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The capacity of lymphocytes continuously home to lymphoid structures is

remarkable for cancer immunosurveillance and immunotherapy. Lymphocyte

homing and recirculation within the tumor microenvironment (TME) are now

understood to be adaptive processes that are regulated by specialized cytokines

and adhesion molecule signaling cascades. Restricted lymphocyte infiltration

and recirculation have emerged as key mechanisms contributing to poor

responses in cancer immunotherapies like chimeric antigen receptor (CAR)-T

cell therapy and immune checkpoint blockades (ICBs). Uncovering the kinetics of

lymphocytes in tumor infiltration and circulation is crucial for improving

immunotherapies. In this review, we discuss the current insights into the

adhesive and migrative molecules involved in lymphocyte homing and

transmigration. The potential mechanisms within the TME that restrain

lymphocyte infiltration are also summarized. Advanced on these, we outline

the determinates for tertiary lymphoid structures (TLSs) formation within tumors,

placing high expectations on the prognostic values of TLSs as therapeutic targets

in malignancies.
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1 Introduction

The effectiveness of cancer immunotherapy significantly relies

on the infiltration of functional tumor-associated lymphocytes (1,

2). Systemic lymphocyte circulation involves a cyclical process in

which lymphocytes traffic across lymphoid organs, enter through

the bloodstream, transmigrate into tissues, and afterward, back into

the blood via the lymphatic system. This migratory pattern allows

for rapid mobilization of cytotoxic lymphocytes and facilitates

immune surveillance. The infiltration of lymphocytes into tumors

requires lymphocyte sequential interactions with endothelial cells

lining tumor blood vessels (3). Beginning with low-affinity rolling

along the endothelial surface mediated by selectins, lymphocytes

may acquire increasing affinity to firmly bind endothelium by

chemokine signalings and integrin activations, and ultimately

complete the transendothelial migration process through

endothelial cell junctions (4). Investigation of tumor endothelium

regulatory mechanisms underlying local lymphocyte infiltration

and residence has been considered critical for gaining valuable

insights into immune-driven inflammatory diseases and cancers.

A growing appreciation for the immunological role played by

the tumor-draining lymph nodes (TdLNs), where migratory

dendritic cells (mDCs) process tumor antigens and initiate

tumor-specific immunity has arisen (5, 6). Impaired TdLN

functions including insufficient DC stimulation, altered cytokine

signalings, and inadequate homing of lymphocytes lead to defective

anti-tumor immunity. TLSs are ectopically formations that mimic

the secondary lymphoid organs (SLOs), consisting of lymphocytes

and antigen-presenting cells (APCs) assembled structurally. Cancer

patients with TLSs tend to have more favorable outcomes and

enhanced responses to immunotherapies in several studies (7, 8). As

lymphoid structures formed in chronic inflammatory tumor sites,

TLSs share some structural and functional features with TdLNs and

are remarkable for supporting tumor immune response. TdLNs

serve as important sites for the initial encounter of immune cells

with tumor antigens, while TLS may form within or near the tumor,

providing additional organized structures to support ongoing

immune responses against the tumor. TdLNs and TLSs are

interconnected components of the immune response to tumors,

which contribute to local immune responses against tumors.

In the thriving era of tumor immunotherapy, attaining deep

insights into lymphocyte homing and circulation is essential for

acquiring a more profound comprehension of how the immune

system impacts tumor development and prognosis. In this review,

we introduce the multi-step migration cascades of lymphocytes

tethering, rolling, adhesion, and transmigration into tumors to

facilitate anti-tumor immunity. Furthermore, we point out that

the deficit in lymphocyte homing represents a major contributing

factor responsible for suboptimal immunotherapeutic outcomes.

