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T cells (Foxp3+ Treg) and key
factors in digestive malignancies
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Keyuan Huo1, Xiaojie Chen1, Zihan Xiang1 and Lantao Liu1*
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2Mudanjiang Medical University, Mudanjiang, Heilongjiang, China, 3Mudanjiang Hospital for
Cardiovascular Diseases, Department of Anesthesiology, Mudanjiang, Heilongjiang, China
Foxp3+ regulatory T cells (Foxp3+ Treg) play a role in regulating various types of

tumors, but uncertainty still exists regarding the exact mechanism underlying

Foxp3+ Treg activation in gastrointestinal malignancies. As of now, research has

shown that Foxp3+ Treg expression, altered glucose metabolism, or a hypoxic

tumor microenvironment all affect Foxp3+ Treg function in the bodies of tumor

patients. Furthermore, it has been demonstrated that post-translational

modifications are essential for mature Foxp3 to function properly. Additionally,

a considerable number of non-coding RNAs (ncRNAs) have been implicated in

the activation of the Foxp3 signaling pathway. These mechanisms regulating

Foxp3 may one day serve as potential therapeutic targets for gastrointestinal

malignancies. This review primarily focuses on the properties and capabilities of

Foxp3 and Foxp3+Treg. It emphasizes the advancement of research on the

regulatory mechanisms of Foxp3 in different malignant tumors of the digestive

system, providing new insights for the exploration of anticancer treatments.
KEYWORDS

Foxp3, FOXP3+ regulatory T cells, Foxp3 transcriptional and post-translational
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1 Introduction

Data from the two most populous countries in the world, China and the United States,

indicate that in 2020, China accounted for approximately 23.7% of the global cancer

incidence and 30.2% of all cancer deaths, with 4,568,754 new cancer cases and 3,002,899

deaths (1); by 2023, the United States anticipates approximately 1958310 new cancer cases

and 609820 cancer deaths (2). Thus, Medical professionals have shown that Foxp3+Treg

expression is elevated in high-grade digestive malignant tumors, such as liver, pancreatic, and

stomach cancers, and is typically linked to a poor prognosis for patients. This discovery has

been made when investigating the formation mechanism of diverse malignant tumors (3–6).

This article mainly summarizes the research progress on the expression mechanism and

function of Foxp3+Treg and Foxp3 related features and functions in digestive system
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malignant tumors, which have been publicly published in

publications such as Pubmed. We also discuss the application of

immunotherapy techniques to inhibit the tumor immunosuppressive

effect of Foxp3+Treg based on the regulation of Foxp3+Treg

expression in the tumor microenvironment, thereby improving the

patient’s own immune and anti-tumor ability, and providing new

ideas for personalized treatment of tumor patients.
2 Foxp3+ regulatory T cells (Foxp3+
Treg) and their key factors

2.1 Foxp3+Treg

Foxp3+ Treg cells predominantly secrete Foxp3, a subset of T

cells that regulate the body’s immune system by exerting

immunosuppressive effects. Foxp3+ Treg can be acquired in two
Frontiers in Immunology 02
ways: the first is through maturation in the thymus and release into

the periphery, at which point Foxp3+ Treg are also known as

natural regulatory T cells (nTregs); another method of production is

through Transforming Growth Factor-b (TGF-b) Induced

regulatory T cells (iTreg). These cells protect their own reactive

lymphocytes from immunological reactions, thereby maintaining

their immunity and tissue stability (7) (Table 1).
2.2 Foxp3

The transcription factor Foxp3 belongs to the multi-domain Fox

family of forkhead box proteins. Proline and other amino acids make

up the majority of the N-terminal region, which binds to different

protein molecules to carry out transcriptional inhibition functions.

For example, it can inhibit the production of NF-AT-mediated

transcription-activating factor IL-2 (36, 37); the stable C-terminal
TABLE 1 Changes in the expression of Foxp3 and Foxp3+ T cells.

Level Type
of regulation

Factors
of action

Mechanim of action Cancer
type/cells

References

Transcription Foxp3 mRNA and
Protein down

c-Rel c-Rel acetylation negatively regulates
Foxp3 promoter activation

EL4 and MT-2 cells (8)

Foxp3 mRNA and
Protein down

Enolase -1 Enolase-1 is specifically recruited to the
Foxp3 promoter and its CNS2
regulatory region

(9)

Foxp3 mRNA and
Protein up

SAMHD1 Phosphorylation of the T592 site in the
TCR/CDK2/SAMHD1 pathway interacts
directly with Foxp3 to inhibit dNTPase
activity and enhance the stability of
Foxp3 mRNA

human
peripheral blood

(10)

Foxp3 mRNA and
Protein And

Foxp3+Treg Up

Tet2 TGF-b/Uhrf1/Tet2 enables it to act on the
CpG island of Foxp3 CNS2, enhancing
the stability of Foxp3 mRNA and thus
maintaining the stability of Foxp3+Treg.

(11)

Foxp3 mRNA and
Protein down

flicr flicr acts in cis on Foxp3 transcriptional
regulation and reduces Foxp3 stability

C57BL/6J mice (12)

Foxp3 mRNA
and Protein down

PI3K PI3K/AKT/mTOR pathway activation
reduces Foxp3 production

(13)

Foxp3 mRNA and
Protein down

miR-125b miR-125b inhibits Foxp3 mRNA and
protein expression by targeting the 30
UTR of Foxp3

Thyroid cancer (14)

Foxp3 mRNA and
Protein Up

miR-4281 miR-4281 directly binds to the human
Foxp3 promoter and upregulates Foxp3
protein expression

(15)

Translation and
post-translation
modifications

Protein of Foxp3 up
The function of Foxp3

+Treg Up

PRMT 1 Methylation of arginine residues 48 and
51 on Foxp3 by PRMT 1

(16)

Foxp3 Protein down
The function of Foxp3

+Treg down

PARP-1 PARP-1 promotes Stub1-mediated Foxp3
degradation and polyubiquitination

HEK293T cells (17)

Foxp3 Protein up USP7 Up-regulation of USP7 reduces
ubiquitination of Foxp3 and stabilizes
Foxp3 protein expression

HCT116 (p53WT)
and human prostate
cancer PC-3
(p53MUT) cell

(18)

(Continued)
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forked head domain (FKH) can recognize and bind specific DNA

sequences. Central zinc finger transcriptional regulation and

oligomerization modification with leucine domain (38). Foxp3 is

primarily produced by T cells; however, non-Treg cells can also

generate some Foxp3. Foxp3, a crucial transcription factor in
Frontiers in Immunology 03
regulatory T cells (Treg cells), regulates various functions and

processes, such as development and maturation. The function of

Treg cells may be inhibited by a lack of or low expression.

