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Sjögren’s Syndrome (SS) is an autoimmune disorder characterized by dysfunction

of exocrine glands. Primarily affected are the salivary glands, which exhibit the

most frequent pathological changes. The pathogenesis involves susceptibility

genes, non-genetic factors such as infections, immune cells-including T and B

cells, macrophage, dendritic cells, and salivary gland epithelial cells.

Inflammatory mediators such as autoantibodies, cytokines, and chemokines

also play a critical role. Key signaling pathways activated include IFN, TLR,

BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding

of these mechanisms is crucial for developing targeted therapeutic interventions.

Thus, this study explores the cellular and molecular mechanisms underlying

SS-related salivary gland damage, aiming to propose novel targeted

therapeutic approaches.
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Introduction

SS is a prevalent autoimmune disorder primarily characterized by lymphocytic

infiltration of exocrine glands, leading to dryness in the mouth and eyes (1).

Additionally, about 30–40% of patients experience systemic complications affecting the

kidneys, lungs, nervous system, and other organs (2–4). The primary target organs in SS are

the exocrine glands, particularly the salivary glands (SG). The reduction in saliva

production is closely linked to continuous immune cells infiltration around the salivary

gland epithelial cells (SGECs) and progressive destruction of glandular structures. SG

histopathological changes are predominantly marked by extensive lymphocytic infiltration
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into the glandular interstitium, significant SGECs destruction and

atrophy, and alterations in the glandular ducts, including dilatation

and narrowing, culminating in SG damage (5, 6). This chronic

inflammation eventually leads to irreversible fibrosis in SGECs,

characterized by an accumulation of excessive connective tissue and

extracellular matrix, ultimately resulting in the loss of SG function

(7). The pathogenesis of SS is intricately linked to immune system

abnormalities, which involve the secretion of pro-inflammatory

mediators through both innate and adaptive immune responses.

Various pathological mechanisms include activation of the type I

interferon (IFN) system, antigen presentation, and T and B

lymphocyte activation, along with the formation of ectopic

lymphoid structures (ELS) (8). Viral and genetic factors initiate

the immune response, leading to lymphocytic infiltration in the SG

and the release of numerous pro-inflammatory mediators, such as

interleukins (IL), IFN, and members of the tumor necrosis factor

(TNF) super family, which further damage the SG (9). Additionally,

SGECs play a critical role in local immune responses and disease

progression in SG, primarily through their secretion of cytokines

and chemokines that activate and recruit T and B cells, as well as

circulating peripheral immune cells (10). Inflammatory cytokines

can activate specific pathways within SGECs by binding to

lymphocytes and surface receptors on SGECs, further promoting

the production of inflammatory factors and chemokines, thereby

exacerbating the inflammatory response (11). A thorough

understanding of the cellular and molecular mechanisms

underlying SG damage in SS and strategies to maximize the

preservation of SG secretory function are crucial for enhancing

the quality of life for patients. Details can be found in Table 1 and

Figure 1.
Structural changes in salivary gland
pathology in SS

In the human body, the SG encompasses the parotid,

submandibular, and sublingual glands, along with numerous minor

glands distributed throughout the oral mucosa. The structural

composition of the SG primarily includes SGECs, immune cells, and

stromal cells. The alveolar and ductal cells, which are key constituents

of the SGECs, play vital roles in the gland. Salivary secretion is

facilitated by the contraction of myoepithelial cells and is further

regulated by parasympathetic neurotransmitters such as muscarinic

agents. The secreted saliva initially travels through the intercalary ducts

from smaller secretory ducts and ultimately reaches the oral cavity via

larger excretory ducts (27, 28). Characteristic pathological features of

SG in SS patients include extensive infiltration by T and B lymphocytes

around the ducts, accompanied by atrophy and a decrease in vesicular

cells (29). During the early and middle stages of the disease, there is an

increase in foci infiltrated by immune cells, particularly B lymphocytes,

around the ductal cells, leading to the formation of lymphoid tissue

germinal centers (GC) within the SG and subsequent autoantibody

production. Chronic inflammatory stimulation and injury result in a

marked decline in follicular and ductal cells populations, which are

gradually replaced by fibrous and adipose tissue (30, 31). Electron
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microscopy has revealed degeneration and atrophy of SGECs, fatty

infiltration within the cytoplasm, and swelling of intracellular

organelles—pathological alterations that significantly diminish the

secretory function of the SG (32). SGECs fibrosis is now

acknowledged as a significant pathological hallmark of SS (33).

Moreover, lymphoepithelial lesions, characterized by ductal basal

cells and infiltrating lymphocytes predominantly surrounded by B

cells, are also notable. These lesions arise when basal cells, spared from

lymphocyte attacks, proliferate, leading to lymphoepithelial hyperplasia

and ultimately the development of lymphoepithelial lesion (34).
Genetic and environmental
nuclear factors

Research has demonstrated that genetic factors are a significant

risk factor for the development of SS. Two major genome-wide

association studies (GWAS) conducted in 2013 identified risk genes

in Han Chinese and European populations, revealing that many of

these genes are involved in both innate and adaptive immune

responses (35, 36). These studies highlighted a strong correlation

between human leukocyte antigen (HLA) loci and SS, particularly

noting a higher susceptibility associated with allelic variants such as

HLA-DQB1*0201, HLA-DQA1*0501, and HLA-DQB1*0301

(DR3) (36). In the Chinese Han population, notable susceptibility

loci include TNFAIP3 and GTF2I, which are largely related to HLA

genes and the type I interferon (IFN) pathway (37, 38). While the
TABLE 1 Common clinical symptoms, signs, and related diseases
involved in SS.