Meanwhile, we emphasize the importance of lymphoid aggregates

in favorable tumor prognosis. TdLNs, TLSs, and even peripheral

blood microenvironments that collectively influence lymphocyte

homing, circulation, and residence are major targets for improving

lymphocyte infiltration and recirculation in immunotherapy.
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2 The process of lymphocytes homing
and transmigration into the TME

Naïve lymphocytes that develop in primary lymphoid organs

like bone marrow and thymus circulate constantly through the

blood and lymphatic vessel system to SLOs including LNs, spleen,

and mucosal-associated lymphoid tissues. The interaction between

CCR7 and its ligands CCL19 and CCL21 is essential for the homing

of naive lymphocytes to SLOs (9). Sphingosine-1-phosphate (S1P)

is present in high concentrations in the blood and SLOs. The

expression of S1P receptors (S1PRs) on naive lymphocytes

enables them to respond to S1P gradients and migrate toward

SLOs (10). Downregulation of S1PRs as a part of the tissue-resident

program allows lymphocytes home and infiltrate into tissues (11).

Integrins also play a pivotal role in facilitating homing of

lymphocytes. Integrin bindings allow lymphocytes adhere firmly

to the endothelium for transmigrating into lymphoid tissues. Naïve

lymphocytes that migrate into the SLOs are primed and

differentiate into effector or memory cells upon DC-induced

activation and co-stimulation signalings. There exist three signal

crosstalk between the lymphocyte and DC interaction. First, the

antigen signaling through the binding of major histocompatibility

complex (MHC) loaded with antigenic peptides to lymphocyte cell

receptors mediates an antigen-specific lymphocyte activation.

Second, naïve lymphocytes receive co-stimulatory signals when

B7 expressed on APCs binds to CD28 on T cells, for instance.

Third, instructive cytokines and chemokines like IL-12 and CCL17

secreted by activated DCs augment lymphocyte activation, with the

commitment to functional proliferation and differentiation. Once

lymphocytes are primed, they exit and migrate to sites of

inflammation or cancers, where they recognize the same antigens

that initiate the adaptive effector response.

Lymphatic vessel networks allow tumor-derived signals (e.g.

soluble antigens, lipids, exosomes, and nucleic acids) as well as

lymphocytes to transport across LNs and tumor sites to activate

anti-tumor response. During cancers, APCs like mDCs and resident

DCs capture and concentrate tumor antigens that travel via

lymphatic vessels from tumor sites to TdLNs (12) (Figure 1).

Initially activated by APCs, lymphocytes in TdLNs migrate into

tumor sites where they may undergo effector differentiation driven

by additional co-stimulations existing in the tumor (13). In a recent

study, the tumor-resident TCF-1+memory-like T cells were derived

from the activated TdLN CD8 T cells, evidenced by TCR overlap

and shared transcriptional and epigenetic features. These tumor-

specific CD8 T cells with stem-like phenotypes migrate to the tumor

and can only gain effector functions once infiltrating into the TME

(13). Actually, the intralesional frequencies of tumor-infiltrating

lymphocytes (TILs) are often below levels considered clinically

beneficial. TIL infiltration is typically restricted to marginal

regions rather than deeply penetrating the tumor mass (14). The

process of lymphocyte transmigration into the TME consists of a

regulated multi-step cascade characterized by consecutive adhesive

interactions between the lymphocytes and endothelium.

Accordingly, an ineffective homing of lymphocytes may be a
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major factor responsible for poor outcomes of immunotherapies,

particularly in tumors resistant to immune-mediated lysis within

such immune-insufficient infiltration microenvironments.

The transmigration process of lymphocytes into the TME

involves interactions of key surface molecules between

lymphocytes and tumor endothelium, such as homing receptors,

chemokine receptors, addressins and chemokines. High endothelial

venules (HEVs) are essential blood vessels that express high levels of

addressins and adhesion molecules recognized by lymphocyte

homing receptors, mediating efficient lymphocyte trafficking to

lymphoid tissues (15). HEV-like tumor blood vessels that express

elevated levels of the sulfated MECA-79 addressins (PNAds)

participate in recruiting antigen-specific lymphocytes and are vital

components of anti-tumor immune responses (3). MECA-79+

tumor-associated HEVs facilitate adequate lymphocyte

transmigration from the peripheral into tumors. The HEV

network expands during chronic inflammation in activated

lymphoid structures and may undergo profound remodeling with

altered vascular permeability (16). However, the mechanical forces
Frontiers in Immunology 03
generated by extracellular matrix (ECM) and cancer cell growth,

which increase significantly in metastatic tumors and TdLNs, are

potential to decrease the expression of MECA-79 on HEVs,

consequently diminishing the infiltration of functional

lymphocytes (17).
3 Adhesion signalings in regulating the
transmigration program of
lymphocytes into tumors