Significantly, human X-linked and autoimmune diseases, including

immune system disorders, several endocrine disorders, intestinal
TABLE 1 Continued

Level Type
of regulation

Factors
of action

Mechanim of action Cancer
type/cells

References

Foxp3 Protein up USP44 USP44 activation removes ubiquitination
modifications from K3-linked ubiquitin
chain linkages and stabilizes
Foxp3 protein

BALB/c mice (19)

Foxp3 Protein down Phosphorylation of
Tyr-191

Phosphorylation of the tyrosine residue
Tyr-191 of Foxp3

MCF-7 cells (20)

Foxp3 Protein up Phosphorylation
site Ser418

The presence of the phosphorylation site
Ser418 at the C-terminus of Foxp3
promotes the protein expression of Foxp3

(21)

Foxp3 Protein up HAT p300 HAT p300 mediates Foxp3 acetylation
modifications competing for co-
interacting ubiquitination modifications
and inhibits degradation of Foxp3

HEK293 cells (22, 23)

Foxp3 Protein down SIRT1 SIRT1 negatively regulates the stability of
Foxp3 by deacetylating the Foxp3 lysine
acetylation site (K31, K262 and K267).

293T and Jurkat cells (23, 24)

Other
Protein level

The function of Foxp3
+Treg up

HIF-1a Binding of HIF-1a to Foxp3 protein
disassembles its ubiquitination

Seven human lung
cancer cell lines
(H358, H460, H524,
H1650, H838, H1975
and A549)

(25)

The function of Foxp3
+Treg up

Foxp3 Protein up

STAT3 The STAT3/Foxp3 axis in ESCC tissues
promotes Foxp3 expression through
STAT3 modification of the Foxp3+Treg
transcription process

ESCC (26)

The function of Foxp3
+Treg up

COX-2 IL-33/ST2/Foxp3+Treg/COX-2/PGs
regulatory pathway that promotes COX-2
secretion by Foxp3+Treg

PDAC (27)

Foxp3+Treg up CCL5 Recruitment of Treg to the tumor
microenvironment by CCL5 in concert
with Foxp3

PDAC (28)

Foxp3 Protein up AKT1 AKT1/FOXP3/CerS6 axis PDAC (29)

The function of Foxp3
+Treg up

FoxM1 FoxM1 was accompanied by a significant
increase in the number of Foxp3+Treg

GC (30)

Foxp3 Protein down miR-34a MKL1/miR34a/FOXP3 axis represses
FOXP3 expression via miR-34a

GC (31)

Foxp3 Protein down miR-133a-3 Binding of miR-133a-3p to the
untranslated region 3'-UTR at the 3' end
of Foxp3 inhibits

GC (32)

The function of Foxp3
+Treg up

Helios Co-expression of Foxp3 with Helios
enhances the inhibitory profile of Treg
more than each molecule acting alone

CRC (33)

The function of Foxp3
+Treg up

TCF-1 Decrease in TCF-1 increases Foxp3
binding to downstream gene regulatory
elements, which in turn promotes
Treg expression

CRC (34)

Foxp3+Treg up HDGF PolyIC/TLR/HDGF axis activation
promotes Foxp3+Treg expression

HCC (35)
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diseases, X-linked syndrome (IPEX syndrome), and others, can result

from the functional loss or mutation of the Foxp3 gene (39, 40). The

primary features include various autoimmune disorders affecting

organs, significant allergies, and excessive inflammation. T cell

differentiation and function may be influenced by the interactions

of Foxp3 with other factors. Through its antagonistic effects on Toll-

like receptors (TLRs), Foxp3 contributes to the reprogramming of T

cell metabolism, enhancing T cell oxidative phosphorylation

(OXPHOS) and fatty acid oxidation capacity. Additionally, Foxp3

collaborates with the original glycolytic pathway to produce energy,

ensuring that Treg cells have the essential resources for proliferation

and preventing cell apoptosis (41, 42). Conversely, Foxp3 suppresses

the glycolysis and Myc signaling pathways when it binds to the

oncogene Myc promoter, which impacts T cell metabolism (43).

Additionally, Foxp3 can control the body’s immunity by directly

or indirectly influencing downstream components in tumor

cells. In their investigation of non-small cell lung cancer cells,

Peng et al. (44) discovered that Foxp3 overexpression in the tumor

microenvironment can suppress anti-tumor immunity and promote

the proliferation of cancer cells. Direct binding of Foxp3 to the

LINC00885 promoter can upregulate the production of proteins

associated with the epithelial mesenchymal transition (EMT),

thereby promoting the growth and invasion of cervical cancer cells

(45). Furthermore, numerous clinical investigations have established

that overexpression of Foxp3 is associated with a poor prognosis and

low survival rate in cancer patients (46, 47). For instance, Foxp3

expression is higher and survival is lower in individuals with oral

squamous cell carcinoma (48). On the other hand, patients with

specific malignancies have been shown to benefit from elevated

Foxp3 expression. According to published research, patients with

high levels of VEGF and CD44 expression in breast cancer have a

comparatively short survival period. Additionally, there is a negative

correlation between Foxp3 expression and VEGF and CD44

expression. On one hand, Foxp3 directly inhibits the activity of the

VEGF promoter through a specific forkhead binding motif, which

leads to the inhibition of angiogenesis in breast cancer by suppressing

the expression of VEGF, consequently downregulating VEGF (49);

On the other hand, Foxp3 binds to the promoter of CD44 coding

gene to suppress breast cancer metastasis, thereby hindering the

progress of breast cancer (50). In addition, Gal-1 regulates the anti-

tumor properties of Foxp3 by binding with the FKH domain of

Foxp3 in Foxp3-positive breast cancer cells, thereby maintaining the

stability of cancer cells (51). According to reports, Foxp3 is a

downstream target of p53 mediated cell aging, promoting the aging

of epithelial cancer cells by inducing the expression and generation of

p21 and ROS (52). It Collaborates with microRNA-155 to regulate

the transcription process of Zinc finger E-box binding homology box

2 (ZEB2), inhibiting the expression of ZEB2 in colon cancer. This

inhibition leads to the suppression of cancer cell proliferation and

metastasis, enhancing anti-tumor immunity (53) (Figure 1).

Therefore, due to the widespread expression of Foxp3 in tumor

cells, it has a dual role in tumor induced proliferation or inhibition.

