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Background: Forest musk deer (FMD, Moschus Berezovskii) is a critically

endangered species world-widely, the death of which can be caused by

pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to

the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger

RNAs (mRNAs) have been involved in the regulation of immune genes and

disease development. However, the regulatory profiles of mRNAs and miRNAs

involved in immune regulation of FMD are unclear.

Methods: In this study, mRNA-seq and miRNA-seq in blood were performed to

constructed coexpression regulatory networks between PF and healthy groups

of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD

were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis. Further, protein–protein

interaction (PPI) network of immune-associated and apoptosis-associated key

signaling pathways were constructed based on mRNA-miRNA in the PF blood of

the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for

experimental verification using RT-qPCR.

Results: A total of 2744 differentially expressed genes (DEGs) and 356

differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood

group compared to the healthy blood group. Among them, 42 DEmiRNAs

were negatively correlated with 20 immune DEGs from a total of 57

correlations. The DEGs were significantly associated with pathways related to

CD molecules, immune disease, immune system, cytokine receptors, T cell

receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine

receptor interaction, intestinal immune network for IgA production, and NOD-

like receptor signaling pathway. There were 240 immune-related DEGs, in which

186 immune-related DEGs were up-regulated and 54 immune-related DEGs

were down-regulated. In the protein-protein interaction (PPI) analysis of

immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13,
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LCK, ITGB2, PIK3CB,HCK,CD40,CD86,CCL3,CCR7, IL2RA, TLR3, and IL4Rwere

identified as the hub immune genes. The mRNA-miRNA coregulation analysis

showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and

miR-1842-5p are key miRNAs that target DEGs involved in immune disease,

immune system and immunoregulation.

Conclusion: The development and occurrence of PF were significantly

influenced by the immune-related and apoptosis-related genes present in PF

blood. mRNAs and miRNAs associated with the development and occurrence of

PF in the FMD.
KEYWORDS

blood transcriptome, immune response, miRNA-mRNA network, signal pathway
analysis, RT-qPCR, forest musk deer
1 Introduction

Musk deer (Moschus spp.), a rare and critically endangered

species endemic to China, Vietnam, and other Asian countries, has

attracted the attention of the government and the international

organizations concerned. More than 80% of the musk deer are

distributed in China, the musk production of which accounted for

90% of the world musk output before the 1950s. Due to habitat

destruction and killing musk deer for musk harvesting, the

population of musk deer has declined rapidly since the 1950s. For

this reason, all musk deer have been classified as a Grade 1 protected

animal in China since 2002 (1). Musk was secreted by the odor

glands of male musk deer, which has multiple medicinal effects such

as neuroleptic, anti-inflammatory, anti-thrombotic, and anti-tumor

in the medicine industry (2, 3). Moreover, musk has been widely

used in the high-end perfume industry (4, 5). Forest musk deer

(FMD; Moschus Berezovskii) is a species of musk deer, which is the

most farmed musk deer species, followed by the alpine musk deer

(AMD; Moschus chrysogaster) in China. At present, the musk

mainly came from the captive FMD and AMD in China.

In order to make sustainable use of musk deer resources and

reduce the killing of wild musk deer, artificial musk deer farms have

been set up in China since 1958 (6). Although China’s artificial

breeding of musk deer has been experienced for more than 60 years,

the population of captive musk deer is increasing slowly, which is

closely related to the high mortality caused by multiple diseases.

Although the captive breeding of FMD has made great progress, its

long-term breeding is hampered by multiple diseases, including

pulmonary disease (7). In the animal farms, the common diseases

of musk deer industry included abscess, pulmonary disease,

gastroenteritis, and parasitic diseases, which were important

constraints to the growth of China’s musk industry (8). Pulmonary

disease, a respiratory disease is closely associated with dozens of

diseases including pneumonia, tuberculosis, and pulmonary fibrosis

(PF) (9–12). Pulmonary disease is a primary life-threatening for
02
captive FMD. PF is a fatal disease of the respiratory system that

affects the health and survival of animals accompanied by an

overproliferation of fibroblasts and an inflammatory reaction (13–

15). Bacterial pneumonia, especially PF, severely affected the survival

of FMD in captivity (16). There are many causes for the formation of

PF, among which infectious bacterial are the important causes (17).

It has been reported that Pseudomonas aeruginosa, Streptococcus

pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae

can induce the progression of PF (17, 18).

Blood is an essential part of the immune system and also the

first line of defense against infectious disease (19, 20). The changes

of gene expression in blood cells were influenced by pathological

changes of animal body (21). Therefore, immune system status can

be monitored by blood transcriptome. Multiple pathogenic

infections and immune system dysfunction have been reported to

be associated with the development of pneumonia, phthisis, and PF

(9, 22, 23). Analysis of the blood transcriptome also helps to identify

immune genes and their signaling pathways. MiRNAs modulated

RNA silencing and post-transcriptional gene expression regulation,

which took part in the immune system, immune diseases, and

apoptosis. Consequently, the purpose of the present study was to

establish a dependable blood miRNA biomarker for the diagnosis of

PF. As far as we know, there is no current systematic and

comprehensive analysis of miRNA–mRNA regulatory networks

based on PF and healthy blood groups derived from FMD. The

building of potential miRNA–mRNA regulatory networks is going

to help identify the full range of molecular mechanisms by which

miRNA affects PF and may be used in the diagnosis of the disease.

