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Training immunophenotyping
deep learning models with
the same-section ground
truth cell label derivation
method improves virtual
staining accuracy
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Introduction:Deep learning (DL)models predicting biomarker expression in images

of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker

immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and

personalized treatment development. Conventionally, these models are trained on

ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-

stained ones, which might be less accurate than labels from the same section.

Although many such DL models have been developed, the impact of ground truth

cell label derivation methods on their performance has not been studied.

Methodology: In this study, we assess the impact of cell label derivation on H&E

model performance, with CD3+ T-cells in lung cancer tissues as a proof-of-

concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-

based virtual stainingmodels: one trained with cell labels obtained from the same

tissue section as the H&E-stained section (the ‘same-section’ model) and one

trained on cell labels from an adjacent tissue section (the ‘serial-section’ model).

Results: We show that the same-section model exhibited significantly improved

prediction performance compared to the ‘serial-section’ model. Furthermore,

the same-section model outperformed the serial-section model in stratifying
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lung cancer patients within a public lung cancer cohort based on survival

outcomes, demonstrating its potential clinical utility.

Discussion: Collectively, our findings suggest that employing ground

truth cell labels obtained through the same-section approach boosts

immunophenotyping DL solutions.
KEYWORDS

virtual staining, CD3, Pix2Pix generative adversarial network (P2P-GAN), tumor-
infiltrating lymphocytes (TILs), hematoxylin and eosin (H&E), ground truth cell label,
deep learning
Introduction

Tissue-based multi-marker assays, such as multiplex

immunohistochemistry (mIHC), are useful immunophenotyping

tools by identifying molecular signatures. These signatures are

crucial for cancer classification (1) and characterizing immune cells

in terms of lineage and functional states (2, 3). However, the

widespread adoption of these techniques is impeded by multiple

factors, including limited access to specialized equipment, the need

for skilled operators and extended turnaround times (4, 5). Thus,

hematoxylin and eosin (H&E)-based deep learning (DL) prediction

models have been developed as a viable alternative approach (6, 7).

Given that H&E staining is low-cost and routinely performed in

histology laboratories, integrating H&E-based prediction models into

existing diagnostic workflows can be achieved with relative ease. This

approach has the potential to revolutionize the field of

immunotherapy by enabling accurate prediction of potential

treatment response, especially since not all immunotherapy-treated

patients respond well to the treatment (8, 9).H&E-based prediction

models typically derive ground truth cell labels from chromogenic

IHC-stained sections adjacent to a H&E-stained sections (‘serial-

section’), assuming that cell locations are preserved across both

sections (10–13). Yet, the gap between two serial sections likely

hampers precise cell-to-cell mapping; moreover, manual sample

preparation and heat fixation in conventional IHC can distort the

sample and introduce artifacts (14). On the contrary, same-section

mIHC (i.e., H&E and biomarker staining on the same tissue section)

measures multiple markers to generate same-section ground truth

labels. Additionally, mIHC enables a comprehensive analysis of the

tumor microenvironment (TME) by quantifying multiple cell

markers within the same tissue section (4); detailed TME

characterization is crucial to predict if patients would respond to

immunotherapy. For instance, the simultaneous quantification of the

immune markers CD3, CD4, CD8, cytokeratin, PD-1, and CTLA-4

within the same tissue space reveals the intricacies of tumor-immune

interactions (15, 16).

In this study, we demonstrate that a Pix2Pix generative

adversarial network (P2P-GAN) model yields higher prediction
02
accuracy for CD3+ T-cells trained on labels from the same tissue

section, as opposed to labels from serial sections. Furthermore, we

also tested the significance of the predicted CD3+ T-cells in the

prognosis of lung cancer patients (17–19), which revealed that the

same-section P2P-GAN model gave a more reliable prognosis than

the serial-section P2P-GAN model. These findings underscore the

critical role of accurate cell labeling in the development of effective

immunotyping DL models.
Materials and methods

Cohorts

This study was conducted using tissue samples obtained from

two in-house cohorts and one public cohort of lung cancer patients

(Table 1). The training cohort (one of our in-house cohorts)

comprises of formalin-fixed, paraffin-embedded (FFPE) lung

carcinoma tissues collected from 57 patients, arranged in a tissue

microarray (TMA), with one TMA core per patient, which was

prepared at the Department of Anatomical Pathology of Singapore

General Hospital (Agency of Science, Technology and Research;