Area/system
involved in
the body

clinical symptom/signs/
associated diseases
of accumulation

references

Oral cavity dry mouth; Rampant tooth decay;
Salivary gland inflammation;
ParotitisAtrophy of the lingual papillae

(12, 13)

Eye Keratoconjunctivitis sicca; Lacking
tears;
Lacrimal gland Enlargement; Eyelid
swelling; Corneal ulcer

(13, 14)

Mucous
membranes of
the skin

Vasculitis; Scattered Purpura; Nodular
erythema;
Raynaud’s
phenomenon; Cryoglobulinemia;

(13, 15)

Musculoskeletal Joints Arthritis; Synovitis;
Primary fibromyalgia;

(16, 17)

Kidney renal distal tubular acidosis; diabetes
insipidus; Gitelman syndrome;
tubulointerstitial nephritis;

(18, 19)

Respiration Intersitial Lung Disease;airway disease (20, 21)

Digestiy feature Esophageal mucosal atrophy; atrophic
gastritis; subclinical pancreatitis

(22, 23)

Nervous system Hemiplegia; Myelitis; Meningitis (24, 25)

Blood system Leukopenia/thrombocytopenia; non-
Hodgkin lymphoma

(26)
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number of GWAS focusing on SS is growing, the discovery of

genetic variants with genome-wide significance remains limited

compared to other autoimmune diseases (39). Epigenetics, which

influences gene expression without altering the DNA sequence,

primarily involves histone modification, non-coding RNA (ncRNA)

activity, and DNA methylation. ncRNAs, which do not encode

proteins, can form complex regulatory networks and play critical

roles in bodily regulation. Abnormal expressions and functions of

microRNA (miRNA), such as miR-146a, miR-155, and miR-21, can

disrupt immune system functions and influence the initiation and

progression of SS. Notably, miRNAs expressed in SS patients, like

miR-146a/b and miR-30b-5p, may negatively regulate the B-cells

activating factor (BAFF), crucial for B-cells maturation, survival,

and proliferation, and pivotal in triggering SS (40). DNA

methylation is also critical in SS; one study identified distinct

methylation sites and regions in the whole blood of SS patients
Frontiers in Immunology 03
compared to healthy individuals, particularly within genes

regulating type I IFN (41). Viral infections are central to the

pathogenesis of SS and are considered potential triggers for

initiating the autoimmune process. Viruses activate antigen-

presenting cells (APCs) and autoreactive naïve T cells (42). SG

serve as key sites for latent viral infections, making viral presence a

major environmental factor in initiating innate immunity (43). The

primary viruses implicated in SS include Epstein-Barr virus (EBV)

(44), human herpesvirus (HHV) (45), human T-lymphotropic virus

type 1 (HTLV), chronic hepatitis C virus (HCV) (46), and

cytomegalovirus (CMV) (47). EBV is particularly significant in SS

pathogenesis, capable of infecting SGECs by direct fusion with the

plasma membrane or infecting B cells via the gP350/220 protein. It

evades immune detection through strategies like molecular mimicry

and can persist long-term within the host (48). Furthermore, EBV

can exacerbate the autoimmune response by prompting the
FIGURE 1

Pathologic mechanisms of salivary gland damage in Sjögren’s syndrome. Viral infection, hormonal imbalance, genetic susceptibility, and apoptosis
lead to activation of SGECs, resulting in the release of the intracellular antigens Ro/La onto the surface of SGECs. Ro and La proteins activate
immune cells on the extramembrane surface via TLR, and CD4+ T lymphocytes are activated via MHC-II molecules, which are expressed on the
surface of SGECs.Activated CD4+T cells differentiate into Th17, Th1, and Tfh cells in response to inflammatory cytokines.SGECs interact with CD4+

T cells through inflammatory cytokines, repressors, leading to the production of pro-inflammatory cytokines (IL-21, IL-17, IFN-g, TNF-a).With the
involvement of BAFF, CD4+ T cells activate B lymphocytes, ultimately leading to the formation of autoantibodies and germinal centers. Abnormal
upregulation of TGF-b1 in SGECs leads to morphological and functional mesenchymal changes in SGECs through activation of the TGF-b1/SMAD/
Snail signaling pathway, which contributes to the process of SG fibrosis. Prolonged inflammatory stimulation results in a marked elevation of ATP,
which activates P2X7R, and activated P2X7R allows NLRP3 to enter the cytoplasm thereby activating the NLRP3 inflammatory vesicles. activation of
NLRP3 generates activated Caspase-1, which in turn cleaves the GSDMD, which punches holes in the cytosol at the N-terminal end, releasing
mature IL-1b, IL-18, and thus activating the initial T cells, the differentiate into Th1 and Th17, which further secrete inflammatory cytokines.
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immune system to attack self-antigens through epitope spreading

and bystander activation (49).
Common cells types and pathologic
mechanisms in SS