Studying the regulatory mechanisms of Foxp3+ Treg cells and Foxp3

involvement in malignant tumors is of great significance for

understanding and developing treatments for each disease.
Frontiers in Immunology 04
Expression of Foxp3 in relation to T cells and cancer cells in the

CRC tumor microenvironment. In colon cancer cells, Foxp3 and

microRNA-155 work together to synergistically regulate the

transcription of Zinc finger E-box binding homology box 2

(ZEB2), which suppresses ZEB2 expression and boosts anti-tumor

immunity, reducing cancer cell growth and metastasis; In addition,

Overexpression of Foxp3 also promotes MMP9 expression through

the SAM cycle; The decrease of TCF-1 leads to an increase in the

binding of Foxp3 to downstream gene regulatory elements, thereby

promoting the expression of Treg, inhibiting the proliferation of

effector T cells, and promoting the progression of CRC. ZEB2,the

Zinc finger E-box binding homology box 2; MMP9,Matrix Metallo

Protein 9; TCF-1,T Cell Transcription Factor 1.
3 Foxp3’s expression
regulation mechanism

The translated Foxp3 protein precursor is altered by

methylation, acetylation and deacetylation, phosphorylation,

ubiquitination and deubiquitination, glycosylation, and other

modifications in addition to epigenetic modifications that control

Foxp3 expression during transcription. Additionally, Foxp3

expression may be impacted directly or indirectly by changes in

sugar metabolism or short RNAs (Figure 2).

The regulation of transcription and translation modifications

related to Foxp3 in Foxp3+ Treg cells. The transcription of Foxp3 and

the activation process of Foxp3 are regulated by binding to non-

coding sequences such as c-Rel, ENO1, and Tet2, like CNS0–3,

during transcription. In addition, the long non-coding RNA

(lncRNA) Fricr is similar to the Foxp3 genome and can act in cis

on the transcription process of Foxp3. Foxp3’s post-translational

regulation process mainly involves the methylation of PRMT1,

glycosylation of PARP-1, cooperative ubiquitination of USP44 and

USP7, dephosphorylation of PP1, acetylation regulation of SIRT1 and

p300, and glucose metabolism process. The interaction of HIF-1a
with Foxp3 protein and other factors can influence the expression

and function of Foxp3. TGF-b, Transforming Growth Factor b;
USP44, Ubiquitin Specific Peptidase 44; USP7, Ubiquitin Specific

Peptidase 7; PRMT1, Protein arginine methyltransferase 1; PARP-1,

Poly (adp-ribose) polymerase 1; PPI,Phosphoproteinase 1; TNF-a,
Tumor necrosis factor-a; GLUT, The glucose transporter; VEGF,

Vascular Endothelial Growth Factor; HIF-1a, Hypoxia-inducible

factor-1a; Tet2, Tet methylcytosine dioxygenase 2.
3.1 Transcriptional and post-
transcriptional regulation

It has been discovered that the conserved non-coding sequence

CNS0–3 includes the Cage1 site, which is situated 1500 bp upstream

of the core promoter, and the Cage2 site, which is situated 2000 bp

upstream, as well as other required regulatory regions for Foxp3

gene expression (54). The TCR on T cells surface activates Foxp3

transcription negatively by binding to NF-kB. The conserved CNS3
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FIGURE 1

Expression of Foxp3 in relation to T cells and cancer cells in the CRC tumor microenvironment. In colon cancer cells, Foxp3 and microRNA-155
work together to synergistically regulate the transcription of Zinc finger E-box binding homology box 2 (ZEB2), which suppresses ZEB2 expression
and boosts anti-tumor immunity, reducing cancer cell growth and metastasis; In addition, Overexpression of Foxp3 also promotes MMP9 expression
through the SAM cycle; The decrease of TCF-1 leads to an increase in the binding of Foxp3 to downstream gene regulatory elements, thereby
promoting the expression of Treg, inhibiting the proliferation of effector T cells, and promoting the progression of CRC. ZEB2,the Zinc finger E-box
binding homology box 2; MMP9, Matrix Metallo Protein 9; TCF-1,T Cell Transcription Factor 1.
FIGURE 2

The regulation of transcription and translation modifications related to Foxp3 in Foxp3+ Treg cells. The transcription of Foxp3 and the activation
process of Foxp3 are regulated by binding to non-coding sequences such as c-Rel, ENO1, and Tet2, like CNS0-3, during transcription. In addition,
the long non-coding RNA (lncRNA) Fricr is similar to the Foxp3 genome and can act in cis on the transcription process of Foxp3. Foxp3's post-
translational regulation process mainly involves the methylation of PRMT1, glycosylation of PARP-1, cooperative ubiquitination of USP44 and USP7,
dephosphorylation of PP1, acetylation regulation of SIRT1 and p300, and glucose metabolism process. The interaction of HIF-1a with Foxp3 protein
and other factors can influence the expression and function of Foxp3. TGF-b, Transforming Growth Factor b; USP44, Ubiquitin Specific Peptidase
44; USP7, Ubiquitin Specific Peptidase 7; PRMT1, Protein arginine methyltransferase 1; PARP-1, Poly (adp-ribose) polymerase 1; PPI,
Phosphoproteinase 1; TNF-a, Tumor necrosis factor-a; GLUT, The glucose transporter; VEGF, Vascular Endothelial Growth Factor; HIF-1a, Hypoxia-
inducible factor-1a; Tet2, Tet methylcytosine dioxygenase 2.
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regulatory region of Foxp3 is then joined with the c-Rel of the

family. Conversely, acetylated c-Rel on the site inhibits Foxp3

production by adversely regulating the activation of the Foxp3

promoter (8). Alternatively, Foxp3 expression can be inhibited by

the specific recruitment of enolase-1 in the glycolytic pathway to the

Foxp3 promoter and its CNS2 regulatory region; however, this

study also has shown that TCR activation leads to an increase in the

cell’s ability to uptake glucose and glycolysis, which, in turn, leads to

an increase in the expression of Foxp3 (9). Reports state that long

non-coding RNA (lncRNA) fricr is comparable to the Foxp3

genome and has the ability to act cis on Foxp3’s transcription

process, decreasing its stability (12); additionally, miR-125b has

been shown in thyroid cancer research to target Foxp3 and suppress

its mRNA and protein production while increasing cancer

cells’ susceptibility to cisplatin treatments (14). Reduced Foxp3

expression is advantageous for enhancing the therapeutic benefit of

patients on anti-cancer medications, as miR-4281 directly binds to

the Foxp3 promoter, upregulates the expression of Foxp3 protein,

and promotes the immunosuppressive role of Foxp3+Treg (15). To

better guide anti-cancer treatment, it is imperative to have a

thorough understanding of the mechanisms behind the activity of

non-coding RNAs (ncRNAs), as they are also crucial in regulating

the Foxp3 process.