IRB numbers: 2021–161, 2021–188, 2021–112). The tissue sections

were stained with H&E, and immunolabeled with an anti-CD3

antibody and 4’,6-diamidino-2-phenylindole (DAPI), with the

latter two markers detected using mIHC, at the Institute of

Molecular and Cell Biology at the Agency for Science,

Technology and Research, Singapore. Two training datasets,

namely the same-section and the serial-section datasets, were

generated from the above training cohort as follows. In the same-

section dataset, 57 H&E and mIHC image pairs were generated

from the same tissue sections of the 57 patients. In the serial-section

dataset, a separate set of H&E images were generated using tissue

sections adjacent to the tissue sections used for the mIHC staining.

All the TMA cores from both datasets were used for training.

To evaluate model performance, a second in-house cohort and a

public cohort were used (Table 1). The in-house testing cohort,

termed the IHC cohort, comprised CD3-stained chromogenic IHC
frontiersin.org
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images along with H&E images (20× magnification) generated from

the same section. This IHC cohort is a separate lung carcinoma

cohort of patients from the training cohort. The public cohort

dataset, termed the Onco-SG cohort, consisted of H&E-stained

images (20× magnification) obtained from the Singapore Oncology

Data Portal (OncoSG). The corresponding patient survival data

were also downloaded.
Tissue staining

For the IHC cohort, the FFPE tissues were sectioned (4 µm

thickness) and heat-fixed at 65°C for 5 min before being manually

stained with hematoxylin (Epredia, Fisher Scientific, Porto Salvo,

Portugal) and eosin (Epredia, Fisher Scientific, Gothenburg,

Sweden). The H&E image was then acquired using the

Axioscan.Z7 Slide Scanner (Zeiss, Oberkochen, Germany). Using

the same H&E slide, the tissue section underwent decolorization via

xylene, decreasing concentrations of ethanol and water. Then, the

decolorized slide was subjected to chromogenic IHC staining. The

slide was treated with an anti-CD3 primary antibody (Dako

#A0452, Santa Clara, CA, USA) using the Leica Bond Max

autostainer (Leica Biosystems, Melbourne, Australia) and the

Bond Refine Detection Kit (Leica Biosystems) as previously

described (21). The post-H&E IHC slide was then scanned using

the Axioscan.Z7 Slide Scanner (Zeiss).

For the training cohort, fluorescent mIHC staining was

performed on the FFPE tissue sections (4 µm thickness) using

the Bond Max autostainer (Leica Biosystems), the Bond Refine

Detection Kit (Leica Biosystems), and the Opal 6-Plex Detection

Kit for Whole Slide Imaging (Akoya Biosciences, Marlborough,

MA, USA) as previously described (21). Briefly, FFPE tissue

sections were subjected to repeated cycles of heat-induced

epitope retrieval, anti-CD3 primary antibody (Dako #A0452),

anti-rabbit poly-HRP-IgG secondary antibody (Ready-to-use;

Leica Biosystems), and Opal tyramide signal amplification

reagent (Akoya Biosciences). Spectral DAPI (Akoya Biosciences)

was then applied as the nuclear counterstain. mIHC images were

captured using the Vectra 3 Automated Quantitative Pathology

Imaging System (Akoya Biosciences). After scanning, to generate
Frontiers in Immunology 03
the same-section dataset, the mIHC slides were subjected to H&E

staining, and rescanned using Axioscan.Z1 Slide Scanner (Zeiss).

To generate the serial-section dataset, serial sections of FFPE

tissue were stained directly with H&E and scanned with the

Axioscan.Z1 Slide Scanner (Zeiss).
Ground truth cell labeling of H&E images
with fluorescent mIHC images

The fluorescent mIHC image was processed as follows. First, the

DAPI channel was subjected to nuclear segmentation by the

fluorescence StarDist model (22), generating a nuclear mask. Next,

the CD3 channel was also processed with the fluorescence-trained

StarDist model (22) to extract strong CD3+ signals. To determine the

optimum arbitrary pixel intensity value for the generation of a binary

CD3 mask, visual evaluation of CD3 positive signals using a range of

pixel intensity values (between 0–255) was conducted by histologists.