T cells

Th1 and Th2 cells
Numerous studies have demonstrated that the immune

response in SG affected by SS is predominantly mediated by Type

1 T helper cells (Th1) (50, 51). Elevated levels of Th1-related

cytokines such as IFN-g, TNF-a, and C-X-C motif chemokine

receptor 3 (CXCR3) have been observed in the saliva of SS

patients compared to those with normal SG function (52, 53),

suggesting that increased lymphocyte infiltration is associated with

an upregulation of Th1 cytokines. Specifically, IFN-g plays a crucial
role in SG dysfunction in the SS Ro60 humanized model (54). This

cytokine is believed to contribute to SG dysfunction by disrupting

tight junction structures within SS patients’ SG (55). Similarly,

TNF-a, another pivotal Th1 cytokine, shows significantly higher

expression in the saliva and SG of SS patients (56). Like IFN-g,
increased TNF-a levels compromise the integrity of tight junctions

in salivary gland epithelial cells (SGECs) and diminish the

population of vesicular cells, thereby impairing the SG’s secretory

function (57). Amphiregulin (AREG), a critical growth factor, plays

a vital role in the secretion of pro-inflammatory cytokines within

the SG of SS patients. TNF-a has been shown to induce AREG

secretion, which leads to damage in SG follicular and ductal cells

(58). Additionally, TNF-a can trigger apoptosis and enhance the

transcriptional expression of intercellular adhesion molecule-1

(ICAM-1) and macrophage inflammatory protein-3 (CCL20) in

SGECs (59). Th2 cells, on the other hand, facilitate B cells responses

through their cytokines (60). Th2 molecules have been identified in

the intra-GC regions of SS patients, indicating that Th2 cells may

play a role in regulating the initial B cells response (61).

Th17 and Treg cells
Th17 cells are a subtype of pro-inflammatory CD4+T cells that

play a crucial role in initiating and advancing SS (62). Regulatory T

cells (Treg), on the other hand, serve an inhibitory function by

releasing soluble mediators or through direct cells-to-cells contact,

thus maintaining the dynamic equilibrium of human immunity

(63). Th17 cells produce a range of cytokines (IL-17, IL-17A, TNF-

a), which collectively mediate the inflammatory response in the SG

(64). Research has shown that the balance between Treg and TGF-b
levels in the SG of early-stage SS model mice is significantly

disrupted compared to normal controls due to the overactivation

of Th17 and IL-17 cells (65). In SS patients, the expression of the

transcriptional coactivator with PDZ-binding motif (TAZ) is

markedly elevated (66). TAZ is known to promote Th17

differentiation and inhibit Treg development, leading to a

disruption in immune homeostasis, which supports the

involvement of Th17/Treg imbalance in SG damage. Clinical
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studies have confirmed that Th17 cells are significantly increased

in the SG of SS patients compared to healthy individuals (67) and

are positively correlated with the severity of the pathology (68). IL-

17 induces the secretion of pro-inflammatory factors (TNF-a, IL-6,
and IL-1b) and attracts immune cells to the SG by promoting the

release of IL-8, C-X-C motif chemokine ligand 9, and C-C

chemokine receptor type 3 (69). Furthermore, elevated IL-17A

expression in the SG of SS patients has been linked to increased

disease severity (70). Another Th17 cytokine, IL-22, also contributes

to SG pathology. Firstly, IL-22 recruits B cells and lymphoid

aggregates, facilitating the formation of ectopic lymphoid

structures (ELS). Secondly, IL-22 enhances autoantibody

production by stimulating the expression of cytokines such as

CXCL12 and CXCL13 (71).

Tfh and Thr cells
Follicular helper T cells (Tfh) are a subset of CD4+T cells that

enhance B cells differentiation and antibody production by

expressing the chemokine receptor CXCR5, which interacts with

the chemokine ligand CXCL13 on the surface of B lymphocytes in

the germinal center (72). Elevated levels of CXCL13 have been

detected in the SG of patients with SS (73). Some studies have linked

increased serum concentrations of CXCL13 with abnormal B cells

parameters and even lymphomagenesis (74). Tfh cells are

abundantly present in the SG of SS patients and are positively

correlated with disease activity (75). Moreover, Tfh cells are closely

associated with the formation of ELS, and increased numbers of

activated Tfh cells have been observed in the SG during the

development of ectopic GC (61). IL-21 is a key effector cytokine

of Tfh cells (76). Devangi and colleagues observed that IL-21

induces apoptosis in B cells and also inhibits growth and induces

apoptosis in lymphoma cells, suggesting that IL-21 may also

promote apoptosis in SGECs (77). Follicular regulatory T cells

(Tfr), derived from FOXP3+ Treg cells, represent a distinct class

of regulatory T cells. Tfr cells inhibit the function of Tfh and B cells

within germinal centers, primarily by negatively regulating Tfh

cells, thereby reducing or inhibiting autoantibody production (78).