The present study screened for unigenes and miRNAs that were

differentially expressed, as well as immune-related genes and

apoptosis-related genes in the PF and healthy peripheral blood of

FMD by high-throughput sequencing. The hub immune- and

apoptosis-related genes in the PF blood of FMD were explored

through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analysis. The mRNA–miRNA
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https://doi.org/10.3389/fimmu.2024.1404108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2024.1404108
interaction network is important in regulating immune and

apoptotic functions. The present study was aimed at constructing

multiple protein–protein interaction (PPI) network of immune-

associated and apoptosis-associated key signaling pathways in the

PF blood of the FMD. DEmiRNAs may be involved in the

regulation of hub immune- and apoptosis-related genes in the PF

blood of FMD were identified by Spearman correlation analysis.

Furthermore, the mRNA–miRNA regulatory network may help to

understand the mechanisms involved in the development of PF

blood in FMD.
2 Materials and methods

2.1 Sample collection

The sick FMDs were looked after by us all day long. We take

blood as soon as they got worse. When the sick FMDs died, an

autopsy was performed by veterinarian to determine the PF. The 17

FMD venous blood samples were taken at the Chongqing Institute

of Medicinal Plant Cultivation in Chongqing, China (Table 1;

Supplementary Figure S1). Fresh blood samples were promptly

kept in RNAlater (Ambion Inc., Austin, TX, USA). The PF and

healthy blood groups of FMD were taken between January 2021 and

December 2022 in Chongqing, China. All animal experiments were

approved by Chongqing Three Gorges University and Chongqing

Institute of Medicinal Plant Cultivation. The collected blood

samples are packaged, sealed, labeled, and immediately
Frontiers in Immunology 03
refrigerated at 4°C before being sent to the laboratory. For long-

term storage, the blood should be rapidly frozen at −40°C

immediately after collection and then stored at −80°C for no

more than three months.
2.2 mRNA and miRNA sequencing and
differential expression analysis

The total RNA was extracted using TRIzol reagent and then

processed with RNase-free DNase I. A whole RNA pool was

collected the venous blood of 17 FMD individuals to create an

mRNA library or a small RNA library by using an Illumina

HiSeq2500 platform (24, 25). Principal components analysis

(PCA) of mRNAs and miRNA expression were performed in the

nine samples and eight samples, respectively. The known miRNAs

were identified by aligning them against the miRBase (26), and the

novel miRNAs were predicted by using miranda (27). Expression

levels of genes and miRNAs estimated as FPKM (fragments per

kilobase million) and TPM (transcripts per million) indices,

respectively, which were used to determine DEGs and

DEmiRNAs between PF and healthy blood groups. The unigenes

with Padj < 0.05 and |log2(fold change) | >1.0 were taken as the

threshold for DEGs. DEmiRNAs were identified with the thresholds

of p < 0.05 and | log2 (fold change) | >2.0.
2.3 miRNA target gene prediction and
enrichment analysis

The target genes of DEmiRNAs in the two groups were

predicted by using RNA hybridization (28), MiRanda (29), and

PITA (Probability of Interaction by Target Accessibility, 30), and

the results from the three algorithms were intersected. The potential

target genes predicted by the above two softwares were combined,

and the intersecting components were included as a set of candidate

target genes. DEGs and DEmiRNA target mRNAs were further used

to fulfil the GO and KEGG enrichment analyses. The p < 0.05 was

designated as the threshold for significance.
2.4 miRNA–mRNA network integration

A set of 1,811 immune-related genes was obtained from

ImmPort. Additionally, 306 apoptosis-related genes were

recognized from the molecular signature database (MSigDB),

which were intersected with the DEGs of the PF and healthy

blood groups to regard as immune DEG set and apoptotic DEG

set. In the typical immune pathway of this study, these immune

DEGs were uploaded to STRING and obtain their interaction

information (31, 32). The key potential regulatory networks of

immune-related DEGs (or apoptosis-related DEGs) in the immune

pathway (or apoptotic pathway) were pictured using the cytoscape

software. It has been reported that DEGs and DEmiRNAs have

potential negative regulatory relationships. On the basis of this idea,
TABLE 1 Summary of sample information.

Sample Age Gender Group

DAM2_2 2 Male PF

DOM12_1 12 Male PF

DOM12_2 12 Male PF

DOM13 13 Male PF

HAM1 2 Male Health

HAM2 2 Male Health

HAF2_2 2 Female Health

HAM3 3 Male Health

HAM4 4 Male Health

DG10M 10 Male PF

DG4FM 4 Female PF

DG6FM 6 Female PF

DG6M 6 Male PF

HG13M 13 Male Health

HG15FM 15 Female Health

HG4.10FM 10 Female Health

HG5M 5 Male Health
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we researched the expression correlation of immune DEGs (or

apoptotic DEGs) and DEmiRNAs by using the PCC (Pearson

correlation coefficient). The negatively coexpressed DEmiRNA–

DEG pairs with PCC < −0.7 and p < 0.05 were screened to

construct miRNA-gene networks.
2.5 Real-time fluorescent quantitative PCR

Six immune hub DEGs (TLR2, TLR4, CXCL13, IL18, AKT1, and

ITGB2) and six immune hub DEmiRNAs (let-7f-5p, let-7d, miR-30b-

3p, miR-25-5p, miR-149-5p, and miR-760) were chosen for

differential expression analysis. The primers for six immune-related

DEGs and six DEmiRNAs were provided in Supplementary Table S1.

Each sample’s mRNA and miRNA was reverse transcribed using

PrimeScript™ RT reagent Kit (TaKaRa) and a miScript II RT Kit

(Qiagen, Hilden, Germany). Quantitative PCR of the immune DEGs

and immune DEmiRNAs were performed by using TB GreenR

Premix Ex TaqTM II (Takara) and miScript SYBR Green PCR Kit

(Qiagen), respectively. GAPDH and U6 snRNA were used as

reference gene and miRNA, respectively. The relative expression of

six DEGs and DEmiRNAs was computed using the 2−DDCt method.