The process of lymphocyte transmigration through the blood

into tumors generally follows a four-step signaling cascade program

(Figure 2). (1) Tethering: lymphocytes roll along and tether

activated tumor endothelial cells lining specialized blood vessels

through selectins. (2) Chemokine activation: inflammatory

chemotactic cytokines (like CXCL9 and CXCL10) produced in

the TME bind rolled lymphocytes and trigger activations of
FIGURE 1

Pathways of T lymphocyte recirculation between tumor sites and TdLNs. As the tumor progresses, soluble tumor antigens traffic directly to TdLNs
through the network of tumor-associated lymphatic vessels. Within the TdLNs, tumor-specific antigens stimulate migratory DCs and resident DCs to
initiate anti-tumor immunity. Naïve lymphocytes expressing the homing receptors such as L-selectin and CCR7 that respectively bind PNAds and
chemokines (e.g. CCL19/21) expressed on HEVs, consecutively home to TdLNs for recognizing the processed specific tumor antigens on DCs. Under
the TCR and costimulatory signalings, naïve lymphocytes eventually differentiate into effector lymphocytes to migrate to tumor sites by enhanced
adhesive molecule expressions. The activated integrins (e.g. LFA-1, VLA-4), selectin ligands (e.g. PSGL-1, CD43), and chemokine receptors (e.g.
CXCR3, CX3CR1) on lymphocytes contribute together to lymphocyte infiltration and subsequent tumor clearance. TdLNs, tumor-draining lymph
nodes; HEVs, high endothelial venules; PNAd, peripheral node addressin; PSGL-1, P-selectin glycoprotein ligand 1; VLA-4, very late antigen 4; LFA-1,
leukocyte function-associated antigen 1; ICAM-1, intracellular adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1. Created with
BioRender.com.
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integrins. (3) Adhesion: activated integrins on lymphocytes bind to

adhesion molecules like intercellular adhesion molecule-1 (ICAM-

1), vascular cell adhesion molecule-1 (VCAM-1), glycosylation-

dependent cell adhesion molecule-1 (GlyCAM-1), and mucosal

addressin cell-adhesion molecule-1 (MadCAM-1) on tumor

endothelial cells (18), mediating lymphocyte residence and firm

adhesion. (4) Transendothelial migration: adhered lymphocytes

crawl across the endothelium barrier and reach the extravascular

solid parts of the tumor. Advanced investigation into the molecules

regulating T cell recruitment will provide a deeper understanding of

lymphocyte mobility (Table 1), informing immunotherapies

designed to modulate lymphocyte infiltration.
3.1 Selectins and selectin ligands in initial
lymphocyte tethering

Selectins are cell membrane adhesion molecules that mediate an

initial and reversible low-affinity tethering of circulating

lymphocytes to endothelial cells lining postcapillary venules (19).

Inflammatory mediators that are locally produced by cancer cells

induce increased expression of selectins and their ligands, serving as
Frontiers in Immunology 04
one mechanism through which lymphocytes are recruited to sites of

inflammation. Two known types of selectins are expressed by

endothelial cells, P-selectins (CD62P) and E-selectins (CD62E)