The TCR signaling pathway has a distinct regulatory mechanism

that manifests a twofold regulatory effect throughout the

transcriptional activation process of Foxp3. Deoxyribonucleoside

triphosphate triphosphate hydrolase (SAMHD1) co-localizes with

ODNps25 in the cytoplasm and interacts directly with Foxp3

through phosphorylation of T592 in the TCR/CDK2/SAMHD1

pathway, which increases the stability of Foxp3 mRNA by inhibiting

the activity of the dNTPase (10). The DNA demethylating Tet2 enzyme

(a member of the TETase family) is increased by high-intensity TCR

signaling stimulation (55) or TGF–induced phosphorylation of Uhrf1,

which enables it to act on the CpG island of Foxp3 CNS2 and preserves

the stability of the Foxp3+ Treg (11). However, Stephan Sauer et al. (13)

has shown that stimulation of the PI3K/AKT/mTOR pathway reduces

Foxp3 production and persistent TCR signaling prevents naive CD4+T

cells from differentiating into Foxp3+CD4+ T cells. In summary,

further research is necessary to fully understand the effects of Foxp3

involvement on cancer cells and Foxp3+Treg function in particular

tumor microenvironments, as well as to demonstrate the advantageous

role of Foxp3 therapeutic blockade in future immunotherapy strategies,

which will offer fresh concepts for clinical targeted therapy. This is even

though we have clarified the specific regulatory mechanisms of some

Foxp3 transcription processes in different tumor types.
3.2 Post-translational regulation

3.2.1 Methylation and glycosylation
Foxp3+Treg’s inhibitory activity is improved by protein

arginine methyltransferase 1 (PRMT 1), according to research by

Yuki Kagoya and colleagues (16). The adp-ribosylation enzyme

Poly (adp-ribose) polymerase 1 (PARP-1) enhances the

multimerization (adp-ribosylation) of Foxp3 in contrast. Foxp3 is
Frontiers in Immunology 06
made unstable by PARP-1 through Stub1-mediated degradation

and polyubiquitination, which inhibits Foxp3+Treg’s inhibitory

effectand strengthens the immune system (17).

3.2.2 Ubiquitination and deubiquitination
Foxp3+Treg regulation depends on ubiquitination and

deubiquitination. It is discovered that activating or up-regulating

the deubiquitinating enzyme USP7 in Treg cells could decrease Foxp3

ubiquitination, stabilize Foxp3 protein expression, and enhance

Foxp3+Treg’s immunosuppressive effect. Conversely, inhibitors that

prevent USP7 from being deubiquitinated can reduce Foxp3+Treg’s

ability to suppress the immune system, which can allow tumor cells to

evade the immune system (18). Furthermore, TGF-b, as The Smad

signaling pathway, activates ubiquitin specific peptidase 44 (USP44),

which can stabilize Foxp3 protein and eliminate ubiquitination

modifications of K3 linked ubiquitin chain connections; the

combined expression of USP44 and USP7 stabilizes Foxp3

expression, and the absence of USP44 in Treg cells can promote

anti-tumor immunity and impede tumor growth (19).

3.2.3 Phosphorylation
The expression of associated proteins like S-phase kinase

associated protein 2 (Skp2), matrix metallo protein 9 (MMP9), and

vascular endothelial growth factor-A (VEGF-A) is inhibited by the

tyrosine kinase LCK-dependent phosphorylation of Foxp3,

particularly at tyrosine residue Tyr-191 (20). Additionally, it has

been demonstrated that the Ser418 phosphorylation site, which is

located at the C-terminus of Foxp3, is phosphorylated in autoimmune

diseases. This phosphorylation site can promote the expression of

Foxp3 proteins and preserves the inhibitory function of Foxp3+ Treg

cells. In contrast, when the Ser418 site is specifically dephosphorylated

by TNF-alpha-activated phosphoproteinase 1 (PP1), it can inhibit the

function of Foxp3+ Treg cells (21). UBC9 is the only E2 enzyme for

Small Ubiquitin-like Modifier (SUMO), which can also target the

UBC9 promoter region to up-regulate SUMOization to regulate

Foxp3+ Treg cell function after phosphorylation modification of the

Y342F site of Foxp3 in human breast cancer cells (56).
3.2.4 Acetylation and deacetylation
Foxp3 protein acetylation, a mechanism that prevents

proteasomal degradation, also regulates the level of Foxp3

expression. Loosdregt (22) reported for the first time that

acetylation directly controled the level of Foxp3 protein. High

levels of Foxp3 acetylation may prevent the protein from being

polyubiquitylated, which raises the level of Foxp3 protein and aids

in the development of T cells into Foxp3+ Treg. The acetylation

modification of Foxp3 by histone acetyltransferases (HAT) p300

can compete with the ubiquitination modification co-acting on

lysine residues and restrict Foxp3 degradation; on the other hand,

the deacetylation modification of Foxp3 by histone acetyltransferase

SIRT1 can obstruct Foxp3 synthesis. Additionally, the Foxp3

protein can be stabilized and acetylated by the TIP-p300-Foxp3

complex, which is formed when TIP60 and p300 work together

(23). Additionally, Hye-Sook Koon (24) recently have discovered
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that SIRT1 modifies Foxp3’s lysine acetylation sites (K31, K262, and

K267) by deacetylation in order to adversely control Foxp3 stability.
3.3 Altered glucose metabolism

According to the study’s findings, Foxp3+Treg expression

increased in the majority of tumors, and while the tumor

microenvironment was anaerobic, HIF-1 aggregation was present

(57). In this situation, HIF-1can bind to the Foxp3 protein and can

inhibit HIF-1 degradation, and at the same time, Foxp3 can increase

HIF-1’s downstream target genes, including VEGF and the glucose

transporter protein (GLUT) (58). Lung cancer cell growth is aided by

the MIF/NF-ƘB/HIF-1 pathway of macrophage migration inhibitory

factor, which keeps the Warburg effect-related factors stable (25). In

conditions with high lactate and low sugar, oxidizing lactate to

pyruvate facilitates nicotinamide adenine dinucleotide (NAD)

regeneration and oxidative phosphorylation. Foxp3+Treg benefits

from changes in tumor glycolysis because it strengthens its

immunosuppressive capacity in the tumor microenvironment and

encourages tumor cell survival (59). Nonetheless, other researchers

have also noted that Foxp3 protein’s ubiquitination is disrupted when

HIF-1 a binds to it, which in turn impairs T cell development and,

ultimately, the production and functionality of Foxp3+Treg (60).