The mean ± SE of three tests were presented in the data. Statistical

significance was assessed by using t-tests as follows: *p ≤ 0.05 and **p

≤ 0.01.
3 Results

3.1 Overview of mRNA library of the two
blood groups of healthy and BF

To investigate the changes of gene expression profiles in the PF

pathological changes of FMD body and to compare their differences

with healthy blood groups, nine cDNA libraries were built from the

two blood groups of PF and healthy FMD. The unprocessed data

were stored in the NCBI Sequence Read Archive (SRA) with the

accession number PRJNA916839. After quality filtering, a total of

400,157,758 and 423,446,384 clean reads, representing a total of

62.12 and 80.09 Gb nucleotides, were generated for the PF and

healthy blood groups, respectively (Supplementary Table S2).

Approximately 86.33% of the clean reads was mapped to the

FMD reference genome (33), with a match ratio ranging from

78.40 to 90.83% (Supplementary Table S3). After eliminating the

low level of genes and transcripts, the reads were organized into

19,445 known genes and 4,907 annotated transcripts. A PCA was

conducted, revealing that the samples from the PF and healthy

blood groups formed two separate clusters based on the first

principal component (PC1), which accounted for 66% of the

variance (Supplementary Figure S2). This indicated that the

sequencing data was suitable for further analysis. A mean of

11,884 (70.92%) and 12,229 (74.62%) unigenes with FPKM values

greater than 0.5 were acquired from the PF and healthy blood group

of FMD, respectively (Supplementary Figure S3). A detailed

overview was described in Table 2.
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3.2 DEGs and functional
annotation analysis

A total of 2,744 DEGs (1,657 upregulated and 1,087

downregulated genes) were identified in the PF blood groups

compared to the healthy blood groups. In GO enrichment

analysis, the DEGs in the PF blood group were found to be

associated with various immune functions, including immune

receptor activity (GO:0140375), adaptive immune response

(GO:0002250), innate immune response (GO:0045087), regulation

of immune response (GO:0050776), immune effector process

(GO:0002252), immune system development (GO:0002520),

regulation of immune system process (GO:0002682), activation of

immune response (GO:0002253), cell activation involved in

immune response (GO:0002263), immune response-regulating

signaling pathway (GO:0002764), and myeloid cell activation

involved in immune response (GO:0002275) (Supplementary

Table S4). The 2744 DEGs were related to 116 KEGG pathways

(Supplementary Table S5), in which the most common immune

pathways were CDmolecules, immune disease, the immune system,

cytokine receptors, T-cell receptor signaling pathway, Th1 and Th2

cell differentiation, cytokine–cytokine receptor interaction, the

intestinal immune network for IgA production, and NOD-like

receptor signaling pathway.
3.3 Immune-related DEGs and apoptosis-
related DEGs

Among 2744 DEGs, 240 immune DEGs were identified and

verified in the PF blood groups compared to the healthy blood

groups, including 186 upregulated and 54 downregulated genes

(Supplementary Table S6). The significant expression patterns of

immune-related DEGs between PF and healthy blood groups are

shown in Supplementary Table S6. In addition, we conducted a

hierarchical cluster analysis of top 60 immune DEGs across the nine

samples, which indicated that immune-related DEG expression

levels in the PF groups could be robustly separated from those in
TABLE 2 Transcripts and genes of the merged assembly.

Item Transcripts Genes

Number of sequences 78,239 24,352

Max length of
sequence (bp)

154,753 101,907

Min length of
sequence (bp)

132 132

Mean length (bp) 3,254.5 1,413.9

Total length (bp) 254,626,504
(254.63Mb)

34,432,182
(34.43Mb)

Contig N50 (bp) 9,363 2,025

GC content (%) 46 54

≥1000 bp 41,911 11,842
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the healthy groups (Figure 1A). The upregulated immune DEGs

gathered into one group, and the downregulated immune DEGs

gathered into another group. Similarly, PF and healthy blood

groups were gathered separately (Figure 1A), thus highlighting

gene expression differences between PF and healthy blood groups.

The GO analysis revealed that the 240 immune DEGs were

significantly enriched in BP including regulation of immune

response, adaptive immune response, cell activation involved in

immune response, leukocyte activation involved in immune

response, cytokine production involved in immune response,

immune system process, regulation of immune effector process,

innate immune response, immune effector process; CC including

receptor complex, extracellular region, and plasma membrane

signaling receptor complex, and MF including immune receptor

activity, cytokine receptor activity, signaling receptor binding, and

molecular transducer activity (Supplementary Table S7).

Collect ively, these terms were al l strongly l inked to

immunological function. Furthermore, the analysis of KEGG

showed that these 240 immune DEGs were significantly enriched

in various pathways related to the immune function. These

pathways included the NOD-like receptor signaling pathway,

Toll-like receptor signaling pathway, TNF signaling pathway,

cytokine–cytokine receptor interaction, Th17 cell differentiation,

Th1 and Th2 cell differentiation, CD molecules, immune system

and immune disease (Supplementary Table S8).