The optimum threshold of 50 was selected and applied to obtain a

binary CD3 positive signal mask. Then, the CD3 mask was applied to

the nuclear mask with the logical ‘AND’ operator from the Python

package Numpy. Nuclei present in the same space as the positive

signals in the CD3 mask were labeled as CD3+.

To transfer the cell labels from the processed mIHC image to the

H&E image, the H&E image was first converted into a nuclear mask

via nuclear segmentation by the H&E-trained StarDist model (22).

The CD3+ cells identified in the mIHC image were matched to the

closest nuclei in the H&E image generated from the same (post-

mIHC H&E staining) or a serial tissue section (designated the same-

section and serial-section datasets, respectively). To account for the

membranous CD3 signals, the StarDist-generated CD3+ T-cell mask

was dilated using the dilate function of OpenCV (kernel size 5).
Ground truth cell labeling of H&E images
with IHC images

For IHC images, each image was first subjected to color

deconvolution by the deconvolution function from the scikit-

image Python package (23). Next, to determine CD3 signal

localization, a threshold of 100 was applied to the 3,3′-
TABLE 1 Characteristics of cohorts used for study.

Dataset type
Number

of patients
Cores

per patient
Image modalities Tissue format

Image size
(pixel-

by-pixel)

Fluorescent mIHC training
dataset
(same- and serial-section) 57 1

H&E and mIHC
image pairs

TMA cores 3228x3228

IHC testing dataset
(same-section)

48 1
H&E and IHC
image pairs

TMA cores Approximately 4000 x 4000

Onco-SG testing dataset (20) 204 1–3 H&E
Region of interest in

resected tissues
1792x768
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diaminobenzidine (DAB) stain channel, where pixel intensity values

at 100 and above are classified as positive CD3 signals. This

threshold value, chosen from a range between 0–255 (typical pixel

intensity values in an image) was verified by histologists through

visual inspection of the IHC images. A binary mask, where 1

indicates CD3 detection and 0 indicates otherwise, was

subsequently obtained. The CD3 mask was then overlaid onto the

nuclei segmented in the paired H&E image from the serial section to

identify CD3+ T-cells (ground truth cell labels) according to the

same procedure as that used for the mIHC dataset.
RGB image tile generation

The H&E image was deconvoluted into hematoxylin and eosin

channels with the color deconvolution and normalization functions

from the scikit-image Python package. The minimum-maximum

normalization function would also account for the intensity

differences, especially those observed in post-mIHC H&E stained

images. For the ground truth CD3+ cell labels from fluorescent

mIHC images, Gaussian noise (kernel size 101, standard deviation

~11.875) was added using the Gaussian Blur function from the

Python package OpenCV to increase the spread of the CD3+ signals

while keeping the maximum intensity centered. This step is

necessary for the GAN model to effectively learn the spatial

distribution of CD3+ signals. The three images, i.e. the

Hematoxylin and Eosin channels as well as the CD3+ signals were

then stacked together into an RGB image using OpenCV’s merge

function, with processed CD3+ signals in the R(ed) channel,

hematoxylin signals in the B(lue) channel, and eosin signals in

the G(reen) channel (Supplementary Figure 1). Images prepared for

model inference contain data only in the G and B channels and the

R channel will be populated with predictions from the P2P-

GAN model.
Obtaining predicted cell labels from GAN-
generated images

To test our hypothesis, we chose to build P2P-GANmodels that

can predict CD3+ T-cells, considering the ease of visualization from

the virtual staining capabilities of P2P-GAN (24–27). The predicted

CD3 signals are extracted from the Red channel of the RGB image

generated by the P2P-GAN model. The Gaussian noise is then

removed from the predicted CD3 signals by applying a small

(intensity > 2) binary threshold using OpenCV’s threshold

function. This processed image is applied to the corresponding

H&E image’s nuclear mask with the logical ‘AND’ operator from

the Python package Numpy. Nuclei that have overlapping CD3

signals are determined to be CD3+ nuclei (Supplementary Figure 2).