(20). P-selectin is stored in cytoplasmic granules within

endothelial cells and resting platelets, rapidly redistributing to the

cell membrane when triggered by histamine generated from

thrombin and mast cells. E-selectin expression is inducible by

proinflammatory cytokines such as TNF and IL-1 produced by

DCs and tissue-resident macrophages in response to infections. It

was illustrated that tumor-associated HEVs that co-expressed

MECA-79+ sialomucins and E-/P-selectins were positively

connected with homing and infiltration of T lymphocytes into

tumors in murine tumor models (21). However, there were also

reported that the high expression of P-selectin by activated platelets

makes it a critical component in cancer-associated thrombosis

contributing to tumor-promoting processes such as inflammation

and metastasis establishment (22). In mechanism, E-/P-selectins

mediate the overlapping capacity of leukocytes to roll along the

vascular endothelium, and trigger an immunoreceptor-like

signaling cascade that converts integrins to an affinity

conformation. The slowed rolling of lymphocytes via selectins

facilitates the transmigration and infiltration program (23).
A B

D C

FIGURE 2

The four-step program regulating T lymphocytes transmigration into tumor sites. (A) Tethering: T lymphocytes roll along the endothelial cells lining
tumor blood vessels in the TME, interacting weakly with E- and P-selectins expressed on cell surfaces. This process slows the T lymphocytes down
and allows them to sense the microenvironment for signals of inflammation. (B) Chemokine activation: tethered T cells follow a chemotactic
gradient of cytokines like CXCL9 and CXCL10 to exit the blood vessel and enter the inflamed tissue. (C) Firm adhesion: chemokines like CCL3, CCL4,
and CCL5 activated T cells express integrins like LFA-1 and VLA-4 that bind strongly to adhesion molecules like ICAM-1 and VCAM-1 on endothelial
cells. This stops T cells from rolling and causes them to adhere firmly. (D) Transendothelial migration: bound integrins trigger signaling pathways that
allow the T cell to flatten out and squeeze between endothelial cells to facilitate the transmigration process of T cells into tumor sites. Created with
BioRender.com.
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By contrast, L-selectins (CD62L) exhibit constitutive expression

on the surface of naive and central memory lymphocytes, including

T cells and B cells. CD62L on circulating T cells serves as a

peripheral blood biomarker in cancer patients for assessing

immunotherapy efficacy and immune function. Memory T cells

expressing CD62L are classified as central memory T cells (TCM)

with the capacity for long-term persistence. Maintaining CD62L+

TCM cells is crucial for durable antitumor immunity after

immunotherapy. Anti-tumor therapies which are suggested to

significantly suppress tumor growth were totally considered to

increase the CD44 l owCD62Lh i memory T ce l l s and

CD44hiCD62Lhi TCM cells of the tumor-infiltrating CD4 and CD8

T cells in breast cancer (24). Tumor metastasis was more likely to be

enhanced by the absence of CD62L due to the defective migration of

T cells and NK cells. However, the cytotoxic response was not

influenced (25). The expression of CD62L also enhanced the

therapeutic potential of CAR-T cells. It has been demonstrated

that CAR-T cells that expanded in IL-15 preserved a less-

differentiated CD62L+CD45RA+CCR7+stem cell memory

phenotype as compared with cells cultured in IL-2, exhibiting

superior antitumor responses (26). Furthermore, human-induced

pluripotent stem cells (iPSCs) reprogrammed from CD62L+naive

and memory T cells were then engineered with CD19-CARs. The

iPSC CD62L+CAR-T cells facilitated strong antitumor activity in

vivo and prolonged the survival of human B-cell lymphoma

xenograft mouse models (27). Assessing CD62L expression on T

cel ls has ut i l i ty for immunotherapy monitoring and

response prediction.

The minimal structure motif recognized by selectins is the

terminal tetrasaccharide Sialyl-Lewis X (sLex). The sLex is formed

by post-translational modifications on various surface glycoproteins

of myeloid cells and lymphocytes (28). Further sulfation of the sLex

structure on galactose or N-acetylglucosamine residues increases

the binding affinity of L-selectin (29). Glycosylation alterations are

indicative of inflammation and tumors. P-selectin glycoprotein

ligand- 1 (PSGL-1) is the well-known selectin ligand for all

selectins. Binding to PSGL-1 supports the lymphocyte rolling on

stimulated endothelial cells and increases the aggregation of

lymphocytes (30). In induced mouse colitis models, PSGL-1 was

supported to recruit effector T cell subsets by binding activated

endothelial P-selectins and enhanced T cell infiltration,

contributing to severe colonic tissue inflammation (31). The

deficiency of PSGL-1 decreased both colonic Th1 and Th17

cytokines production (like IFN-g, TNF, IL-17, and IL-22) because

local Th17 generation is dependent on initial Th1 recruitment (31).