In conclusion, changes in glucose metabolism enable tumor

cells to maintain their energy source, promote growth, and adapt

better to hypoxic environments. Still, there are additional elements

in the glucose metabolism pathway that are regulated by Foxp3 and

HIF-1a. We must conduct more research to better understand the

connection between Foxp3 and its function.
4 Mechanisms of Foxp3 and Foxp3+
Treg cell pro-cancer in malignant
tumors of the digestive system

4.1 Esophageal cancer

Esophageal Carcinoma (ESCC) is a cancerous tumor that

primarily affects the esophageal epithelium. According to research,

the upstream regulatory factor p53 of miR-149–3p (61) is inhibited

from being ubiquitinated when miR-5b-1p binds to the molecular

sponge rcRUNX3 (62) or lncRNA MEG3. This helps to upregulate

Foxp3 expression in ESCC. By increasing Foxp3 expression

through STAT3 modification of Foxp3+Treg transcription process,

activating the STAT3/Foxp3 signaling pathway within ESCC tissue

hinders macrophage phagocytosis and increases Foxp3+Treg

immunosuppressive activity, which helps ESCC evade the body’s

immune response (26). Furthermore, upon recognition of its receptor

ST2, IL-33 attracts a significant number of Foxp3+Tregs to

congregate in the stroma of ESCC, thereby initiating the IL-33/

ST2/Foxp3+Treg/COX-2/PGs regulatory pathway, encouraging

Foxp3+Treg secretion of cyclooxygenase-2 (COX-2) and enabling

the conversion and production of prostaglandins (PGs). These

actions work in concert to preserve the immune system’s stability
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and suppress the tumor microenvironment’s effect, encouraging the

proliferation and growth of ESCC cells (27).
4.2 Pancreatic Cancer

The most prevalent type of pancreatic cancer is pancreatic

ductal adenocarcinoma (PDAC), and an increase in Foxp3 in the

tumor microenvironment of pancreatic cancer affects immune cells

(DCs), which are antigen-presenting cells, impairing the body’s

ability to mount an immune defense (63). It has been shown that

Foxp3 works synergistically to control the recruitment of

chemokine CCL5 to Treg cells in the tumor microenvironment to

promote the immune escape of PDAC. Foxp3 also directly interacts

with the promoter region of programmed cell death-ligand (PD-L1)

to promote PD-L1 inhibition of effector T cell activation (3, 28, 64).

Foxp3 also confers a suppressive phenotype on Tregs in pancreatic

cancer cells by repressing the transcriptional activation of several T

cell-stimulated target genes, such as Interleukin-2 (IL-2) (65). It is

hypothesized that CTLA-4 could be linked to Foxp3+ T cell

suppression of effector T cell function and mediate PDAC

immune escape because it is another cytotoxic T lymphocyte-

associated antigen with immunosuppressive effects that is

expressed more frequently (66). The tissues of pancreatic tumors

have elevated expression of the Ceramide synthase (CerSs) isoform

CERS6. AKT1-mediated phosphorylation of Foxp3 at the S418 site

aids in maintaining the production of CERS6, and elevated levels of

CERS6 mRNA predict a worse prognosis for PDAC patients,

according to ex vivo research. In addition, CERS6 promotes the

p53 mutation that causes PDAC. As a result, inhibiting the AKT1/

FOXP3/CERS6 axis can be a possible tactic to prevent the growth of

pancreatic tumors (29).
4.3 Gastric cancer

Genetic variations and epigenetic changes are linked to an

increased risk of gastric cancer (GC) (67). In GC tumor tissues,

Foxp3 protein is expressed more intracellularly (68). When

compared to GC tumor tissues, the CD8/Foxp3 ratio in GC

paracancerous tissues is much greater, and the elevated

expression of PD-L1 could signal a bad prognosis for GC patients

(69). The number of Foxp3 + Treg cells is significantly higher than

that of paraneoplastic tissues, and the release of COX-2 by Foxp3 +

Treg leads to the induction of Prostaglandin E2 (PGE2) expression.

These factors together inhibits the anti-cancer effects of effector T

cells (6), allowing GC to avoid immune attack and promoting its

immune escape and proliferation. Additionally, using COX-2

inhibitors to treat GC offers the chance to reduce Foxp3+ Treg

activity. Foxp3 interacts to the PSMD7 promoter and stimulates

PSMD7 expression, both of which are up-regulated in gastric cancer

tissues, boosting GC cell proliferation and blocking apoptosis (70).

With extensive research, Li et al. (30) discovered that FoxM1, along

with an increase in the number of Foxp3+Treg, increased

significantly in gastric cancer tissues, that overexpression of

FoxM1 and Foxp3+Treg favored GC infiltration and invasion,
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and that inhibition of the regulatory pathways of FoxM1 and Foxp3

could block GC proliferation, implying that the combination of

FoxM1 and Foxp3+Treg could be used as a biomarker for diagnosis

and prognostic survival of clinical gastric cancer patients. Foxp3

+Treg cells share the functional characteristics of Foxp3+Treg cells

and RORt-expressing TH17 cells, respectively, for having enhanced

immunosuppressive and pro-inflammatory effects, while inhibiting

the production of anticancer factors, such as IFN-g, granzyme B,

and other anticancer factors by effector T cells, resulting in an

imbalance in the body’s immunity to achieve anticancer immune

escape, which is detrimental to the prognosis of patients (71).

Furthermore, investigations have demonstrated that Foxp3

plays an oncogenic function in GC. Foxp3 promotes p21 protein

expression by binding to the p21 promoter region, which inhibits

cancer cell proliferation; however, in the presence of a large amount

of inflammatory infiltration in the GC, Foxp3 has an enhanced

interaction with p65, which reduces binding to the p21 promoter,

thus contributing to cancer cell proliferation (72); S-phase kinase-

associated protein 2 (SKP2) is associated with a double negative

feedback loop of p21 and p27, which can lead to the hypothesis that

overexpression of Foxp3 in GC inhibits the oncogenic effects of

SKP2 (73); the MKL1/miR34a/Foxp3 pathway inhibits the

expression of Foxp3 and promotes the proliferation of GC (31).

Foxp3 inhibits GC cell proliferation by activating the apoptotic

signaling pathway, and increasing Foxp3 expression can increase

the expression of pro-apoptotic genes such as PARP, caspase-3, and

Casp9, effectively inducing apoptosis in GC cells, and vice versa

(74). Foxp3 suppression or binding to miR-133a-3p can limit Foxp3

expression, which stimulates GC cell proliferation and autophagy,

helping to deplete and remove damaged cells and maintain cancer

cell homeostasis (32). Meanwhile, Foxp3 reduces COX2 expression

and cell metastasis as a negative regulator of NF-ƘB activity,

presenting new therapeutic and diagnostic alternatives for gastric

cancer (75, 76).
4.4 Colorectal cancer

The study of CRC markers and their associated signaling

pathways may offer suggestions for targeted therapy treatment of

colon cancer because colorectal cancer (CRC) is a common cancer

of the digestive system, the incidence rate is rising annually in

China, and the survival rate of patients is poor (77). Treg cells have

different subtypes, and Treg accumulates at the tumor site. On the

one hand, it may be due to the co expression of chemokines and

other products such as Foxp3 and Helios produced by tumor cells

and stroma in the TME of CRC, which can enhance the inhibitory

characteristics of Treg more strongly than other molecules acting

alone. In addition, The expression levels of PD-1/CTLA-4 and PD-

1/CD39 in the subgroup of Treg are elevated. They have a

synergistic effect in inhibiting T cell activation and function, as

well as inhibiting tumor specific immune responses, thereby helping

tumor cells evade T cell immune attacks and promoting cancer cell

progression (33). On the other hand, in the presence of TGF - b, it
can also drive the expression of tumor infiltrating Treg cells. In