In cases of partial overlap, the nucleus is considered to be CD3+ if

more than half of the nucleus overlaps with the CD3 signal, based

on the pixel area. Comparing predicted nuclei coordinates with that

of the ground truth nuclei coordinates helped calculate the overall
Frontiers in Immunology 04
model accuracy per tile for the training dataset and the held-out test

subset or per TMA core for the IHC cohort.
P2P-GAN model architecture

In a conventional GAN, there is a generative network that

learns the feature representation of inputs like images and a

discriminative network that evaluates them. The generative

network is trained to ‘fool’ the discriminative network, thereby

enabling unsupervised model learning. A conditional GAN, on the

other hand, is an extension where the generation process is guided

by additional conditions, such as specific input data (for instance, a

H&E image in this context), which can lead to more controlled and

targeted image generation. The P2P-GAN, a variation of a

conditional GAN, is especially designed for image-to-image

translation tasks. In this study, we adopted the P2P-GAN

architecture reported by Isola et al. (28) in which a U-Net was

used as the generator and a convolutional neural network (CNN)

was used as the discriminator (Supplementary Figure 3 and

Supplementary Tables 1, 2). During the learning process, the

generator was presented with stain-deconvoluted H&E image

patches, while the discriminator was presented with the ground

truth image patches (i.e., stain-deconvoluted H&E images overlaid

with mIHC-derived CD3+ T-cell information, RGB image patches).

These images were then compared to images produced by the

generator, resulting in a 30×30 matrix that was used to update both

the generator and discriminator (Supplementary Figure 3).
Model training

P2P-GAN models were trained using Tensorflow (ver. 2.4).

Models trained on the same-section and serial-section training

datasets are referred to as the same-section and serial-section

models, respectively. Every image in the training dataset (Table 1)

was resized to 3228×3228 pixels, using padding to maintain a

consistent size across all images in a perfect square shape,

facilitating subsequent image tiling. These resized images were

then divided into 169 patches, each measuring 256×256 pixels, for

a total of 9633 patches.

Patches were flagged if they did not contain significant CD3+

regions, which we defined arbitrarily as image patches where at least

10% patch area is occupied by CD3+ staining). For the main pair of

same-section and serial-section models, flagged patches were

excluded from the dataset. This was followed by a split of 90%

randomly selected patches for model training (6912 patches for the

same-section dataset and 4,050 for the serial-section dataset) and

the remaining 10% patches that were kept for model testing (691

patches for the same-section dataset and 405 for the serial-section

dataset), which is referred as the held-out subset.

A further two pairs of same-section and serial-section models

were trained on matched dataset sizes. The first pair was trained on
frontiersin.org
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datasets that each contained 3646 patches, which is the minimum

number of patches containing CD3+ regions between the two

datasets. They were then tested on 405 patches. The second pair

was trained on datasets that each contained 8670 patches, and tested

on 961 patches, which when added together constitute the full size

of the dataset.

During training, the generator and discriminator engage in an

adversarial process to mitigate their respective losses. The overall

objective is to find a balance between the two conflicting goals, for

the generator to produce outputs nearly identical to the real

(ground truth) images, and for the discriminator to accurately

distinguish between the generator’s images and the real images.

Overall, there are four different types of losses to be minimized: (1)

LOSS 1, which measures the mean absolute difference between the

generated image by the generator and the ground truth image,

aiming to refine the generator network; (2) LOSS 2, also known as

the Intersection over Union (IoU) loss, which evaluates the overlap

between the predicted CD3+ regions and the actual ground truth

CD3+ regions, ensuring positioning accuracy; (3) LOSS 3 and (4)

LOSS 4, which measure the discrepancy between the 30×30 feature

matrices output by the discriminator and the corresponding 30×30

target matrices: one consisting entirely of zeros, representing the

ideal discriminator output when analyzing generated (fake) images,

and the other filled with ones, representing the ideal discriminator

output when analyzing real images. These differences are assessed

using binary cross-entropy. This mechanism facilitates the

evaluation of the discriminator’s ‘lack of capability’ and

‘capability’, respectively. Specifically, LOSS 3 provides dual

feedback, assessing both the generator’s ability to create

convincing images and the discriminator’s ability to differentiate

between real and fake images. LOSS 4, on the other hand, offers

feedback solely to the discriminator, pinpointing its accuracy in

identifying generated images (Supplementary Figure 3). All models

were trained using a batch size of 350, but differed in their

optimization settings, specifically in the number of epochs and

the regularization values for LOSS 2. The same-section model was

initially optimized over 300 epochs with a LOSS 2 regularization

value set at 100, and then further trained for an additional 150

epochs with an increased regularization value of 250. In contrast,

the serial-section model started with a LOSS 2 regularization value

of 250 for the initial 300 epochs, before the regularization value was

increased to 500 for the subsequent 150 epochs. For all models, the

regularization value for LOSS 1 was consistently maintained at 100.