In the PF blood group, 56 apoptosis-related DEGs (42

upregulated and 14 downregulated genes) were discovered. The

significant expression patterns and distribution of the apoptotic
Frontiers in Immunology 05
DEGs between PF and healthy blood groups are shown in

Supplementary Table S9. Furthermore, the analysis of GO revealed

that these 56 DEGs related to apoptosis were significantly enriched

in BP including regulation of mitochondrial membrane permeability

involved in apoptotic process, positive regulation of apoptotic

process, negative regulation of extrinsic apoptotic signaling

pathway, apoptotic signaling pathway, apoptotic mitochondrial

changes, leukocyte apoptotic process, glial cell apoptotic process,

and execution phase of apoptosis; CC including proteasome

accessory complex, organelle lumen, and membrane-enclosed

lumen; and MF including cysteine-type endopeptidase activity

involved in apoptotic signaling pathway, cysteine-type

endopeptidase activity involved in the execution phase of

apoptosis, cysteine-type endopeptidase inhibitor activity involved

in apoptotic process, and peptidase activator activity involved in

apoptotic process (Supplementary Table S10). An interesting point

was that these terms were also related to the process of apoptosis.

Furthermore, the KEGG analysis demonstrated that these 56

apoptosis-related DEGs were obviously enriched in apoptosis, cell

growth, and death, B-cell receptor signaling network, NOD-like

receptor signaling pathway, and NF-kappa B-signaling pathway (as

shown in Supplementary Table S11).
3.4 Interaction network analysis of DEGs

In our analysis, we projected a total of 7,658 mRNA-mRNA

pairs in the BIPF and healthy blood groups. The apoptosis-related
A B
C

D E

FIGURE 1

Analysis of immune-related DEGs in the PF and healthy blood of FMD. (A) Heatmap of immune-related DEGs. (B, C) The apoptosis-related DEGs
interaction network in the key signaling pathway. (D, E) The immune-related DEGs interaction network in the key signaling pathway.
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DEGs in the apoptosis, Toll-like receptor signaling pathway, MAPK

signaling pathway, T-cell receptor signaling pathway, cell growth

and death, and PI3K-Akt signaling pathway were piped to STRING

to create PPI networks (Figures 1B, C); the hub genes identified in

one of the MCODE models in the PPI network including TLR4,

IKBKB, AKT1, MYD88, TP53, JUN, IRF3, IRF7, MAPK1, NGF, and

IGF1R major belonged to apoptosis, Toll-like receptor signaling

pathway, and MAPK signaling pathway (Figure 1B); the other one

MCODE model including TP53, AKT1, IKBKB, PIK3CB, MAPK1,

PIK3CG, IGF1R, TLR4, NGF, and CASP7, which were mainly

involved in T-cell receptor signaling pathway, cell growth and

death, and PI3K-Akt signaling pathway (Figure 1C).

Among the KEGG pathways of immune-related DEGs in the PF

and healthy blood groups, we observed that the majority of

interaction networks were associated with CD molecules,

cytokine–cytokine receptor interaction, NOD-like receptor

signaling pathway, TNF signaling pathway, NF-kappa B-signaling

pathway, immune system, immune disease, Th17-cel l

differentiation, Th1 and Th2 cell differentiation (Figures 1D, E;

Supplementary Figures S4, S5). The immune-related DEGs in the

NF-kappa B-signaling pathway, CD molecules, NOD-like receptor

signaling pathway, cytokine–cytokine receptor interaction, Th1 and

Th2 cell differentiation, and TNF signaling pathway were inputted

into the STRING database to create PPI networks (Figure 1D); the

hub genes identified in one of the MCODE models in the PPI

network including TLR4, TYK2, CD40, LCK, ZAP70, CD86, TLR2,

CCR7, TLR3, IRF3, IRF7 major belonged to CD molecules, NF-

kappa B-signaling pathway, and NOD-like receptor signaling

pathway (Figure 1B); the other one MCODE model including

TYK2, IL6R, CCR7, CSF3R, CXCL13, LCK, IL4R, PIK3CB, SOCS3,
Frontiers in Immunology 06
IL2RA, LTA, CD40, TNFSF11, and IL27RA were mainly in

cytokine–cytokine receptor interaction, Th1 and Th2 cell

differentiation, and TNF signaling pathway (Figure 1E). The most

prevalent immune pathways associated with DEGs were involved in

immune disease and immune system, in which interaction network

of the related DEGs were built in Supplementary Figure S4; The hub

genes, including TLR4, LCK, ZAP70, CD86, ITGB2, ICOS, CD28,

CD3E, CD40, TLR2 major belonged to the immune disease,

funct ioned as core nodes in the regulatory network

(Supplementary Figure S4); The hub genes, containning PIK3CB,

HCK, VAV1, ITK, TYK2, CCR7, FGR, IKBKB, IRF7, IRF3, PIK3CG,

AKT1, and TLR3 were mainly in the regulatory network of immune

system pathway (Supplementary Figure S4).
3.5 miRNA library construction
and identification

Eight short RNA libraries were created using blood samples from

two groups: PF and healthy individuals of FMD. The counts of raw

reads and clean reads of high-throughput sRNA were listed in

Supplementary Table S12. Out of all the clean reads, about 99.08%

were successfully aligned to the FMD reference genome. The unique

match ratio ranged from 72.45% to 77.89% (Supplementary Table S13).