However, in addition to its role in T cell recruitment, PSGL-1 has

been shown to act as an immune checkpoint of CD8 T cells in

infections and cancers (32). Similar to P-selectin, L-selectin also

interacts with sulfated polysaccharides including GlyCAM-1,

MAdCAM-1, and CD34 (33). GlyCAM-1 contains sLex

carbohydrates and is secreted selectively on HEVs of peripheral

LNs. CD34 is a transmembrane glycoprotein extensively expressed

on blood vessels and hematopoietic stem cells but does not bind to

L-selectin under normal conditions. CD44 is another widely

glycosylated cell adhesion molecule that exhibits the strongest
TABLE 1 Crucial determinants for regulating TILs homing
and transmigration.

Molecules Examples Functions
Potential

therapeutic
strategies

Chemokines
and

chemokine
receptors

CXCR1-CXCL1,
CXCR2-CXCL8,
CCR1-CCL3/5,

CCR2-
CCL2, etc.

Promote TILs
homing and
recruitment
into tumors

TIL homing agonists
including chemokine
receptor agonists like
MCPs, MIG, MIP-1
etc., and adhesion

molecule agonists like
vedolizumab,
crizanlizumab,
efalizumab, etc.

Integrins
LFA-1, VLA-4,
Mac-1, etc.

Selectins E/P/L-selectins

Adhesive
receptors

CEACAM-1,
VAP-1, ICAM-1,

VCAM-1,
CD44v10, etc.

Mediate TIL
adhesion to
tumor cells

and migration
and invasion
into ECM

collagen gels

Glycoproteins TIM-1

Mediated T
cell tethering
and rolling on

E-/P-/
L-selectins

Cytokines
IL-2, IL-7, IL-12,

IL-15, etc.

Promote
chemokine
expressions

and T
cell effector

TIL Cytotoxic
enhancers including
checkpoint inhibitors
like pembrolizumab,

nivolumab, nivolumab,
etc., and

immunomodulatory
agents like

lenalidomide,
thalidomide, etc.

Toll-
like receptors

TLR3/7/9
Depletion of
Treg cells

Immune
checkpoints

PD-1, CTLA-4,
TIM-3,

TIGIT, etc.

Reverse the
suppression of

T
cell function

Endothelins
Endothelin
B receptor

Depletion of
Treg cells

Vascular
growth factors

VEGF,
VEGFR, etc.

Upregulate
microvascular
E-selectins
and induce
ICAM-1/
VCAM-1

expression on
tumor vessels

Tumor microvascular
inhibitors including

Ombrabulin,
Vadimezan, CA4P, etc.

Stromal and
myeloid cells

CAFs,
myelomonocytic

cells,
MDSCs,

and TAMs

Prevent TIL
infiltration
and inhibit
TIL homing

Suppressive tumor
microenvironment

reversion like targeting
MDSCs using

phosphodiesterase
inhibitors, CSF-1R
inhibitors, etc.
TILs, tumor-infiltrating lymphocytes; LFA-1, lymphocyte function-associated antigen-1;
VLA-4, very late antigen-4; Mac-1, macrophage-1 antigen; CEACAM-1, carcinoembryonic
antigen cell adhesion molecule-1; VAP-1, vascular adhesion protein-1; ICAM-1, intercellular
adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; TIM, T-cell
immunoglobulin and mucin domain; TLR; PD-1, programmed cell death-1; CTLA-4,
cytotoxic T-lymphocyte-associated protein-4; TIGIT, T cell immunoreceptor with Ig and
ITIM domains; MDSCs, myeloid-derived suppressor cells; VEGFR, vascular endothelial
growth factor; CAFs, cancer-associated fibroblasts; TAMs, tumor-associated macrophages;
MCPs, monocyte chemoattractant proteins; MIG, monokine-induced by gamma interferon;
MIP-1, Macrophage inflammatory protein-1; CA4P, combretastatin A4 phosphate.
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binding kinetics to E-selectins. The interaction between CD44 and

E-selectin is proven to elongate T cell spreading and trigger

lymphocyte activation (34).

Selectin-mediated tethering demonstrates rapid association and

dissociation kinetics, allowing T lymphocytes to brief adhesion, and

slow roll along vascular beds while remaining in proximity.