Due to the use of the hyperbolic tangent activation function in the

generator, the input image patches were required to be normalized

from the original range of 0 to 1 to a new range of -0.5 to 0.5. For

analysis purposes, the output images generated during inference,

were subsequently rescaled back to the original range of 0 to

1 range.
Patient stratification for Onco-SG cohort

Alongside model prediction, two pathologists (Y.Z.X. and

J.P.V.) conducted guided visual quantification of tumor-
Frontiers in Immunology 05
infiltrating lymphocytes (TILs). Using Qupath (29), an open-

source software for digital pathology, they reviewed all the H&E

images obtained from the Onco-SG repository and visually

evaluated the percentage of TILs in each sample. The patients

were then stratified into two groups: above average or below

average model-predicted CD3+ T-cell counts or pathologist-

defined TIL counts. For patients with multiple images, the mean

percentages of CD3+ T-cells or TILs were first calculated.
Statistical analysis

To compare the predicted CD3+ T-cell or CD3- cell counts with

the corresponding ground truth cell counts, Pearson’s correlation

analysis was performed using the pearsonr function from the

Python package SciPy. The best-fit line was drawn with the

Huber’s robust regression model using the HuberRegressor

function from the Python package scikit-learn. To evaluate the

relationship between model-predicted CD3+ T-cell counts and the

pathologist-assessed TIL scores, which are ordinal in nature,

Spearman’s correlation test was conducted, employing the

spearmanr function from the Python package SciPy. Survival

analysis was performed for patient groups stratified based on the

percentage of model-predicted CD3+ T-cells relative to total cells

(subsequently referred as CD3+ T-cell density), and or pathologist-

determined TIL scores, using R programming. Keplan-Meier curves

were generated for both the above-average and below-average

predicted %CD3+/TIL groups, employing the survival and

survminer R packages. The differentiation between these groups

was assessed using the log-rank test to evaluate binary survival

outcomes within a five-year period. The Cox-Proportional Hazards

regression model was used to calculate the hazard ratio between the

stratified groups. A significant difference between the groups and a

low hazard ratio would suggest a strong association between the

predicted %CD3+ and patient survival outcomes.
Results

Model performance evaluation using
training samples

We trained the model on 256×256 pixel (56.32×56.32 mm) RGB

cell image patches obtained from H&E-stained images of lung

cancer samples, with the RGB layers being hematoxylin, eosin,

and CD3+ positivity mask (Figure 1A). The CD3+ positivity masks

were obtained from either same-section fluorescent mIHC or serial-

section mIHC image (Figure 1A, B). As a sanity check, we assessed

the models’ performance on their respective training datasets;

specifically, the same-section model on the same-section training

dataset, and similarly for the serial-section model (6912 patches for

the same-section and 4000 for the serial-section datasets produced

after filtering for CD3+ cell abundance). The cell counts predicted

by both the same-section and serial-section models for CD3+ and

CD3- cells were closely aligned with the counts quantified by mIHC
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(considered as ground truth), exhibiting a high Pearson’s

correlation coefficient (r) greater than 0.95, with a significance

level p < 0.005 and an R2 score of greater than 0.95 with the best-fit

line from the regression model (Supplementary Figure 4A, B),
Frontiers in Immunology
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showing that the models were adequately trained. The average

