorax 5 (15.2) 5 (20.8) 2 (15.4) 2 (16.7)

Middle thorax 16 (48.5) 12 (50.0) 4 (30.8) 3 (25.0)

Lower thorax 12 (36.4) 7 (29.2) 7 (53.8) 7 (58.3)

cT stage (%) 0.50 0.39

cT1 0 (0.0) 1 (4.2) 0 (0.0) 1 (8.3)

cT2 9 (27.3) 5 (20.8) 3 (23.1) 1 (8.3)

cT3 23 (69.7) 16 (66.7) 10 (76.9) 9 (75.0)

cT4 1 (3.0) 2 (8.3) 0 (0.0) 1 (8.3)

cN stage (%) <0.01 0.62

cN0 3 (9.1) 12 (50.0) 3 (23.1) 2 (16.7)

cN1 12 (36.4) 6 (25.0) 4 (30.8) 6 (50.0)

cN2 15 (45.5) 6 (25.0) 6 (46.2) 4 (33.3)

cN3 3 (9.1) 0 (0.0) 0 (0.0) 0 (0.0)

(Continued)
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ratio (OR) and 95% confidence interval (CI) were used to describe

the risk of clinical data. A two-tailed p-value less than 0.05 was

recognized as significant for univariable and multivariable analysis.
3 Results

3.1 Clinical characteristics

A total of 82 patients met the inclusion and exclusion criteria and

were finally included in the analysis. We randomly assigned all patients

into the training group (n = 57) and the validation group (n = 25) by a

7:3 ratio. There was no significant characteristic difference between the

training group and the validation group (Supplementary Table 1). The

characteristics of all patients are shown in Table 1. For the most part,
Frontiers in Immunology 05
participants with potentially resectable ESCC were in the II–III stages,

with more than half of the patients receiving radiotherapy. The vast

majority of patients were treated with two cycles of NIT, while others

prolonged the treatment cycle. All patients accepted standard surgical

procedures and were evaluated for treatment response of NIT, except

for two patients who discarded surgery due to disease progression

judged by image. Overall, the rate of MRP was 56.1% (46/82).
3.2 Feature selection

A total of 851 features of tumor volume of interest were extracted.

After selecting the features of ICCmore than 0.8, a sum of 626 features

was further analyzed in LASSO regression to discard the redundant

features (Figures 2A, B). Eventually, 10 optimal features were selected
TABLE 1 Continued

Variables

Training group
(n = 57)

Validation group
(n = 25)

MPRa

(n = 33)
Non-MPR
(n = 24)

p-Value MPR
(n = 13)

Non-MPR
(n = 12)

p-Value

Clinical stage (%) 0.07 0.50

I 0 (0.0) 1 (4.2) 0 (0.0) 1 (8.3)

II 6 (18.2) 11 (45.8) 4 (30.8) 3 (25.0)

III 23 (69.7) 10 (41.7) 9 (69.2) 7 (58.3)

IV 4 (12.1) 2 (8.3) 0 (0.0) 1 (8.3)

Pathological
differentiation (%)

0.06 0.05

Moderately 9 (27.3) 13 (54.2) 2 (15.4) 5 (41.7)

Poorly 12 (36.4) 8 (33.3) 4 (30.8) 6 (50.0)

Unknown 12 (36.4) 3 (12.5) 7 (53.8) 1 (8.3)

Immunotherapy (%) 0.07 0.23

Pembrolizumab 5 (15.2) 4 (16.7) 2 (15.4) 1 (8.3)

Sintilimab 6 (18.2) 6 (25.0) 3 (23.1) 3 (25.0)

Camrelizumab 1 (3.0) 4 (16.7) 0 (0.0) 3 (25.0)

Toripalimab 0 (0.0) 2 (8.3) 0 (0.0) 1 (8.3)

Tislelizumab 21 (63.6) 8 (33.3) 8 (61.5) 4 (33.3)

Treatment cycles (%) 1.00 0.44

2 cycles 29 (87.9) 21 (87.5) 8 (61.5) 10 (83.3)

>2 cycles 4 (12.1) 3 (12.5) 5 (38.5) 2 (16.7)

Radiotherapy (%) <0.01 0.17

Yes 26 (78.8) 6 (25.0) 10 (76.9) 5 (41.7)

No 7 (21.2) 18 (75.0) 3 (23.1) 7 (58.3)

Interval time* (%) 0.18 0.31

≤90 days 6 (18.2) 9 (37.5) 2 (15.4) 5 (41.7)