Lymphocyte rolling motion is important for the subsequent steps

of cell extravasation, such as firm adhesion and transendothelial

migration. This slow rolling motion enables lymphocytes to scan

the endothelial surface and respond to inflammatory signals,

leading to their recruitment to the site of inflammation.
3.2 Chemokines facilitate lymphocyte
firm adhesion

Several chemotactic cytokines existing in the TME stimulate

lymphocyte movement and regulate the migration of lymphocytes

from the blood into tumors. Produced by immune cells and several

types of tumor stroma cells, chemokines activate lymphocyte

intracellular signaling cascades to increase the integrin affinity

and promote directed lymphocyte migrat ion along a

concentration gradient. The CXCL9, CXCL10, and CXCL11-

CXCR3 axes are reported to regulate cytotoxic lymphocyte

migration and mediate a tumor suppression response. CXCL9,

CXCL10, and CXCL11 are mainly secreted by myeloid lineages

and tumor cells in the TME responding to IFN-g, and this process is
synergistically enhanced by TNF-a (35). The expression of CXCL9

by tumor-associated macrophages regulates the recruitment and

positioning of CXCR3+ CD8 T cells, underlying the clinical

response to anti-PD(L)-1 treatment (36). CXCL10, also known as

IFN-g-induced protein 10, functions as a chemoattraction for

multiple kinds of leukocytes. Comprehensive analyses of breast

cancers revealed that the expression of CXCL10 was positively

correlated with neoantigen load and infiltrating immune cells (37).

CXCL11 is chemotactic for activated T cells. CXCL11 was reported

to be a promising adjuvant of CAR-T therapy for glioblastoma.

CXCL11-armed oncolytic adenoviruses increased infiltration of

CD8 T lymphocytes, NK cells, and M1-polarized macrophages,

while decreased proportions of myeloid-derived suppressor cells,

Tregs, and M2-polarized macrophages were observed (38).

The chemokine axis CCL19/CCL21-CCR7 controls

lymphocytes homing to TdLNs to encounter tumor antigens.

Recent studies demonstrated that CCL19 expression accompanied

with IL-7 promotes the migration and survival of CAR-T cells in

vivo (39, 40). Engineered CAR-T cells co-expressing IL-7 and

CCL21 exhibited increased anti-tumor efficacy due to significantly

improved survival and infiltration of both the CAR-T cells and DCs

in the TME (41). CX3CL1 is a crucial chemokine for recruiting TILs

and high expression levels of CX3CL1 correlate with positive

prognosis in colorectal, breast, and lung cancers (42). The distinct

biological effects of CX3CL1 are mediated through its sole receptor

CX3CR1, which is expressed mainly by CD8 T cells, NK cells and B

cells. CXCL13 is the B cell and TFH cell chemotaxis. It contributes

to germinal center (GC) formation and lymphoid structure

development. Treg cells and myeloid cells rely on chemokines like
Frontiers in Immunology 06
CCL17, CCL22, and CCL28 to accumulate in tumors and suppress

effector immune responses (43). Inhibition of these pathways may

overcome tumor resistance. Chemokines like CXCL12 help

maintain localized niches of cancer stem cells (CSCs) which have

immunosuppressive effects through factors like IL-10 and TGF-b,
leading to therapy resistance (44). Not only recruited Treg cells,

CXCL12 was also self-secreted by CSCs to strongly induce cancer

cell migration from the primary tumor, inhibiting possible

interactions with cytotoxic T cells (44).
3.3 Integrins and extracellular matrix
molecules in lymphocyte transmigration

Integrins facilitate firm adhesion of lymphocytes to activated

endothelium and promote lymphocyte migration from blood into

tissues. Lymphocyte-specific integrins involving LFA-1 and VLA-4

(a4b1) bind to ICAM-1 and VCAM-1 respectively with high

affinity, not only serving as adhesive signalings for lymphocyte

extravasation, but also crucial for lymphocyte communication (45,

46). Gene expression profiles of human melanoma samples with

activated LFA-1 and VLA-4 expression identified improved

chemokine expression like CCL4, CCL20, and CXCL12,

increasing more than 6-fold CD8 effector T cell subsets and 3-

fold cDC2 cells infiltration, and facilitating the remodeling of the

immune cell landscape in the TME (47). In the “cold” melanoma

model, the activation of LFA-1 and VLA-4 facilitated the

preferential infiltration of tumor-specific T cells and reversed the

T cell-exclusionary TME, improving the antitumor response

synergized with CTLA-4 blockade (47). In vivo migration assays

demonstrated that the migration of LFA-1-deficient donor

lymphocytes from peripheral tissues into LNs was significantly

reduced as compared to wild-type donor lymphocytes.