Initially, the sRNA data were adjusted to mitigate the impact of

technical noise. A PCA was conducted, revealing that the samples

from the PF and healthy blood groups formed two independent

clusters. This distinct cluster was mainly based on the PC1, which

accounted for 47% of the total variance (Supplementary Figure S6). The

unprocessed data have been stored in the NCBI SRAwith the accession
A B C

D E

FIGURE 2

Analysis of DEmiRNAs in the PF and healthy blood of FMD. (A) Heatmap of DEmiRNAs. (B–D) DEmiRNA and target immune-related DEGs interaction
network in the key signaling pathway. (E) DEmiRNA and apoptosis-related DEGs interaction network in the apoptosis pathway.
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number PRJNA667837. The clean reads were annotated using the

FMD reference genome and categorized into miRNAs, tRNAs, rRNAs,

and other categories by performing a blast analysis using Rfam and

miRBase. The unannotated RNAs were used to recognize novel

miRNAs. The majority of miRNAs had lengths ranging from 21 to

23 nt, and the majority of the sequencing reads had a length of 22

nucleotides in the eight miRNA libraries. The research discovered a

total of 3,206 miRNAs, out of which 1,407 miRNAs (700 known and

707 novel) were shown to be co-expressed in both PF and healthy

blood groups. An average of 707 (69.77%) and 546 (64.12%) miRNAs

with TPM > 0.5 were obtained in the PF and healthy blood group of

FMD, respectively (Supplementary Figure S7). A heatmap of

DEmiRNAs in the eight samples was plotted, which showed an

obvious separation of DEmiRNAs and group clusters (Figure 2A).
3.6 DEmiRNAs and their target genes
enrichment analysis

Three hundred fifty-six DEmiRNAs (332 upregulated and 24

downregulated miRNAs) were identified from a comparison of the

PF and healthy blood sRNA libraries in the M. berezovskii. In the

DEmiRNAs, 123 known and 233 novel mature miRNAs were

identified. Among 356 DEmiRNAs, 53 immune-associated known

DEmiRNAs and 55 immune-associated novel DEmiRNAs were

identified and verified (Supplementary Table S14). The GO

analysis of the DEmiRNA target immune genes were significantly

enriched in the immune term including adaptive immune response,

negative/positive regulation of immune response, activation of the

immune response, regulation of immune system process, cytokine

receptor activity, ligand-activated transcription factor activity, G

protein–coupled peptide receptor activity, and activation of the

immune effector process (Supplementary Table S15). KEGG

analysis of these DEmiRNA-target immune genes that they were

involved in the Toll-like receptor signaling pathway, antigen

processing and presentation, RIG-I-like receptor signaling

pathway, HIF-1 signaling pathway, Th1 and Th2 cell

differentiation, TGF-beta signaling pathway, immune system,

immune disease , and NF-kappa B-signal ing pathway

(Supplementary Table S16).
3.7 Immune-related DEGs and DEmiRNAs
(apoptosis-related DEGs and DEmiRNAs)
interaction analysis

The interaction networks of immune-related DEGs (or

apoptosis-related DEGs) and DEmiRNAs, which regulated the

FMD immune and apoptosis response, were predicted by the

STRING and pictured by cytoscape software. The interaction

network of DEmiRNAs with their target immune-related DEGs

(or apoptosis-related DEGs) has also been constructed and

demonstrated in the critical signal pathway (Figure 2A). In the

immune disease, the network contained 97 molecules and 173

interactions, including 88 DEmiRNAs and nine immune DEGs

(Figure 2A), in which the known DEmiRNAs, such as miR-149-5p,
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miR-185, miR-204-3p, miR-324-3p, miR-671-5p, and miR-760,

related to immune disease, functioned as hub miRNAs in the

regulatory network, and the target immune DEGs of these

miRNAs included TG, C3, NOD2, TLR4, TNFSF11, IL18, and

TNFSF13B as the core node genes. In the immune system, the

network contained 132 molecules and 320 interactions, including

104 DEmiRNAs and 28 immune DEGs (Figure 2B), in which the

known DEmiRNAs, such as let-7d-5p, miR-324-3p, miR-185, miR-

204-3p, miR-193a-5p, miR-671-5p, miR-760, and miR-1842-5p

related to immune system, functioned as hub miRNAs in the

regulatory network, and the target immune DEGs of these

miRNAs included CXCR2, IL1R2, FGR, IL1RAP, IL15RA, C3,

NOD1, NOD2, TLR2, TLR4, CCL3, IL18, and TNFSF13B as the

core node genes. In the Toll-like receptor signaling pathway, the

network contained 31 molecules and 34 interactions, including 27

DEmiRNAs and four immune DEGs (Supplementary Figure S8), in

which the known DEmiRNAs, such as miR-23b-5p, miR-491, miR-

491-5p, and miR-760 related to Toll-like receptor signaling

pathway, functioned as hub miRNAs in the regulatory network,

and the target immune DEGs of these miRNAs included TLR2,

TLR4, CD14, and CCL3 as the core node genes.