>90 days 27 (81.8) 15 (62.5) 11 (84.6) 7 (58.3)
*Means the time from the day of the first neoadjuvant immunotherapy to the day of surgery. aMajor pathological response. bBody mass index.
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to establish radiomics and nomogram. Then, a fitting formula was

applied to calculate the linear association of selected features. In the

radiomics model, the rad score of the MPR group was higher than that

of the non-MPR group in the training cohort (Figure 2C). A similar

result was also found in the validation cohort.
3.3 Model construction

Univariable analysis was performed to initially identify the

independent factors (Table 2). Multivariable analysis showed that

radiotherapy was associated with a higher MPR, and eventually, it

was included in the model construction. Then, three predictive

models were established, namely radiomics model, clinical model,

and radiomics-clinical model. The predictive ability of the three
Frontiers in Immunology 06
models is presented in the ROC curve (Figure 3). The AUC values

of the clinical model and the radiomics model in the training cohort

were 0.77 (95% CI 0.66–0.88) and 0.87 (95% CI 0.78–0.96),

respectively. In the validation setting, the clinical model and the

radiomics model had an AUC value of 0.68 (95% CI 0.49–0.86) and

0.75 (95% CI 0.54–0.96). The radiomics–clinical model had the

most excellent performance both in the training cohort and

validation cohort, with the AUC values of 0.94 (95% CI 0.89–

1.00) and 0.77 (95% CI 0.58–0.96), respectively.
3.4 Nomogram construction

The combined model incorporating Rad-score and

radiotherapy was established and presented with a nomogram
A B

C

FIGURE 2

Selection of radiomic features and comparison of radiomics score. (A) Selection of the regulation weight parameter (l) for the least absolute
shrinkage and selection operator. (B) coefficient curves for 10 radiomic features. (C) There were significant differences in the radiomics score
between the MPR group and non-MPR group in both training cohort and validation cohort. MPR, major pathological response.
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(Figure 4A). The calibration curve demonstrated that probability of

treatment response had a good agreement between nomogram-

evaluated and actual response (Figure 4B, C). The Hosmer–

Lemeshow test in calibration curves yielded a statistically

insignificant p-value of 0.932 for the training group and 0.581 for
Frontiers in Immunology 07
the validation group suggesting that the nomogram worked with a

good fit. The decision curve analysis for the nomogram is shown in

Figure 4D. The decision curve demonstrated that the performance

of the three models was at least equivalent to a strategy of treating

all patients or treating none. Furthermore, regardless of the risk

threshold, utilizing the combined model for predicting MPR

resulted in a greater net benefit compared to the other two models.
4 Discussion

This present study constructed and validated a nomogram to

predict the MPR of NIT in ESCC patients. One clinical factor and

10 image features were incorporated into this predictive model, and

the model demonstrated excellent predictive accuracy, with the

AUC value of 0.93 in the training cohort and 0.95 in the validation

cohort. This convenient tool could serve in a pretreatment setting

and provide a reference for clinical decision making.

Presently, NIT demonstrates promising efficacy in ESCC, and

emerging clinical trials are ongoing to explore the wider

application of NIT. Despite this, the treatment effect is varied,

and some of the patients bear the risk of irAEs. Therefore, seeking

novel biomarkers to forecast treatment response is reasonable and

urgent especially in the era of immunotherapy-predominant

treatment. Theoretically, PD-L1 expression is a powerful marker

to predict the effect of immunotherapy; however, there is still a

controversy about whether PD-L1 could serve as a predictor to

identify those ESCC patients who would benefit from

immunotherapy. Many trials have revealed that patients could

benefit from immunotherapy combined with chemotherapy

regardless of the expression level of PD-L1 (21, 22).

Additionally, several studies verified that there were no

significant differences in PD-L1 expression between the

pathological response and the non-response group (23, 24).

Similarly, TMB is a debatable predictor in the NIT setting, as

some studies verified its predictive role (24, 25), while some trials

displayed no correlation between response and TMB (26). In

addition, studies focus on the change of components from

tumor microenvironment. M2-like macrophages (27), tumor-

infiltrating CD8+ T cells (28, 29), and chemokines (30) were

investigated, but their predictive roles lack evidence. To date,

reliable predictive biomarkers have not been determined.

Radiomics, a novel strategy that extracts quantitative features

from images and converts these features into mineable data, has an

extensive application in the medical field. Importantly, radiomics

could recognize subtle differences reflecting the microenvironment

and genomic heterogeneity, which are critical for treatment

response, especially for newly treated cancer patients. In a

retrospective analysis, including lung cancer and melanoma,

specific texture and shape features were closely related to

treatment response and survival. Concretely, response rate was

higher in those tumor images showing heterogeneous

morphological profiles, uneven density, and compact borders

(31). In addition, radiomics could indirectly build up a link with

treatment response by capturing gene phenotypes and established

biomarkers (32, 33). For ESCC, radiomics has demonstrated good
TABLE 2 Univariable analysis and multivariable analysis of clinical data.