addition, The Treg density of FOXP3 in tumor tissue is higher than
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that in normal colon mucosa, and its increased expression is

associated with poor CRC survival rate. Overexpression of Foxp3

promotes MMP9 expression through the SAM cycle, promoting

liver metastasis in CRC (78–82) (Figure 1). TCF-1 and Foxp3 can

bind to regulate the same genes. TCF-1 can control T cell

development in the thymus (34). As TCF-1 levels drop in CRC,

more Foxp3 can bind to downstream gene regulatory elements,

promoting the development of Treg, inhibiting the growth of

effector T cells, and advancing CRC (83) (Figure 1). While Foxp3

+Treg is not positively correlated with Foxp3+ cancer cells, and

purely high expression of Foxp3+Treg has no correlation with CRC

prognosis, some researchers have discovered, contrary to the

majority of findings, that high expression of Foxp3 in Foxp3+

cancer cells is correlated with poor prognosis (84). Additionally,

Liu et al.’s research (85) demonstrated that Foxp3 expression was

markedly down-regulated in colon cancer stem cells, that activating

the Foxp3/NF-kB/COX2 pathway could prevent COX2 ’s

transcriptional activation and impede the proliferation of colon

cancer stem cells, and that Foxp3 was able to inhibit the growth of

cancer cells. In summary, the research on Foxp3 expression in CRC

is valuable and has predictive implications, but further investigation

is required to comprehend its role in different cell types. This

knowledge will be beneficial for improving CRC treatment and

prevention strategies.
4.5 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) refers to malignant tumors of

the liver, including primary and metastatic hepatocellular

carcinoma, and HCC patients are often detected in peripheral

mononuclear lymphocytes with a significant increase in the

expression of the factors Foxp3 and RORt, which are closely

related to the development of HCC, compared to normal cells

(86, 87). Yong Huang (88) has discovered that in HBV-infected

people, IL-17-producing Th17 cells congregate with Foxp3+ Treg

cells, facilitating HCC progression. MMP12 might promote

Foxp3+Treg infiltration in tumor tissue; TLR4 might obliquely

attract Foxp3+Treg to the tumor location by interacting with

TGF-b and macrophages (89, 90). Through promoting Treg cell

polarization, it facilitates HCC immunological escape. High basal

levels of lnc-EGFR specifically bind to EGFR in HCC patients,

blocking its interaction and ubiquitination with c-CBL, stabilizing it

and enhancing its own and downstream activation of the AP-1/NF-

AT1 axis. This prolongs the lifespan of EGFR, drives Treg

differentiation, stifles CTL activity, and encourages the growth of

HCC (91). Furthermore, it was discovered that TLR ligands,

particularly polyIC (a synthetic double-stranded RNA

polyinosinic polycytidylic acid), stimulated an increased capacity

of hepatocellular carcinoma cell line (CCL-9.1) in mice to release

Hepatoma Derived Growth Factor (HDGF), as well as Foxp3+ Treg

cells to proliferate, which together inhibit the release of perforin and

granzyme B from effector CD8+ T cells into the tumor

microenvironment for the purpose of assisting cancer cell

immune escape (35). The binding of the lncRNA NEAT1 to the

Foxp3 binding site results in high expression of its downstream
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target gene, pyruvate kinase PKM2, and over-expression of NEAT1/

Foxp3 promotes PKM2 transcriptional activation (92), which

promotes HCC proliferation by enhancing the aerobic

glycolysis pathway.

Furthermore, Foxp3 are found to have an oncogenic influence in

bothHCC andCRC.Mutations in the FKH structural domain of Foxp3

has been found at the transcriptional level in HCC tumor tissues,

affecting the function of controlling the expression of target genes (93).

Foxp3 expression is down-regulated in HCC tissues, but P62 expression

is up-regulated. Low Foxp3 expression and P62 over-expression are

found to be closely connected to a decrease in overall survival in HCC

patients (94). Liu et al. (95) has discovered that the Foxp3 promoter and

CpG region are hypermethylated by NA (cytosine-5)-methyl

transferase 1 (DNMT1), which can limit Foxp3+Treg function and

negatively controls HCC progression. Moreover, Gong et al. (96) also

can confirme that Foxp3 exhibits oncogenic effects in HCC through in

vitro and in vivo experiments, and Foxp3 regulates the TGF-b/smad3/4

pathway to recognize and directly or indirectly act on the Myc

promoter region of oncogenes to inhibit oncogene expression; at the

same time, the over-expression of Foxp3 could promote the increase of

apoptotic marker Bax and expression of apoptosis inhibitor p53, which

promote cancer cell apoptosis (97, 98).
5 The mechanism of action of Foxp3
and Foxp3+Treg cells in other
malignant tumors

Regulating T cell infiltration is a major obstacle to

immunotherapy in TME and is often associated with poor

prognosis. We found that the accumulation of Foxp3+Treg cells

in lung cancer is higher than that in normal tissues, and the

increased infiltration of regulatory T cells into the core tumor

area may be an independent predictor of poor overall survival in

non-small cell lung cancer (NSCLC) patients (99). We found in

vitro culture that over-expression of Foxp3 in Treg cells enhances

the activity and invasiveness of related immune cells, indicating that

an increase in Foxp3 levels in the tumor microenvironment may

promote tumor cell growth (44); And the correlation between TGF -

b and Foxp3 was also shown in the lungs of non-small cell lung

cancer patients; Compared with patients with limited period

NSCLC, the incidence of circulating CD4+CD25+Foxp3+Treg

cells in advanced NSCLC patients is significantly increased, and

the frequency of circulating CD4+CD25+Foxp3+Treg cells is

negatively correlated with interleukin (IL) -17 and positively

correlated with serum IL-10 levels (100). Therefore, an increase in

circulating CD4+CD25+Foxp3+Treg cells may be involved in the

pathogenesis of NSCLC. In addition, analysis of 70 cervical cancer

patients found that, The expression of Foxp3 and VISTA is

associated with clinical staging, The group with double positive

expression of Foxp3 and VISTA had the worst prognosis, The

positive expression of Foxp3 and VISTA may serve as independent

prognostic factors for cervical cancer, providing strong evidence for

immunotherapy of cervical cancer (101). However, in breast cancer

patients, the expression of chemokine receptor CCR4 in tumor
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infiltrating Tregs is higher than that in peripheral Tregs, The