Furthermore, the number of memory T cells in LNs was also

significantly decreased in the absence of ICAM-1 or LFA-1 (48).

During human acute infections, the Tbet+CD11c+ marginal zone B

cells gained GC-independent memory properties depending on

integrins LFA-1 and VLA-4 for efficient splenic recirculation (49).

Besides LFA-1 and VLA-4, the integrin a1 subunit, also known as

CD49a, is being increasingly used as a marker for lung-homing T

cells (50). CD49a enables more selective trafficking of T cells into

respiratory and reproductive tissues, supporting a critical role for

integrins in the control of lymphocyte migration. Lymphocyte

integrin a4b7 binds to MAdCAM-1 for migration into gut-

associated lymphoid tissues. a4b7 can also bind VCAM-1 to

regulate T cell trafficking to the inflammatory skin (51).

Nevertheless, some integrins are emerging therapeutic targets

for cancer immunotherapy. Integrin activation has also been shown

to enhance TGF-b expression and suppress the cytotoxic CD8 T cell

response to cancer cells (52). Integrin avb6 drove the expression of

TGF-b from infiltrating lymphocytes in triple-negative breast

cancer (53). What’s more, integrin avb3 positively regulated the

expression of immune checkpoint molecules PD-L1, which impairs

the effector function of T cells (54). Additionally, it is reported that

TNF-a and hypoxia-inducible factor upregulate the expression of
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integrin and their ligands on tumor endothelial cells to promote

metastasis (55, 56).
3.4 Cellular factors in
lymphocyte recruitment

Emerging evidence indicates that DCs are critical in

reprogramming lymphocytes homing in the adaptive immune

system (50). DCs shape the antigen imprinting of tissue-specific T

cells and the transduced co-stimulation signals impact the adhesion

properties of newly primed T cells. Activation signalings from the

TCR and CD28 rapidly trigger the expressions of tissue-adhesion

molecules, such as P- and E-selectin on T cells. It was reported that

the binding of CD80 on tissue-specific DCs to CTLA-4 on T

lymphocytes contributes to the LFA-1 expression and leads to T

cell residence in mucosal tissues (50). It was also observed that DCs

from the lung-draining mediastinal LNs mediated the imprinting of

homing to lungs for T cells in mouse models (50). The imprinted T

cells expressed elevated chemokine receptors CCR4 and showed an

increased capacity to transmigrate into the lung, in contrast to T

cells primed by DCs from other LNs (57). In a recent study, an

identified CD88-CD1c+CD163+progenitor DC subset was found to

display a distinctive ability to prime CD8 T cells that express a

tissue-homing signature with the epithelial homing alpha-E integrin

(CD103) (58). Studies in mouse models have demonstrated that

delivery of TBX21 (encoding transcription factor T-bet) gene-

modified DCs promotes Th1 and Tc1 cell infiltration and the

formation of TLSs in sarcoma tumors (59). Additionally,

intratumoral infusion of CCL21 over-expressed DCs was shown

to increase intratumoral CD8 T cell infiltration and reduce tumor

burdens in a transgenic lung cancer mouse model (60).

Tumor-associated macrophages are also proven to affect CD8 T

cell infiltration. In human breast cancer, FOLR2+ tissue-resident

macrophages (TRM) positively correlated with the infiltration of

CD8 T cells and better patient survival (61). The FOLR+

macrophages were found to reside in a perivascular niche in the

tumor stroma and were spatially associated with tumor-infiltrating

CD8 T cells. Confocal live imaging indicated that FOLR2+

macrophages reduced the speed of CD8 T cells and established

long-lasting contacts with these cells. The prolonged interactions

between CD8 T cells and FOLR2+ macrophages promoted T cell

activation and cytotoxic function (61). Besides, tumor endothelial

cells are activated by cytokines like TNF-a and IL-1 secreted by

TRMs, causing upregulated expressions of adhesion molecules

(such as ICAM-1, VE-cadherin and junctional adhesion

molecules) and chemokines (such as CCL5, CXCL8, and

CXCL12), leading to increased adhesiveness of activated

lymphocytes in the TME (61–63).