The balance between Tfh and Tfr cells is crucial for maintaining

normal immune function. Research using a mouse model of

Sjögren’s syndrome has shown that a reduction in Tfr cells leads

to increased lymphocyte infiltration and antibody deposition in the

SG (79).
CD8+T cells

CD8+T cells, also known as cytotoxic T lymphocytes (CTL), are a

critical subpopulation of adaptive immune cells that play a pivotal

role in the elimination of intracellular pathogens. CTL are activated,

proliferate, differentiate, and become effective primarily through the

recognition of antigenic peptide-MHC class I molecule complexes

presented by target cells via T-cells receptors (80). These cells are

characterized by their ability to use perforin and MHC class I

molecule complexes. CTL can kill target cells by producing IFN-g
and exhibiting cytolytic activity through perforin/granzyme or Fas
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cells surface death receptor (Fas) signaling pathways (81). In

autoimmune diseases, the destruction of target cells by autoreactive

CTL can lead to the release of large amounts of autoantigens, which

may trigger the overproduction of autoantibodies. Overactive or

abnormal proliferation of CTL has been observed in the SG of

patients with SS (82, 83). Immunofluorescence experiments have

demonstrated an increase in tissue-resident CTL within the SGECs of

SS patients. CTL contribute to SG injury through multiple biological

pathways. Firstly, activated CTL produce high levels of IFN-g and

TNF-a, inducing inflammatory responses in the SG (84). Secondly,

IFN-g from CTL can compromise the integrity and functionality of

SGECs tight junctions, resulting in SGECs damage (85).
B cells

In SS, the infiltrating cells in the SG are predominantly CD4+T

cells and B cells. Initially, the infiltrating cells are mainly CD4+ T cells

(86). Activated T cells stimulate B cells activation by producing pro-

inflammatory cytokines, establishing a positive feedback loop where

excessive B cells activation plays a central role in the pathogenesis of

SS (87, 88). B cells contribute to the pathological process in SS by

producing autoantibodies such as anti-antinuclear antibody (ANA),

anti-Sjögren’s syndrome type A (anti-SSA), and anti-Sjögren’s

syndrome type B (anti-SSB) antibodies (89, 90). BAFF, a member

of the tumor necrosis factor superfamily, is crucial in influencing the

proliferation, maturation, and survival of B cells. Produced by SG

SGECs, APCs, and activated T and B cells, BAFF is a key pathogenic

factor in SS. The interaction between BAFF and its receptor (BAFF-

R) enhances B cells activation and proliferation, and its aberrant

expression can lead to B cells dysfunction and disrupt immune

homeostasis (91). Elevated BAFF levels in the SG of SS patients

promote B cells maturation and proliferation, resulting in

autoantibody production (88). Additionally, BAFF mediates the

survival of B lymphocytes by activating the NF-kB pathway, which

induces the production of B-cells lymphoma-2 (Bcl-2). Members of

the Bcl-2 family can regulate SGECs apoptosis, thus supporting the

survival of autoreactive B cells and the production of autoantibodies

(92). Elevated BAFF levels in the serum and SG of SS patients have

been found to correlate positively with autoantibody (anti-SSA/SSB)

levels (93, 94). Tripartite Motif-containing 21 (TRIM21), a

cytoplasmic Fc receptor, interacts with Ro60 to form Sjögren’s

syndrome antigen A (SSA). TRIM21 expression enhances the

binding of anti-SSA antibodies to SSA-reactive B cells, thereby

driving B cells activation and anti-SSA antibody production.

Current studies have identified several novel B cells

subpopulations that exert pathologic mechanisms in SS. Notable

among these are abnormal B-cells subsets, such as circulating naïve

B-cells and plasma cells, which are present in the SG of SS patients

and positively correlate with anti-ANA antibody titers (95). T-box

transcription factor TBX21(T-bet), predominantly expressed in

CD4+ and CD8+T cells, regulates the development and function

of Th1 cells by controlling the transcription of multiple genes.

CD11c+ age-associated B cells (ABC) exhibit high levels of T-bet,

which induces the release of IFN-g and IL-12 (96, 97). Research has

shown that an upregulation of the IL-21 signaling pathway in the
Frontiers in Immunology 05
SG of SS patients is associated with increased B-cells enrichment

and disease activity (98), suggesting a role for CD11c+ ABC via IL-

21 signaling (99). Fc receptor-like 4 (FcRL4) is part of the

immunoglobulin superfamily and is typically expressed on human

B cells, playing a regulatory role in immune responses including

proliferation, differentiation, and antibody production. The

proportion of FcRL4+ B cells in the SG of SS patients has been

positively linked to the presence of lymphoepithelial lesions (100).

FcRL4+ B cells are also closely associated with chemokine receptor

CCR5 expression in the SG of SS patients, and their expression may

enhance the migration of chemokines (CCL3 and CCL5) involved

in the SG inflammatory response (101). Regulatory B cells subsets

(Breg) areknown to mitigate autoimmune inflammatory responses.

Bregs exert their regulatory functions through the production of

regulatory cytokines and effector molecules such as IL-10, IL-35,

and granzyme B (102). A negative correlation has been observed

between IL-10-producing Breg cells and Tfh cells in both SS patients

and SS model mice, indicating that Breg cells could represent a

potential therapeutic target for SS (103).
Dendritic cells

Dendritic cells (DC) are specialized APCs that initiate and drive

the differentiation of naïve T cells into effector T cells (104). DCs

can be divided into myeloid dendritic cells (mDC) and

plasmacytoid dendritic cells (pDCs). In the SG of patients with

SS, early infiltrating cells primarily include CD4+CD45RO+T cells

and CD20+B cells, subsequently joined by CD27+ and CD79a+ B

cells, with CD38+ plasma cells located at the periphery of T- and B-

cells infiltrates (105). pDCs are the most potent cellular producers

of type I IFN. Activation of the type I IFN pathway in the SG of SS

patients correlates positively with the titers of anti-Ro and anti-La

autoantibodies (106, 107). Type I IFN promotes the inflammatory

response through both autocrine and paracrine mechanisms and

induces BAFF production by pDCs (108). Furthermore, pDCs

express TLR7 and TLR9 on their surface, which can be triggered

by self-antigens to produce substantial amounts of type I IFN (109).