accuracy for both models was notably high: 98.2% for the same-

section model and 96.3% for the serial-section model

(Supplementary Figure 4C).
B C

D

E

A

FIGURE 1

Development of P2P-GAN models trained on same-section and serial-section CD3+ fluorescent mIHC staining. (A) Preparation of samples and
ground truth for both serial-section and same-section datasets followed by the construction and training of two P2P-GAN DL models utilizing the
serial-section and same-section datasets. (B) An example of manually aligned mIHC DAPI channel (green) on the corresponding same-section and
serial-section H&E image. (C-E) Model performance evaluation using the randomly selected held-out samples from the corresponding training
cohorts (i.e., same-section and serial-section datasets, respectively). (C) CD3+ cell counts predicted by same-section and serial-section models
compared with ground truth cell counts acquired from respective mIHC using Pearson’s correlation analysis (r and p values shown). Best-fit lines
and R2 values obtained with Huber’s regression model are shown. (D) CD3- cell counts predicted by same-section and serial-section models
compared with ground truth cell counts acquired from respective mIHC using Pearson’s correlation analysis (r and p values shown). Best-fit lines
and R2 values obtained with Huber’s regression model are shown. (E) Accuracy of same-section and serial-section model predictions. The boxplot
shows the interquartile range (box), with the maximum values within 1.5 interquartile range from the upper and lower quartiles marked by the upper
and lower whiskers, respectively. The red diamonds mark the mean values.
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Performance comparison of same-section
and serial-section models on the held-out
training cohort

The models were evaluated on their respective held-out

datasets, consisting of 691 patches from the same-section dataset

and 405 from the serial-section dataset. While both models

generated CD3+ and CD3- cell counts that were comparable to

ground truth counts quantified by mIHC when tested on their

training images (p < 0.005, Supplementary Figure 1A, B), the same-

section model outperformed the serial-section on the held-out

dataset (Figure 1C, D). Specifically, the predicted counts from the

same-section model corresponded more closely with the ground

truth than those from the serial-section model, both for CD3+ cells

(r = 0.967 vs. 0.648; p < 0.005 for both; R2 score = 0.933 vs 0.451;
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Figure 1C) and CD3- cells (r = 0.977 vs. 0.526, p < 0.005 for both; R2

score = 0.954 vs 0.256; Figure 1D). The mean accuracy of the same-

section model is closer to 1 compared to that of the serial-section

model with respective values of 94.6% and 53.4% (Figure 1E).
Performance comparison of same-section
and serial-section models on an
independent IHC cohort

We subsequently evaluated the models using an independent

lung cancer cohort (n = 48). The tissue sections in this cohort were

stained for CD3 with chromogenic IHC, decolorized, then stained

with H&E, generating the same-section ground truth. In agreement

with the results obtained with the held-out dataset, the same-section
B

C

D

A

FIGURE 2

Model performance evaluation using an in-house lung cohort with IHC ground truth. (A) Representative images of CD3+ cell predictions by same-
section and serial-section models with the corresponding CD3 IHC stain. (B) CD3+ cell counts predicted by same-section and serial-section models
compared with ground truth cell counts acquired from CD3 IHC stain using Pearson’s correlation analysis. Diagonal dashed lines denote the best-fit
line using Huber’s regression model. (C) CD3- cell counts predicted by same-section and serial-section models compared with ground truth cell
counts acquired from CD3 IHC stain using Pearson’s correlation analysis (r and p values shown). Best-fit lines and R2 values obtained with Huber’s
regression model are shown. (D) Accuracy of same-section and serial-section model predictions. The boxplot shows the interquartile range (box),
with the maximum values within 1.5 interquartile range from the upper and lower quartiles marked by the upper and lower whiskers, respectively.
The red diamonds mark the mean values.
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model generated predictions that corresponded more closely with

the IHC-derived ground truth for CD3+ T-cell counts (r = 0.900 vs.

0.805, p < 0.005 for both; R2 score = 0.807 vs 0.632; Figure 2A, B)

and CD3- cell counts (r = 0.945 vs. 0.787, p < 0.005 for both; R2

score = 0.886 vs 0.612; Figure 2C). Similar trends were observed in

terms of mean accuracies (83.1 vs. 47.7; Figure 2D).