expression of FOXP3 in breast cancer tissue is higher than that in

normal tissue, and overexpression of FOXP3 is associated with

better prognosis. Knockdown FOXP3 with siRNA in vitro can

promote the migration and invasion of human breast cancer

MCF-7 cells; In addition, CCL22 and CCL17 released by tumor

cells and tumor associated macrophages can attract CCR4+Tregs to

the tumor site, and FOXP3 and HAT1 can together epigenetically

alter the promoter on CCR4+Tregs, providing space for FOXP3

binding and CCR4 gene activation. Overexpression of FOXP3

increases the infiltration of CCR4+Tregs cells, leading to reduced

anti-tumor immune response and tumor progression. These

findings indicate that, as a transcriptional activator of CCR4 and

a regulator of Treg invasion, FOXP3 overexpression is related to the

good prognosis of breast cancer and plays an important role in the

tumor microenvironment of breast cancer (102–104).

Based on the above research, we found that Foxp3+Treg cells

are widely involved in the immune regulation of different types of

tumor cells, but their roles vary in different types of tumors, with

both positive and negative effects. Therefore, we need to further

explore and analyze the specific functions of Foxp3+Treg cells in a

certain tumor, in order to provide ideas for the treatment of tumors.
6 Foxp3+Treg cells in immune
treatment for tumors

Tumor immunotherapy is progressively being used in clinical

practice to treat a variety of malignant tumors, in addition to

conventional surgical resection, radiation, and chemotherapy

(105–107). This has a significant positive impact on the clinical

outcomes of various cancers and gives cancer patients hope. Tumor

immunotherapy is the use of novel medications to actively or

passively interact with intracellular signaling pathways and

receptors linked to the transformation and progression of cancer.

This results in an immune response specific to the tumor, inhibits

the growth and survival of cancer cells, and kills or inhibits tumors

(108). To enhance the body’s anti-tumor response and increase the

effectiveness of cancer patients’ treatments, tumor immunotherapy

mostly consists of immune checkpoint inhibitors (ICIs), adoptive

cell transfer therapy (ACT), anti-tumor monoclonal antibodies

(mAbs), tumor vaccines, small molecule antibodies, etc (109–111).

Patients with various cancers showed an increase in Foxp3+Treg

cells in their tumor microenvironment. These cells can help tumor cells

evade the immune system by blocking anti-tumor immunity. This is

typically linked to a patient’s clinical prognosis and poor tumor

development (3, 112–115). Since Foxp3 is the primary distinctive

marker of Foxp3+Treg cells (3), Foxp3-targeting medications include

enzyme inhibitors, both synthetic and natural; Foxp3’s research and

development typically entail changing process-related enzymes,

downstream small molecules, or Foxp3 itself in order to interfere with

its transcription and translation processes, limit its output and lowers

the expression of the immunosuppressive subgroup Foxp3+Treg of

CD4+T cells as well as their ability to fight tumors (116). Foxp3-

microRNA or Foxp3-shRNA generated by R&Ddesign can be delivered
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to tumor cells in an experimental study to decrease Foxp3 expression

and Foxp3+ Treg function using Ultrasound-Targeted Microbubble

Destruction (UTMD) for gene delivery (117). The synthetic peptide can

inhibit Foxp3 protein-protein (PPI) interactions, and as a result, it has

the potential to be employed as a novel medication to disrupt Foxp3

+Treg function. Hawley et al. (118) investigated that hydrocarbon-

anastomosing a-helix (SAH) peptide could target the Foxp3

homodimer protein region, blocking interactions between Foxps,

disrupting the signaling pathway, and decreasing Foxp3-mediated

immunosuppression. However, the peptide cannot have membrane-

penetrating properties and needs to be transfected into the cells, but the

specific mechanism of action is still unclear and needs to be explored in

depth. In light of the fact that Foxp3 also occurs in the organism as a

complex and that Foxp3 collaborates with Rcor1/2 to create the

COREST complex, inhibitors of the COREST complex block Rcor1

endoenzyme activity, which in turn prevents Foxp3+Treg activity (119).

Methotrexate (MTX), a medication used to treat psoriasis, controls

immunological homeostasis by boosting Foxp3 mRNA expression and

Treg cell expression (120). To enhance the body’s ability to fight tumors,

it is crucial to thoroughly evaluate strategies for blocking the Foxp3

regulatory pathway, considering both the cancer-promoting and cancer-

fighting effects of Foxp3 in tumors.

Moreover, a group of antibodies called immune checkpoint

inhibitors (ICIs) work by blocking inhibitory receptors on immune

cells. In medical settings, these immunotherapeutic drugs target

immune cells to some extent and show significant anti-cancer

effects in cancer patients. Currently, immune checkpoint blockers

(ICBs) can directly target Foxp3+Treg by focusing on co-inhibitory

receptors like anti-CTLA4, anti-PD-1, and anti-PD-ligand 1 (PD-L1).

This approach can enhance anti-tumor immune responses by

hindering the immunosuppressive function of Foxp3+Treg.

However, despite the considerable success, a considerable number

of patients have not shown positive responses (121). However, the

loss of Treg homeostasis can also result in potentially fatal

autoimmune adverse events (irAEs) because Tregs play a critical

role in immunological tolerance maintenance and the prevention of

autoimmune disorders (122) (Table 2). The most frequent and early

adverse event (irAE) is skin toxicity, and immune regulatory effects

triggered by ICIs and targeted therapy are required for anti-tumor

effectiveness. But because cancerous cells and healthy skin mucosal

tissue share a signaling route, immunotherapy-induced stimulation

may also impact healthy skin tissue, which can result in the

development of autoimmune skin disorders (123–127). According

to preliminary observations, the therapy of ICIs was also observed to

have an impact on the cardiovascular system, including conditions

such as myocarditis, fulminant myocarditis, arrhythmia, venous

thromboembolic illness, acceleration of atherosclerosis,

atherosclerosis, and other associated cardiovascular issues (128,

129). Treatment with inhibitors of inflammatory response

modifiers (ICIs) has been linked to an increase in cardiovascular

events not just during the initial few weeks of treatment but even

months or years after treatment commencement; However, the risks

of cardiac toxicity vary throughout combination immunotherapy

techniques and ICI treatment regimens. When using a single ICI

treatment, CTLA-4 may be more cardiacally toxic than PD-1 or PD-

L1. When using dual therapy, there is a greater chance of cardiac
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toxicity with dual ICI therapy than with single chemotherapy or

single targeted therapy (130). Moreover, a lot of people have grown

resistant to medications over time (131–134). The resistance

mechanisms of sporadic MSI-H endoplasmic reticulum cells were

revealed to be antigen processing, presentation flaws, and induction

disorders in interferon response in a prospective phase 2 pilot study

based on pembrolizumab in patients with recurrent MSI-H

endometrial cancer. Patients with high microsatellite instability

(MSI-H)/mismatch repair defects (dMMR) appear to be able to

slow their progression with surgical resection or local therapy, in

addition to ongoing pembrolizumab discontinuation studies (145).