In the NF-kappa B-signaling pathway, the network contained 42

molecules and 79 interactions, including 36 DEmiRNAs and 6

immune DEGs (Figure 2B), in which the known DEmiRNAs, such

as miR-138a, miR-193a-5p, miR-204-3p, miR-23b-5p, miR-491,

miR-491-5p, miR-331-3p, and miR-760 related to NF-kappa B-

signaling pathway, functioned as hub miRNAs in the regulatory

network, and the target immune DEGs of these miRNAs included

LTA, TLR4, CD14, TNFSF11, TNFSF13B, and LTBR, as the core node

genes. In the NOD-like receptor signaling pathway, the network

contained 59 molecules and 72 interactions, including 54

DEmiRNAs and five immune DEGs (Supplementary Figure S9), in

which the known DEmiRNAs, such as let-7d-5p, miR-149-5p, miR-

185, miR-193a-5p, miR-204-3p, miR-23b-5p, miR-185, miR-210,

miR-491, miR-491-5p, miR-671-5p, miR-877-5p, miR-760, and

miR-1842-5p related to NOD-like receptor signaling pathway,

functioned as hub miRNAs in the regulatory network, and the

target immune DEGs of these miRNAs included IL18, NOD1,

NOD2, TLR4, and NLRX1, as the core node genes. In the

apoptosis signaling pathway, the network contained 136 molecules

and 214 interactions, including 118 DEmiRNAs and 18 apoptosis-

related DEGs (Figure 2B), in which the known DEmiRNAs, such as

miR-138a, miR-877-5p, miR-149, miR-760, miR-138, miR-149-5p,

miR-877, miR-671-5p,miR-339-5p, miR-326, miR-324-3p, miR-

296-3p, miR-34a-5p, and miR-23b-5p, related to apoptosis

signaling pathway, functioned as hub miRNAs in the regulatory

network, and the target immune DEGs of these miRNAs included

MCL1, MAPK8, MAPK1, FOS, IL3RA, TP53, PIK3R3, PIK3CB,

CASP7, CSF2RB, NTRK1, IKBKB, and JUN, as the core node genes.
3.8 Validation of DEmRNAs and DEmiRNAs
by qRT-PCR

In the study, six immune-related hub DEGs and six immune-

related hub DEmiRNAs were chosen for qRT-PCR verification. The
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results showed that the FPKM of the six immune-related DEGs and

the TPM of six DEmiRNAs from RNA-seq (p < 0.05; Figures 3A, 4A)

were consistent with those from the RT-qPCR data (Figures 3B, 4B)

based on the expression trends between the PF and healthy blood

groups, which shown the high reliability of the RNA-seq results in

the study.
4 Discussion

4.1 Innate immune response

Innate immunity is the first line of defense, which can mount

resistance to reinfection. In the study, a differential expression

analysis was conducted by utilizing mRNA-seq. 240 immune-

related DEGs (54 downregulated and 186 upregulated) and 56

apoptosis-related DEGs (14 downregulated and 42 upregulated)

were identified in the PF and healthy blood group of FMD. Genes

rarely function alone, which form regulatory networks with other

molecules to perform biological functions. At this point, immune-

related DEGs and apoptosis-related DEGs were built to elucidate

the regulatory relationships of DEGs. In the study, some immune-
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related DEGs (CXCL13, CCL3, ISG20, and IL1R2) were important

to the innate immune response, which were upregulated in the PF

blood groups. The interaction between CXCL13 and its receptor

(CXCR5) has been implicated in the pathogenesis of numerous

diseases and the immune responses of healthy organisms (34, 35).

The downregulation of CXCL13 may recruit immune cells to the

site of infection (34) and eliminate the proinflammatory response

(36). CLL3 gene highly expressed in several autoimmune diseases

(37–39), which attracted a variety of leukocytes in vitro (40, 41) and

thus played protective roles in all kinds of infectious diseases (42–

45). Furthermore, it has been documented that CCL3 can serve as a

protective barrier against Chlamydia infection; conversely, CCL3

deficiency would render an individual more vulnerable to

contracting infectious diseases (38, 39). ISG20, a protein induced

by interferon, participated in the innate immune response and has

been found to play a role in inflammatory responses and viral

infections (46). In addition, the upregulation of ISG20, an

exonuclease gene, could inhibit the DNA and RNA virus

replication (47). NFKBIE, ISG20, and IL1R2 were crucial in

regulating inflammation and host defense (47, 48). CCL23, IRF1,

and IRF7 were identified for immune-related DEGs, which had high

expression level. The chemokine CCL23 was secreted by different
A B

FIGURE 4

Verification of immune-related hub DEmiRNAs by RT-qPCR. (A) Immune-related hub DEmiRNAs expression in terms of TPM as assessed by RNA-
seq. (B) qRT-PCR analysis of six immune-related hub miRNAs. Data represent the means ± SE. * represents a significant difference and ** represents
a very significant difference.
A B

FIGURE 3

Verification of immune-related hub DEGs by RT-qPCR. (A) Immune-related hub DEGs expression in terms of FPKM as assessed by mRNA
sequencing. (B) qRT-PCR analysis of six immune-related hub DEGs. Data represent the means ± SE. * represents a significant difference and **
represents a very significant difference.
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immune cells, which bound its receptor CCR1 and involved in

immune response (49, 50). IRF7 could involve in regulation of type I

interferon to against pathogens infections and the innate immune

response (51). In our study, the upregulation of ISG20, CCL23, IRF7

suggested that the strong innate immune response in the FMD had

been activated by the PF.

To further clarify the function of immune DEGs and apoptotic

DEGs, KEGG pathway enrichment analysis was performed. In our

study, the NOD-like receptor signaling pathway, Toll-like receptor

signaling pathway, cytokine–cytokine receptor interactions, CD

molecules, immune disease, and immune system were

significantly immune-related pathways, which was conducted to

elucidate further the function of immune-related DEGs. An

examination of the topology of interaction networks involving

immune-related DEGs (apoptosis-related DEGs) revealed that the

majority of key DEGs were members of the chemokine, interleukin,

and TLR families. In this study, five TLR genes (TLR1, TLR2, TLR3,

TLR4, and TLR7) were identified for immune DEGs, which

participated in pathogens reorganization. In TLRs, TLR1, TLR2,

TLR4, and TLR7 were significantly upregulated in the PF, whereas

TLR3 was significantly downregulated in the PF. While TLR5, TLR6

had no differences in the PF and healthy blood comparisons. TLRs,

which stand for pattern recognition receptors, were identified as

their role in recognizing pathogens and activating immune

responses (52, 53). TLR4, TLR5, TLR6, TLR7, and TLR8 can

identify viral proteins and extracellular bacterial and fungal cell

wall components (54), which were vital to the immune responses of

the host against a variety of invading pathogens (53). TLR2 and

TLR3 were able to induce the immune response by recognizing

glycoproteins from various viruses (55, 56). TLR4 participated the

innate immunity of rodents against the respiratory syncytial virus

(57). TLR7 and TLR8 have the capability to identify single-stranded

RNA of viruses that are abundant in guanosine and uridine (58).