The same-section and serial-section models used so far were

trained on differing dataset sizes resulting from retaining tiles

containing at least 10% CD3+ cells (see Methods). To assess the

impact of unequal training dataset size on model performance, we

trained two more pairs of models: one pair of same- and serial-

section models on a matched dataset size of 3646 tiles containing at

least 10% CD3+ and another pair on the entire dataset of 8670 tiles

that includes tiles without CD3+ cells. In concordance with results

of the previous models (Figure 2), the same-section model trained

on the 3646-tile dataset exhibited higher correlation with the IHC-

derived ground truth for CD3+ cell counts (r = 0.907 vs. 0.835, p <

0.005 for both; R2 score = 0.821 vs 0.686; Supplementary Figure 5A)

and CD3- cell counts (r = 0.961 vs. 0.93, p < 0.005 for both; R2 score

= 0.92 vs 0.861; Supplementary Figure 5B). When trained on the

entire 8670-tile dataset that included tiles without CD3+ cells, the
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same-section model still outperformed the serial-section model (r =

0.884 vs. 0.805, p < 0.005 for both; R2 score = 0.779 vs

0.632; Supplementary Figure 5C) and CD3- cell counts (r = 0.917

vs. 0.787, p < 0.005 for both; R2 score = 0.791 vs 0.612;

Supplementary Figure 5D).
Evaluation of prognosis based on model-
predicted CD3+/CD3- T-cell density

We performed further evaluation of the models using data from

an additional external dataset: the public Onco-SG cohort (n = 204)

(Table 1). Our data indicated that the densities of CD3+ cells

predicted by the models generally corresponded with pathologists’

scoring, with a positive Spearman’s rho (r) of at least 0.15 (p < 0.05)

for both models, according to evaluations by two different

pathologists (Table 2). The interobserver agreement between the

two pathologists in TIL evaluation was low, with a kappa value of

0.178 (p < 0.005), indicating significant interobserver variability.

Additionally, our analysis revealed that patient groups stratified by

the model-predicted CD3+ cell densities demonstrated a significant
B

A

FIGURE 3

Model performance evaluation using an external lung cohort (Onco-SG). (A) Kaplen-Meier curves of patients with below average CD3+ counts and
above average CD3+ counts predicted by same-section and serial-section models. (B) Kaplen-Meier curves of patients with pathologist-quantified
below average tumor-infiltrating lymphocyte (TIL) counts and above average TIL counts. h values from the Cox-Proportional Hazard regression
model and p values from log-rank test are shown.
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association with patient 5-year survival rates (Figure 3A) in contrast

to those stratified by pathologists’ scoring (Figure 3B). The same-

section model demonstrated slightly higher significance in this

respect (Figure 3A; same-section p = 0.024 vs. serial-section p =

0.039). The use of the average values of CD3+ cell densities and TIL

% for stratification yielded unequal numbers of patients in

each group.

We also checked the effect of dataset sizes with this cohort.

When comparing the same-section and serial-section models

trained on a matched dataset size of 3646 tiles containing at least

10% CD3+ cells, the same-section model outperformed the serial-

section model in stratifying patients (Supplementary Figure 6A;

same-section p = 0.036 vs. serial-section p = 0.039). The same was

observed when comparing the models trained on the 8670 dataset,

which contained tiles without CD3+ cells (Supplementary

Figure 6B; same-section p = 0.015 vs. serial-section p = 0.02).

This analysis demonstrated that our model provides prognostic

value beyond what is achievable with manual TIL scoring on

archived H&E images.
Discussion

In this study, we developed two P2P-GAN virtual staining

models to assess the impact of different approaches for deriving

ground truth cell labels—same-section vs. serial-section—on the

accuracy of predicting protein marker levels from cost-effective,

digitized H&E images, with a focus on CD3+ T-cells in lung cancer

patient tissues as the study model. Our results demonstrate that the

model trained using the same-section approach consistently

outperformed the model trained on serial-sections. This superior

performance can likely be attributed to more accurate single-cell

mapping between the mIHC and H&E sections, leading to more

precise ground truth cell labeling, which in turn enhances model

training. Crucially, our work also showcased the enhanced and

consistent prognostic utility of model-predicted CD3+ T-cell

density compared to traditional manual TIL scoring method, as

evidenced by a weaker interobserver agreement value. Interobserver

variability between pathologists could be a result of different

training backgrounds and reporting habits, especially in a multi-

institutional setting (30). Conversely, our proposed virtual staining

model provides a more reproducible solution by being unaffected by

human subjectivity and potential biases, thereby enhancing patient

stratification and aiding in treatment decision-making. The results

above have shown that training the model on ground truth cell
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labels derived from the same tissue section leads to better model