Furthermore, ICIs and targeted therapy can cause rheumatoid

arthritis clinical symptoms, nail toxicity, oral mucosal toxicity, and

hair loss (135–140, 146–148). In addition, ICI treatment can also lead

to hepatitis (141–144). Eleonora et al. evaluated the features of liver

injury using ICIs and discovered that liver biopsy is useful in

determining the diagnosis and degree of liver injury in patients

with metastatic cancer undergoing immune-mediated hepatitis.

According to this study, patient-centered care is crucial and could

eventually prevent the need for needless systemic corticosteroid

therapy (149). Patients receiving targeted and immune checkpoint

inhibitor (ICI) therapy for multiple health conditions need to

carefully follow the Society for Immunotherapy of Cancer’s (SITC)
TABLE 2 The loss of Treg homeostasis can also lead to life-threatening
autoimmune adverse events (irAEs).

IrAEs
(types)

Specific manifestations
or symptoms

References

Skin toxicity Systemic lupus erythematosus, vitiligo,
acne like rash, non-specific papules, can
also induce eczematous like lesions or
psoriasis lesions, lichen like dermatitis, dry
skin syndrome, and itching

(123–127)

Cardiovascular
system
and
cardiotoxicity

Cardiomyositis, fulminant myocarditis,
arrhythmia, arrhythmia, venous
thromboembolic disease, accelerated
atherosclerosis, atherosclerosis,
hypotension and other related
cardiovascular problems

(128–130)

Drug resistance The use of immune checkpoint inhibitor
therapy has expanded, leading to
secondary resistance and immune escape
resulting in no response to the inhibitor

(131–134)

alopecia Appearing non scar hair loss similar to
alopecia areata (AA),
eosinophilic folliculitis

Oral
mucosal
toxicity

The main symptoms of oral toxicity
include infection, facial neuropathy (such
as sensory disorders), taste disorders, dry
mouth syndrome, decreased salivary gland
function, jawbone necrosis, and oral
toxicity mainly manifested as mucosal
lesions, decreased salivary gland function,
or facial neuropathy

(135–138)

Nail toxicity Nail detachment, clubbing, paronychia,
nail peeling, nail brittleness, and slowed
nail growth rate

(135, 139, 140)

Hepatotoxicity hepatitis (141–144)
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Clinical Practice Guidelines for Adverse Events Related to Immune

Checkpoint Inhibitors and the National Comprehensive Cancer

Network’s (NCCN) updated guideline for managing immune-

related adverse events (IRAEs). It is crucial for patients to work

closely with dermatologists and other specialists, and make

informed decisions about their medications based on scientific

guidance (150–152). This approach helps minimize the impact of

treatment side effects on patients’ well-being and encourages their

commitment to and enthusiasm for the therapy.

Maintaining a balanced immune response is a significant challenge

when targeting and suppressing Tregs within the tumor

microenvironment (TME) of cancer patients, without affecting

overall self-tolerance. To address this, modifying nanobiomaterials to

create intelligent nanocarriers for drug delivery systems (DDS) can be

helpful. By delivering ICI to specific targets such as Foxp3+Treg, the

immunosuppressive TME can be altered to boost anti-tumor

immunity, while minimizing side effects and improving the

effectiveness of ICI treatment. This approach leads to safe and

efficient cancer immunotherapy, with these specially designed

nanoparticles offering advantages over traditional delivery methods

(153). Thus, more study is needed in the direction of targeting tumor-

specific Tregs without compromising Treg homeostasis overall and

preventing the development of irAEs. Furthermore, because of the

comprehensive study of tumor immunology theory and the ongoing

advancements in technology, ICIs in conjunction with other anti-

cancer therapeutic modalities have been approved for use in a variety of

cancer types (154). For example, research on triple negative breast

cancer (TNBC) suggests that combining immunotherapy with cancer

vaccines and immune checkpoint inhibitors may be beneficial for non-

immunogenic tumors. In a study by Liu et al., nanoparticles (NPs) were

created to deliver mRNA vaccines encoding the tumor antigen MUC1

to dendritic cells (DCs) in lymph nodes, aiming to activate tumor-

specific T lymphocytes. By combining the mRNA vaccine with an anti-

CTLA-4 monoclonal antibody, the anti-tumor effects can be

maximized. NP-based mRNA vaccines that target mannose receptors

on DCs have shown in vivo efficacy in expressing tumor antigens and

inducing a strong cytotoxic T lymphocyte response in TNBC 4T1 cells.

Furthermore, combining vaccines with anti-CTLA-4 monoclonal

antibodies has been found to significantly enhance the anti-tumor

immune response compared to using either treatment alone. These

results highlight the potential synergistic benefits of NP-based mRNA

and CTLA-4 inhibitors in treating TNBC, with NPs serving as a carrier

for mRNA vaccine delivery (155). Thus, it is anticipated that the

combined use of other tumor treatment techniques will lead to new

advancements in cancer eradication.
7 Conclusion

Based on the above discussion, we should now have a better

understanding of the function of Foxp3+Treg in tumor immunity

by reviewing a wide range of prior studies. Particularly, the

investigation of the mechanism regulating the expression of its

key characteristic transcription factor Foxp3 in digestive

malignancies offers a broad array of supportive therapeutic targets

and early diagnostic markers with predictive value for tumor
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diagnosis and treatment. Nevertheless, little is known about how

Foxp3, a crucial regulatory component in tumor immunology,

affects the immune response that relies on Foxp3+Treg cells in

the tumor microenvironment. From the standpoint of Foxp3, we

still do not fully understand how Foxp3 is expressed during the

post-translational modification stage or the precise mechanisms

underlying its function in various cell types. Thus, more studies on

Foxp3 are required to enhance our understanding of Foxp3+Treg

cells and to guide the development of new immunotherapy

approaches. Furthermore, specific pharmacological technologies

should be developed for treatment because the Foxp3 pathway is

currently underutilized in the development of anti-tumor therapies,

as indicated by available experimental evidence. By disrupting

signaling pathways, regulating the immune balance of the tumor

system, mediating Foxp3 expression and the immunosuppressive

effect of Foxp3+ Treg cells, and employing a variety of treatment

modalities simultaneously to enhance anti-cancer immunity, we

aim to achieve the goal of curative treatment for tumors.
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