TLR-mediated activation of pDCs leads to increased secretion of

pro-inflammatory cytokines such as TNF and IL-8. Additionally,

type I IFN can prompt macrophage to produce CXCL13, which in

turn drives the accumulation of CXCR5+CD19+B cells in the SG,

exacerbating the inflammatory response (110). mDCs on the other

hand, respond primarily to microbial pathogens and facilitate Th1-

mediated adaptive immune responses predominantly through the

production of IL-12. It serves as a pro-inflammatory cytokine that

activates T-bet to promote the differentiation of naïve T cells into

Th1 cells (111). Overexpression of IL-12 in the SG of SS model mice

has been observed to induce SS-like symptoms, with an age-

dependent increase in anti-SSB/La and anti-ANA antibodies (112).
Macrophage

Macrophage are among the most prevalent innate immune cells

in the SG of SS patients. Studies have shown that macrophage are
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consistently present in the affected SG of SS patients and their

abundance is positively correlated with the focality index. Activated

macrophage produce inflammatory cytokines that result in damage

to SGECs (113). macrophage exhibit high plasticity, differentiating

into either classically activated (M1 type) or alternatively activated

(M2 type) macrophage in response to various microenvironmental

stimuli. M1-type macrophage exacerbate inflammation, accelerate

extracellular matrix degradation and apoptosis, and enhance Th1-

type immune responses. In contrast, M2 macrophage suppress T-

cells proliferation and activation, modulate Th2-type immune

responses, and contribute to tissue remodeling. The imbalance in

M1/M2 polarization plays a critical role in the pathogenesis of SS

(114, 115). M1 macrophage, prevalent in the early stages of SS,

produce pro-inflammatory cytokines (TNF-a, IL-6, IL-12) that

activate CD4+T cells, promoting their differentiation into the Th1

lineage and exacerbating SG inflammation (116). Conversely, M2

macrophage release anti-inflammatory mediators such as IL-10 and

TGF-b), which help mitigate inflammation and facilitate tissue

regeneration, thereby reducing autoimmune inflammation (117).

As SS advances, chronic inflammation leads to irreversible SG

fibrosis, primarily mediated by M2 macrophage. The TGF-b1
signaling pathway, which drives fibrosis, includes both SMAD-

regulated and non-SMAD-regulated mechanisms. TGF-b1
encourages M2 macrophage polarization through activation of the

SMAD2/3/4 trimeric complex, and this pathway also promotes the

conversion of fibroblasts into myofibroblasts (117). Thus, the

regulation of macrophage polarization homeostasis is essential in

the pathogenesis of SS. In NOD/ShiLtJ mice, macrophage in the SG

have been observed to produce high levels of the B-cells chemokine

CXCL13, potentially facilitating the formation of ectopic GC within

the SG (73).
Salivary gland epithelial cells

The primary target organs in SS are the exocrine glands,

particularly the SG. The reduction of saliva in patients is closely

linked to the infiltration of immune cells around SGECs and the

destruction of glandular structures (118, 119). SGECs drive and

regulate local inflammatory responses by facilitating the activation

and differentiation of immune cells, creating a feedback loop where

immune cells and the inflammatory microenvironment further

activate SGECs (120, 121). Despite not being specialized APCs,

SGECs express high levels of immunoreactive molecules that

mediate lymphocyte homing, antigen presentation, and amplify

interactions with immune cells. Innate immune responses such as

TLR signaling, inflammatory vesicle signaling, and type I interferon

signaling can be activated in SGECs (122, 123). In response to

inflammatory stimuli, SGECs overexpress MHC-II and co-

stimulatory molecules (CD80 and CD86), which activate CD4+T

cells in the SG (43). Additionally, SGECs highly express intercellular

adhesion molecule (ICAM-1) and vascular cells adhesion molecule

(VCAM-1), facilitating the binding to T-lymphocyte function-

associated antigen-1 (LFA1) and very late activation antigen-4

(VLA4). This interaction stabilizes synapses between SGECs and

T-cells, further mediating inflammatory responses (124). Activated
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SGECs also express high levels of inflammatory cytokines and

chemokines (CXCL12, CXCL13, IL-1, IL-6, TNF-a and BAFF).