Variables

Univariable
analysis

Multivariate
analysis

ORa (95% CIb) OR (95% CI)

Age

≤60 Reference

>60 1.05 (0.35–3.12)

BMIc

≤24 Reference

>24 1.22 (0.35–4.58)

Tumor location

Upper thorax Reference

Middle thorax 1.33 (0.31–5.85)

Lower thorax 1.71 (0.36–8.4)

cT stage

cT1–cT2 Reference

cT3–cT4 0.89 (0.26–2.93)

cN stage

cN0 Reference Reference

cN1–cN3 10 (2.64–49.97) 10.82 (0.93–296.01)

Stage

I–II Reference Reference

III–IV 4.5 (1.41–15.74) 0.43 (0.02–4.18)

Pathological differentiation

Moderately Reference

Poorly 2.17 (0.64–7.71)

Unknown 5.78 (1.37–31.12)

Treatment cycles

2 cycles Reference

>2 cycles 0.97 (0.19–5.33)

Radiotherapy

Yes Reference Reference

No 11.14 (3.40–41.98) 7.77 (2.11–31.98)

Interval time*

≤90 days Reference

>90 days 0.37 (0.11–1.22)
*Means the time from the day of first neoadjuvant immunotherapy to the day of surgery.
aOdds ratio. bConfidence interval. cBody mass index.
Bold numbers mean a p-value less than 0.05.
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A B

FIGURE 3

The receiver operating characteristic curve of the three models. (A) In the training group; (B) in the validation group.
A

B

D

C

FIGURE 4

Nomogram, calibration curve, and decision curve analysis of the combined model. (A) Nomogram of the combined model; (B) calibration curve for
the major pathological response in the training group; (C) calibration curve for the major pathological response in the validation group; (D) decision
curve analysis of the three models.
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predictive ability in treatment response and prognosis, with AUCs

of 0.68–0.86 (34–38). The application of radiomics in the

neoadjuvant setting might be reasonable and accurate, since other

treatment phases may give rise to a controversy about the optimal

imaging time considering altered tumor heterogeneity due to

treatment (39). In a meta-analysis integrating 16 studies, the

median AUC was 0.84 (0.81–0.87) to predict neoadjuvant

chemoradiotherapy for EC patients suggesting the feasibility of

radiomics (40).To our knowledge, this is the first radiomics for

ESCC patients treated with NIT, with similar predictive

effectiveness with other cancers (17, 18). Such a predictive tool

could have an impact on the early identification of non-responders

so that patients seek alternative treatment and save cost. Certainly,

to promote clinical translation of radiomics, standardized image

acquisition, normalized data processing and analysis, and large

sample size from multi-centers are indispensable. In addition, the

combination of genomics, proteomics, metabolomics, or other

omics with radiomics further enhances robust and comprehensive

predictive ability providing detailed information for decision

making and precision medicine (41, 42).

In this present study, the overall MPR rate was 56.1% consistent

with the results of most trials (43) suggesting that NIT was a promising

way for ESCC. In addition, we found that radiotherapy was associated

with a higher MPR. Presently, quite a few studies explore the utility of

radiotherapy and find that radiotherapy might be associated with a

higher response rate, which was consistent with our study (43, 44). In

the meta-analysis, Wang et al. summarized the efficacy of NIT for EC

patients and revealed that patients treated with neoadjuvant

immunochemotherapy plus radiotherapy developed a higher MPR

rate than those with neoadjuvant immunochemotherapy (39.8% vs.

88.8%) (44). In addition to its own killing ability, radiotherapy might

have a synergistic effect on immune response through the following

mechanisms (1): escalating the expression of PD-L1 or other

neoantigens (2), inducing immunogenic cell deaths and increasing

the release of abundant cytokines and chemokines recruiting immune

cells to the tumormicroenvironment, and (3) increasing the neoantigen

presentation and accelerating the identification of cytotoxic T

lymphocytes (45–47). Yet, the implementation of radiotherapy did

not demonstrate an extra benefit in all clinical trials, and the

coordination of the two regimens is required to be optimized (47).

Although this study constructed a predictive model with

promising performance, there were several limitations. First, this

was a retrospective study using the data from a single center of the

Chinese population, which inevitably introduced the bias and

confounding factors and limited the generality of the predictive

model. Second, the predictive model was constructed with a

relatively small sample size and lacked external validation, which

could limit the robustness and wider applicability of the predictive

model. Therefore, research with a multi-center, prospective setting

on a large scale is required to further verify the feasibility of the

predictive model and address these limitations. In addition,

adhering to a uniform protocol for image acquisition is also

necessary to ensure the reproducibility of radiomics. Finally, this

predictive model utilized image data, and potential factors

correlated with treatment response were not integrated. Multi-

omics involving genomic characteristics, hematological data, and
Frontiers in Immunology 09
proteomics should be attempted in future studies to obtain an

optimal immunotherapy predictive model.
5 Conclusion

In summary, this study integrated image features of tumor

volume and clinical data of resectable ESCC patients to construct a

nomogram to predict the treatment response of NIT. This

nomogram model could forecast MPR before treatment with high

accuracy and robustness, which help guide individualized therapy

for patients and reduce the unnecessary risk of irAEs.
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