The upregulation of TLR2 and TLR4, which function as recognition

receptors for the immune disease, played a crucial role in the innate

immune system of FMD. Interleukin-18 (IL-18) was a highly potent

pro-inflammatory cytokine that regulated innate and acquired

immune responses and involved in the host’s defense against

infections (59). In our study, TLR2, TLR4, and IL18 were

identified as hub gene, TLR2 and TLR4 were significantly

upregulated, which promoted IL18 production. This research was

consistent with previous reports (60). Chemokines were very

important for the role of the innate immune system and control

the migration and positioning of immune cells, which were a

defense against infection and inflammation. CXCL13 and

CX3CR1 are both members of the chemokine family. CXCL8/IL-8

was Proven to directly bind to Mycobacterium tuberculosis and

potentially enhance the host resistance to infection (61). IL-1R2 was

an endogenous inhibitor that prevented the transduction of the IL-1

signal (62). Prior research has demonstrated that IL1R2 exhibited

efficacy as an in vivo anti-inflammation and can cure various

diseases (63, 64). It was the assertion that IL1R2 secretion cannot

eradicate the acute inflammatory response and restrict the

inflammatory reaction to alleviate disease (65). Consequently,

IL1R2 upregulation may play a significant role in maintaining the

physiological equilibrium of FMD inflammatory.
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4.2 Adaptive immune response

The regulatory mechanisms of the adaptive immune system was

regulated by T cells, B cells, and their antigen-specific receptors

(TCR and BCR) (66). Innate immune response can resist the

pathogen, while adaptive immune response can finally clear the

infection and achieve long-lasting and highly specific protection

and sustained by memory T cells (67, 68). CD3E, CD3G, NFKBIE,

TRBV4-1, TRBV12-3, TRAV26-1, IL4R, and IL2RA were found to

be enriched in the Th1 and Th2 cell division pathways, respectively,

in the study. TRAV14DV4, TRAV38-2DV8, and TRDC were also

significantly downregulated in the PF blood groups in the study.

The TCR family, comprising TRBV4-1, TRBV12-3, TRAV26-1,

TRAV14DV4, TRAV38-2DV8, and TRDC, was essential for

adaptive immune initiation and facilitated the recognition of an

array of antigens (69). CD3E and CD3G were present on the surface

of T lymphocytes, which performed important functions in the

adaptive immune response (70). IL4R was expressed on eosinophils,

macrophages, lung fibroblasts, T and B lymphocytes, which was

over-expressed and played significant role in the immune system

(71–74). IL2RA is mainly expressed on mature T cells and some

other activated hematopoietic cell, which played essential roles in

immune regulation of multiple diseases (75).

A variety of interleukins (IL2, IL4, IL5, IL6, IL7, IL10, IL13,

IL14, and IL21) were found to participate in the proliferation and

differentiation of B cells (76–80). In the study, only IL18, IL27, and

IL36a had significantly different expression and were significantly

upregulated in the PF blood groups. IL18 regulated both Th 1 and

Th2 responses, which acted synergistically with IL12 in the Th1

paradigm, whereas IL18 with IL2 and without IL12 it can induce

Th2 cytokine production from CD4+ T cells, natural killer (NK)

cells, NKT cells, as well as from Th1 cells (81). IL-27, a member of

the cytokine superfamily IL-6/IL-12, significantly regulated immune

response (82). IL-27 was discovered to play a broad anti-

inflammatory function in infectious and chronic immune-

mediated diseases (83–85). IL36 is implicated in both the

development and advancement of inflammatory and fibrotic

disorders (1–7). Indeed, emerging evidence indicated that IL-36

could mediate the relationship between inflammation and fibrosis

(86–88). IL-36a was a members of the IL36 cytokine family (89, 90).

In addition to stimulating humoral immunity, IL27 could

suppressed T-cell responses in autoimmune conditions and thus

induced inflammation and cell death in certain situations (91). IL-

18 is a crucial factor in facilitating the synthesis of specific cytokines

(92, 93). The observation that the expression of IL18 and the

receptor of IL18 (IL18RAP) was significantly increased in the PF

blood group compared to the healthy blood group and the

expressions of the two genes were negative. More research is

required to determine whether the down expression of IL18

affected the effectiveness of the immune responses.
4.3 Integrated analysis of DEGSs–DEmiRNA

MiRNAs regulated many cellular processes and signaling

pathways, including embryogenesis, cell proliferation and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1404108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2024.1404108
differentiation, apoptosis, and disease onset. In doing so, miRNAs

functioned as potent inhibitors of protein translation via the

degradation of mRNAs (94, 95). Nevertheless, the hub miRNAs

accountable for the aberrant regulation of immune response and

apoptosis in the PF blood group of FMD still need to be further

study. In our research, total 282 DEmiRNAs were targeted by the

217 immune DEGs with immunity, and 39 apoptotic DEGs were

identified as miRNAs associated with both immunity and apoptosis.