IL-1 and IL-6 enhance APCs and CD4+ T-cells activation, BAFF

promotes B-cells proliferation and maturation, and CXCL12 and

CXCL13 facilitate the migration of predominantly B-cells immune

cells to the SG (125). Growth-associated oncogene-a (GRO-a) and
its receptor CXCR2, members of the CXC chemokine family, are

involved in the inflammatory response in SG (126). Higher

expression levels of GRO-a and CXCR2 have been observed in

the SG of SS patients compared to healthy controls. Induction of

SGECs with IL-6/TNF-a revealed that increased CXCR2 expression

correlated positively with IL-6/TNF-a levels, and GRO-a
expression was proportionally linked to CXCR2 expression under

pro-inflammatory conditions (127). A disintegrin and

metalloproteinase 17 (ADAM17) plays a crucial role in cells

signaling, adhesion, and cytokine release, impacting inflammatory

and immune responses and cells proliferation (128). A significant

reduction in CXCR2 expression was observed in SS patients’ SGECs

when using an ADAM17 inhibitor. It is hypothesized that

ADAM17 may regulate the SG inflammatory response by

modulating the interaction between GRO-a and its CXCR2

receptor (129).

Uncontrolled apoptosis can lead to the release of large amounts

of cellular contents into the extracellular space, resulting in

autoantigen exposure and inflammatory lesion formation, thus

inducing a strong immune response. Studies have demonstrated

(130) that excessively apoptotic SGECs serve as endogenous

antigens, prompting pDCs to highly express IFN-a, thereby

activating IFN signaling in SS patients (131). TNF-a and IFN-g
cause structural and functional disruptions in SGECs tight

junctions, leading to decreased salivary secretion. Further research

has shown that apoptosis in SGECs leads to the cleavage and

translocation of a-cytosolic lining proteins and SSA antigens into

apoptotic particles, which were then activated by pDCs, resulting in

a disturbed immune response and exacerbation of the inflammatory

response in the SG (132). Genetic analysis of the SG has revealed a

downregulation of anti-apoptosis-related genes and upregulation of

pro-apoptosis genes in SGECs in SS samples, suggesting the

presence of uncontrolled apoptosis of SGECs in SS (133).

Apoptosis in SGECs also activates self-reactive lymphocytes,

triggering the activation of T cells, which then induce SS-

associated autoantibody production and redistribution of Ro/SSA

and La/SSB to the cells surface (134).

Epithelial mesenchymal transfor mation (EMT) describes the

process where epithelial cells differentiate into mesenchymal cells

under specific physiological and pathological conditions. TGF-b1 is
a principal driver of fibrosis in many chronic inflammatory diseases

(135). The activation of EMT constitutes a significant pathological

response of SGECs to chronic inflammation in SS. In SS patients,

fibrosis of SGECs often results from tissue injury and inflammation

(136), with fibrous mediators produced by inflammatory cells and

epithelial cells, particularly TGF-b1, playing crucial roles in EMT

(137). SMAD proteins facilitate TGF-b1 signaling through

transcriptional regulation, impacting significantly on cells

function and fate (138). The snail Family Transcriptional

Repressor (Snail) emerges as a pivotal regulator of EMT, reducing
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the connectivity and polarity of epithelial cells and facilitating their

transition to mesenchymal cells (139). Sisto et al. observed a strong

positive expression of EMT-related proteins (waveform protein,

collagen type I, and Snail) in SG from SS patients. Conversely, the

expression level of the epithelial marker E-cadherin was diminished

in diseased SG biopsies, suggesting that TGF-b1 initiates the EMT

program in SGECs through the classical TGF-b1/SMAD/Snail

signaling pathway (140). In conclusion, SGECs play a crucial role

in SS lesions. Inhibiting SGECs activation and restoring their

physiological functions may enhance salivary gland secretory

function in SS patients.
AQPs and M3R are involved in
regulating salivary gland
secretion regulation

AquaporinS are a class of transmembrane proteins found in

cells membranes, whose main role is to regulate the permeability of

water molecules, thereby facilitating their passage through the cells

membrane. Aquaporin 5 (AQP5) and muscarinic acetylcholine

receptor subtype 3 (M3R) are integral to salivary gland secretion

regulation (141, 142). AQP5, a transmembrane transporter protein,

is primarily located in various secretory epithelial cells and glands

such as the SG, lacrimal glands, and cornea. It enhances the cells

membrane’s water permeability, facilitates water molecule

transport, and participates in both secretion and absorption of

water, as well as intra- and extracellular water balance (143). In

coordination with AQP1 in capillary endothelial cells and

myoepithelial cells, AQP5 transports saliva into the striated tubes

and secretory ducts, playing a crucial role in regulating water

transport rates and maintaining salivary secretion. Notably, AQP5

expression is either reduced or absent in SGECs of SS model mice,

while being elevated in myoepithelial cells (144). The distribution of

AQP5 is similarly diminished in the SGECs of SS patients, impeding

trans-epithelial water transport within glandular vesicles and

contributing to dry mouth symptoms (145). Research indicates

that AQP5 expression is significantly downregulated in the SGECs

of both SS model mice and SS patients (56, 146). AQP4 is found in

myoepithelial cells that encircle the spinous lobules and intercalary

ducts (147). In addition, it has been reported that in the SG of SS

patients, there is increased AQP3 protein expression at the apical

membrane of the adenohypophysis and decreased AQP1 and AQP4

protein expression in myoepithelial cellss. Therefore, as far as the

current study is concerned, AQP1 and AQP3–5 may be involved in

SG secretion (148).