performance. Aside from enabling same section staining, the

fluorescent mIHC technique allows for the same-section model to

be potentially developed as a generalized approach for integrating

predictions of different cell types (e.g., CD8+ T-cells, CD68+

macrophages) or more refined cell types (e.g., CD3+CD8+) from

various models in the same H&E space. This reduces the need for

multiple tissue sections for analysis, as well as decreases the time

and costs associated with staining procedures. Consequently,

analysis of multi-markers or cell types becomes feasible

on retrospective archived H&E slides. Collectively, these

advancements could significantly enhance our understanding of

the TME, making the identification of novel spatial biomarkers or

therapeutic targets more streamlined and cost-effective.

While more studies are recognizing the importance of using

same-section tissue to generate ground truth cell labels (31, 32), our

study provides a comprehensive quantification of the impact on

prediction accuracy, which has not been previously performed.

Additionally, our study conducts prediction on H&E images

instead of autofluorescence images (31) or IHC images (32), a gold

standard stain used ubiquitously in many clinical laboratories for

pathological diagnosis. Therefore, our DL pipeline has the potential

for future assimilation into existing clinical practices and workflows.

Unlike the conventional GAN model, we proposed the P2P-

GAN model for its image-to-image translation capability, allowing

virtual staining of CD3+ signals within the input H&E image. To

enhance the positional accuracy of predicted CD3+ signals, we

incorporated the use of an IoU loss function, that evaluates

overlap between ground truth CD3+ regions and the predicted

CD3+ regions, in one of the loss functions. Additionally,

considering that CD3 localizes to the cell membrane, we applied

Gaussian blurring to the CD3 signals before overlaying them onto

the corresponding cells in the H&E image. Collectively, these

features ensure positional accuracy, when combined with the

novel approach of ground truth cell labeling on the same section

stained for H&E image, facilitate effective analysis of cellular

interactions and comprehensive TME analysis based on cell types

predicted from the H&E images.

While our proposed approach has yielded encouraging results,

it is important to acknowledge its inherent limitations. Firstly, our

current model is specifically trained for CD3+ T-cell prediction

from H&E images and might require modifications and re-training

to generalize effectively to other cell types or biomarkers.

Additionally, its performance may be compromised when applied

to tumor types other than lung cancer. Secondly, the application of

our model is largely limited to high-quality digital slides of

consistent quality; its performance may therefore be affected by

variations in tissue preparation, staining, and imaging procedures

which may vary significantly across different laboratories.

Nevertheless, the clinical significance of our model has been

validated using a publicly available dataset, which included

sample images collected by different laboratories. Lastly, despite

the overall robustness of our model, we noted some outliers in the

predictions, indicating potential areas for improvement. The

existence of these outliers suggests there are complex and

unaddressed variables within biological samples which require
TABLE 2 Spearman correlation of the prediction of CD3+ densities using
the same and serial -section models with the manual TIL density scoring
by two independent pathologists.

Pathologist 1 Pathologist 2

Same-section model
P<0.05,

(rho= 0.18)
P<0.05,

(rho= 0.15)

Same-section model
P<0.05,

(rho= 0.18)
P<0.05,

(rho= 0.16)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1404640
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Azam et al. 10.3389/fimmu.2024.1404640
further investigation. Future research endeavors should aim to

unravel the reasons behind these outliers, refine the model, and

include larger, more diverse datasets for improved generalizability

and outlier management.

In conclusion, our study emphasizes the importance of using

accurate ground truth cell labels, enabled by same-section

molecular staining through mIHC. This approach represents a

significant advancement in H&E-based predictive research and

holds potential for clinical implementation. Moreover, our

proposed approach allows the development of multiple virtual

staining models from the same H&E slide, leveraging mIHC-

quantified multiple protein markers (e.g., PD-1, CD3), reinforcing

its potential as a robust technique in histopathology-driven

immunophenotyping. By enabling the overlay of multiple markers

or immunophenotype predictions within the same H&E space

through our proposed P2P-GAN virtual staining approach, our

method unveils exciting new possibilities for biomarker discovery

and the advancement of therapeutic strategies.
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