A total of 25 genes shared by immune-related DEGs and apoptosis-

related DEGs that were identified in the PF and healthy blood

groups. DEmiRNA–DEGs interaction networks were constructed

based on the principle that miRNAs restrained protein translation

by binding to the 3′UTR of target mRNAs and degrading them. In

the study, the immune DEGs-DEmiRNA (and apoptotic DEGs-

DEmiRNA) interaction network was first constructed in the PF

blood group of FMD. In the apoptosis-related DEG–DEmiRNA

network of apoptosis pathway, elevated expression of 42 apoptosis-

related DEmiRNAs could induce the down expression of MAPK1,

MAPK8, TP53, PIK3R3, and NTRK1, while the above 42 apoptosis-

related DEmiRNAs could induce the upregulation of IL3RA,

CAPN1, CASP7, LMNB1, FOS, NGF, AKT1, JUN, PIK3CB, MCL1,

CAPN2, CSF2RB, and IKBKB (Figure 2E). In the immune-related

DEG–DEmiRNA network of Toll-like receptor signaling pathway,

elevated expression of miR-760, miR-23b-5p, miR-491, and miR-

491-5p could induce the down expression of CCL3; while the above

4 apoptosis-related DEmiRNA could induce the upregulation of

CD14, TLR2, and IL18 (Figure 2D). In the immune-related DEG–

DEmiRNA network of immune disease pathway, elevated

expression of 24 immune-related DEmiRNAs could induce the

down expression of CCL3 and TNFSF11, while the above 24

immune-related DEmiRNAs could induce the upregulation of

TLR2 , NOD2 , TLR4 , C3 , TG , IL18 , TNFSF13B, and TG

(Figure 2B). In the immune-related DEG–DEmiRNA network of

immune disease pathway, elevated expression of miR-331-3p, miR-

491, miR-491-5p, miR-760, miR-23b-5p, miR-1386, miR-204-3p,

miR-193a-5p, and miR-138a could induce the down expression of

TNFSF11 and LTA; while the above nine immune-related

DEmiRNAs could induce the upregulation of CD14, TLR4,

TNFSF13B, and LTBR (Figure 2B). In the immune-related DEG–

DEmiRNA network of immune system pathway, downregulated

expression of let-7d-5p could induce the upregulated expression of

TNFSF11 and LTA, while the above nine immune-related

DEmiRNAs could induce the upregulation of CD14, TLR4,

TNFSF13B, and LTBR (Figure 2C). The integrated analysis of

DEmiRNA–DEG interaction networks results indicated that most

hub mRNAs are members of the chemokine, interleukin, and TLR

families. It was confirmed that upregulation of hub mRNAs,

including CCL4, CXCL10, TLR2, TLR4, and TLR7, occurred in

the PF blood groups.

Investigations into the role of miRNAs in the pathogenesis of

PF are still rarely. The differential expression of let-7f-5p between

the PF and healthy blood groups was identified in the study,

suggesting that let-7f-5p may serve as a biomarker for the

investigation of the PF mechanism. This result was accordance
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with previous report (96). It has been reported that the let-7 family

miRNAs were demonstrated to participate in the regulation of PF

(97). These studies further support the hypothesis that PI3K and the

let-7 family may have significant functions in the PF. It has been

reported that Let-7f-5p prevents the PF by modulating cellular

reactive oxygen species, mitochondrial DNA damage, and cell

apoptosis (98). A prior investigation has validated the notion that

the target genes of let-7f could enhance the transcriptional program

of PF in a model of lung fibrosis induced by bleomycin (99).

Notably, the target gene PIK3CA of let-7f-5p was an essential

element of the PI3K/Akt pathway, which was instrumental in the

pathogenesis of PF (14). It has been demonstrated that vascular

endothelial growth factor, reactive oxygen species, and COX2 are

involved in the PF in the downstream of the PI3K/AKT signaling

pathway (100, 101). It has been believed that COX-2 was shown to

regulate the expression of Fas receptor in pulmonary fibroblasts

(102). Notably, we found that the downregulated let-7f-5p might

induce the upregulation of SLC6A4, POR, and ATP13A3. The

results of the integrated analysis of DEmiRNA–DEGs indicated

that 29 miRNAs (18 upregulated and 11 downregulated) and 267

genes) formed miRNA-target gene pairs (Figure 2), these complex

network of which potentially regulate neuronal cell proliferation,

immune cell death, epilepsy, neurodevelopmental disorders, and

Wnt/b-catenin and PTEN signaling.
5 Conclusions

In conclusion, the development and occurrence of PF were

significantly influenced by the immune-related and apoptosis-

related genes present in PF blood. mRNAs and miRNAs

associated with the development and occurrence of PF in the

FMD were investigated using RNA-seq technology in this study.

It was possible to establish the interaction network between

immune-related DEGs and DEmiRNAs (apoptosis-related DEGs

and DEmiRNAs) by contrasting the profiles and functional analyses

of DEmiRNAs and DEGs in the PF and healthy blood of FMD. We

obtained 240 immune-related DEGs by RNA-seq, with 186

upregulated and 54 downregulated immune-related DEGs in the

PF blood group compared to the healthy blood group. According to

functional enrichment analysis, several immune-related pathways

and terms were enriched with immune-related DEGs. Fifty-six

apoptosis-related DEGs were obtained in the PF and healthy

blood groups of FMD. As determined by functional enrichment

analysis, apoptosis-related DEGs were enriched in several immune-

related terms and pathways. Based on our findings, a gene set

consisting of TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2,

PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R

could potentially function as immunoassay markers for the purpose

of monitoring and evaluating the immune status of FMD. By

examining networks of immune-related DEGs and DEmiRNAs

(apoptosis-related DEGs and DEmiRNAs), our research will offer

fresh perspectives on the molecular mechanisms that regulate the

progression of PF.
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