M3R, a G-protein-coupled acetylcholine receptor, responds to

acetylcholine stimulation by increasing calcium ion transport in SG

alveolar cells, activating chloride channels, and mediating the

translocation of AQP5 to the apical plasma membrane, thus

enhancing salivary secretion (149). M3R is widely expressed in

various tissues, including exocrine glands, indicating a significant

role in both salivary and lacrimal secretion, particularly in the

former (150). A research (151) reported that cholinergic signaling is

compromised in M3R knockout mice, leading to SG hypoplasia.
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Furthermore, studies have shown that IL-17-producing M3R-

reactive T cells may exacerbate SG inflammatory responses in SS

(152). AQP5, as an effector protein of M3R, is essential for

regulating salivary secretion. The anti-M3R antibody targets the

M3R receptor, impairing its binding to muscarinic sites and thereby

inhibiting intracellular signaling transduction, which affects AQP5

phosphorylation and its water transport capability, ultimately

restricting glandular secretion (153).
Signaling pathway

IFN signaling pathway

Dysregulation of IFN signaling constitutes the primary

pathophysiological basis of SS. Acting as a critical bridge between

the innate and adaptive immune systems, IFN facilitates

interactions with adaptive immune cells, perpetuating a cycle of

immune activation. It modulates the immune responses of T and B

cells and plays a role in SG injury (154). Enhanced IFN signaling has

been observed in the SG of SS patients (155). IFNs are primarily

categorized into IFN-a, IFN-b, and IFN-g, and are activated

predominantly through TLR and Retinoic Acid-Inducible Gene I-

like receptor signaling (156). While most cells produce IFN-b,
pDCss predominantly secrete IFN-a, linked to high expression

levels of TLR7 and TLR9. IFN-a induces pDCs to express elevated

levels of TLR7, resulting in a sustained increase of IFN-a in the SG

of SS patients and maintaining the inflammatory milieu (157).

Studies indicate that IFN-a enhances lymphocyte activation and

migration to the SG via the JAK1/STAT1/2 signaling pathway in

SGECs and by inducing the expression of CXCL13, BAFF, and

CXCL10. Additionally, IFN-a stimulates the expression of TLR7

and the downstream signaling molecule Myeloid differentiation

primary response 88 (MyD88) (158). Similarly, IFN-g, although
typically expressed at low levels in normal SGECs, is readily induced

by TLR3, like IFN-a. IFN-g also facilitates the production of

autoimmune antibodies such as SSA/Ro and immunoglobulin G

by stimulating BAFF expression in SGECs (159).
TLR signaling pathway

TLRs play an integral role in the pathogenesis of SS. Current

research indicates that TLRs involved in the SG inflammatory

response primarily include TLR2, TLR3, TLR4, TLR7, and TLR9

(160). Moreover, viral double-stranded RNA can induce apoptosis

in SGECs by activating TLR3, which upregulates apoptotic proteins

such as Bcl-2 modifier and ultra-long Bcl-2 interacting cells death

mediator. Apoptotic SGECs then act as endogenous antigens that

recruit immune cells to infiltrate the SG, thereby triggering an

immune response (161, 162). TLR2 and TLR4 are significantly

upregulated in the SGs of SS mice and activate the Mitogen-

Activated Protein Kinase and NF-kB pathways via MyD88,

leading to elevated expression of IL-6, monocyte chemotactic

protein 1, and TNF-a in SGECs. These inflammatory factors are

significantly reduced when MyD88 is knocked out (163).
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Conversely, TLR7 and TLR9 enhance B lymphocyte maturation and

proliferation. TLR9 specifically induces B lymphocytes to express

autoantibodies and inflammatory factors such as monocyte

chemotactic protein 1, IL-8, and IL-6. TLR7 facilitates IFN-a
synthesis by inducing STAT3^S727 and NF-kB phosphorylation

in B lymphocytes (164). In SS patients, TLR7 not only increases B

cells secretion of IFN-a but also promotes the differentiation of

immature B cells into plasma cells, culminating in abnormal

immune system activation (165). Therefore, TLR signaling is

critical in regulating inflammatory factor expression, B-

lymphocyte maturation, antibody synthesis, and SGECs apoptosis

in SS.
BAFF/BAFF-R signaling pathway

BAFF, a member of the TNF family, induces B lymphocyte

activation, maturation, migration, and autoantibody production,

and is a principal cause of B lymphocyte over-activation in the SG of

SS patients (166). BAFF expression is significantly higher in the SG

of SS patients, correlating with serum IgG, ESR, anti-ANA levels,

and disease activity. This excessive expression is a major contributor

to SG damage. Studies indicate that elevated BAFF levels are present

in the SG of all SS patients, while serum BAFF levels are

comparatively lower in patients with GC formation than in those

without (99). Consequently, the distribution of BAFF in SS patients

is closely associated with lymphocyte migration to the SG and GC

formation. SGECs are prompted by IFN-a to produce large

amounts of BAFF, leading to the overactivation of B lymphocytes.

BAFF-R, a specific receptor for BAFF, when bound to BAFF,

activates the PI3K/AKT/mTOR signaling pathway in B

lymphocytes. This activation leads to IKK phosphorylation and

elevates the expression of NF-kB, triggering the production of

inflammatory factors (IL-12, IFN-g, IL-6, and IL-1b) and

resulting in an inflammatory response in the SG (167, 168).
JAK-STAT signaling pathway

The Janus kinase (JAK)/signal transducer and activator of

transcription (STAT) pathway is a crucial regulatory system for

cells proliferation and differentiation. The JAK-STAT pathway

comprises four JAK intracellular tyrosine kinases (JAK1, JAK2,

JAK3, and TYK2) and seven transcription factors, STAT (STAT1,

STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6), which

mediate the transduction of various cytokines related to immune

response, inflammation, and cellular activation and survival (169).

Immunohistochemical analysis has shown that SGECs in the SG of

patients with SS highly express JAK1 and JAK2 (170). Increased

expression of STAT3 has been observed in SS SG (171, 172), which

is stimulated by cytokines mediated by JAK1 and JAK2 (173, 174).

Recent studies suggest that STAT3 is also involved in the process of

episomal DNA methylation/hydroxymethylation in SS (175). In the

cytokine signaling mediated by JAK/STAT, IL-6, IL-21, and IL-23

are implicated in the pathogenesis of SS. IL-21, a significant

cytokine in the IFN signaling pathway, is notably elevated in SS
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patients, and SGRNA sequencing has revealed significantly higher

levels of IL-21 and IL-21-inducible genes (IL-21R, JAK3, STAT1,

and CXCL10) (176, 177). Additionally, recent studies have shown

that baricitinib, a JAK inhibitor, can ameliorate the destruction of

alveolar cells in the SG of SS patients by reducing IFN-g-induced
CXCL10 expression and CXCL10-dependent immune cells

infiltration in the SGECs (170).
P2X7R/NLRP3 signaling pathway

Cellular pyroptosis, a recent discovery, is a novel form of

inflammatory programmed cells death characterized by mild

cellular swelling. Before this swelling, bubble-like protrusions

form on the cells membrane, mediated by Gasdermin family

proteins. These proteins create annular pores in the membrane,

allowing cellular contents to flow out gradually and triggering an

inflammatory response (178). The Purinergic 2X7 receptor

(P2X7R), an Adenosine triphosphate (ATP)-gated ion channel, is

expressed in various tissues including the central nervous system

and different epithelial tissues (179). Research has indicated (180,

181) that P2X7R in the SG plays a crucial role in cholinergic

receptor-mediated salivary secretion. P2X7R is a significant

activator of the NOD-like receptor family, pyrin domain-

containing 3 (NLRP3) inflammasomes (182). Upon ATP

stimulation, activated P2X7R facilitates the formation of large

non-selective membrane pores that permit NLRP3 entry into the

cytoplasm, thus activating the NLRP3 inflammasome (183).

Activation of the NLRP3 inflammasome leads to the production

of activated Caspase-1, which cleaves GSDMD, causing its N-

terminus to perforate the cytosolic membrane. This process

releases mature IL-1b and IL-18, which activate initial T-cells,

prompting their differentiation into Th1 and Th17 cells and

inducing the secretion of cytokines (IL-6, IL-17, IL-21, IL-22, IL-

23) that provoke an inflammatory response (184). Baldini et al.

demonstrated that P2X7R, Caspase-1, and IL-18 levels were

elevated in the SG of SS patients at both RNA and protein levels

(185). Khalafall et al. (186) showed through in vitro experimental

studies on SS model mice that P2X7R activation prompted the

assembly of NLRP3 inflammasomes and the maturation and release

of IL-1b in mouse SGECs. IL-1b, a major cytokine involved in SS

inflammation, primarily contributes to SGECs apoptosis and

necrosis and facilitates the release of tissue-specific autoantigens.

IL-18, a critical pro-inflammatory cytokine of the IL-1 family and a

key downstream factor of inflammasomes, is upregulated in the

SGECs of SS patients and closely linked to GC formation (187).
TGF-b1/SMAD/Snail signaling pathway

EMT plays a crucial role in activating the pathological fibrosis

cascade response in chronic inflammatory diseases (188, 189). In

the pathology of SS, various cytokines significantly alter the polarity

and organization of the SGECs, impacting their secretory function

and closely linking to EMT activation (190, 191). Chronic

inflammation is a key factor in SG fibrosis, with CD4+T cells,
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macrophage, and epithelial cells contributing to the pathological

accumulation of extracellular matrix (ECM) components typical of

SG changes in SS (192). Increasing evidence indicates that TGF-b1
mediates its biological effects via the TGF-b/SMAD/Snail signaling

pathway, playing a significant pathogenic role in various fibrotic

diseases. In SS, aberrant up-regulation of TGF-b1 in SG exacerbates

the fibrosis by activating the TGF-b1/SMAD/Snail signaling

pathway, leading to morphological and functional mesenchymal

transformations in SGECs (63).
Summary

The pathogenesis of SS-related salivary gland injury is complex,

resulting from a multifaceted interplay of cellular and molecular

factors. This process is still not fully understood, with ongoing

research into its specific mechanisms. Although several potential

therapeutic targets have been identified, and some targeted

medications have shown promising efficacy in both ex vivo and in

vivo studies, their translation into clinical practice remains limited,

often requiring extended periods. Therefore, enhancing our

understanding of SS salivary gland pathogenesis and utilizing

preliminary findings to prevent or mitigate further glandular

damage and preserve secretory function is essential for improving

patient quality of life.
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