Tumor endothelial cells that line abnormal tumor blood vessels

are barriers found to limit lymphocyte extravasation into tumors

through multiple mechanisms. Developmental endothelial locus-1

(DEL-1) secreted by tumor endothelial cells bind to integrins and

phosphatidylserine, suppressing the signaling cascade that mediates
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lymphocyte adhesion and enhancing Treg numbers and functions

at mucosae (64). DEL-1 disrupts the binding interactions between

LFA-1 on lymphocytes and ICAMs on endothelial cells to modulate

inflammatory responses. The deficiency of DEL-1 resulted in

reduced hematopoiesis but elevated neutrophil recruitment to

acute inflammation in an LFA-1-dependent adhesion way.

Besides, tumor endothelial cells express soluble ICAM-5, which

functions as an inhibitor of LFA-1, counteracting the pro-

inflammatory effects of ICAM-1 by reducing the activation of T

lymphocytes (65).
4 The formation of TLS is a hallmark
of ongoing immune activation

TLSs develop in non-lymphoid organs that normally lack

organized lymphoid aggregates at inflammatory sites including

tumors, chronic infections and autoimmune diseases. Robust data

show that TLSs are present in the TME of most cancer types. As a

prognostic and predictive factor, TLSs have drawn strong attention

to investigate its role in tumors. In the following section, we will

explore the major cellular components that comprise TLSs and the

underlying mechanisms driving their formation within the TME.
4.1 The composition and major cell types
exist in TLS

Single-cell analyses have revealed the heterogeneous cellular

composition and phenotypes of TLSs within TMEs. Commonly,

TLSs are comprised of T cell zones containing CD4 helper T (Tfh)

cells and CD8 cytotoxic T cells interspersed with B cell follicles

harboring GCs, complemented by networks of follicular DCs

(FDCs), HEVs, and lymphotoxin-expressing stromal organizer

cells (Figure 3). Lymphocytes are the major cellular components

of TLSs. Enriched for Tfh cells, CD8 cytotoxic T cells and B cells,

TLS supports lymphocyte recruitment, activation, cytotoxicity

maturation and memory formation. In the early phase of TLS

development in ovarian cancer (66), CXCL13-producing CD4 T

cells were predominantly coincident with CD4 and CD8 T cells, and

it transmigrated away from T cell zones to the CD21+ FDCs as TLS

ma t u r e d i n o v a r i a n c an c e r . Th e an t i g e n - s p e c ifi c

LIGHT+CXCL13+IL-21+Tfh cells induced TLS formation and

resulted in increased isotype-switched B cell responses in vivo

(67). Studies from Gu-Trantien and her partners confirmed that

CD4 Tfh cells, CD8 T cells, and B cells colocalizing in TLS, all

express the CXCL13 receptor CXCR5 (68). The majority of T cells

within TLSs were found to be of an effector memory phenotype in

lung cancers, with few central memory T cells and naive T cells.

Cytotoxic CD8 T cells have been detected in TLSs, as have CD4 T

cells orientated towards a Th1 and Treg cell phenotype (69). Treg

cells in TLSs suppress tumor-associated immune response. A high

ratio of intratumoral Tregs to effector T cells generally predicts poor
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patient outcomes. What’s more, some kinds of TLSs also contain

functional T follicular regulatory (Tfr) cells, which are characterized

by a CD25+CXCR5+GARP+FOXP3+ phenotype and a demethylated

FOXP3 gene (70). Functional Tfr cells inhibited functional Tfh

activities via a glycoprotein A repetitions predominant-associated

TGF-b-dependent mechanism. Indeed, the final most prominent

and comprehensively analyzed anti-tumor attack within the TME is

exerted by CD8 cytotoxic lymphocytes and supported by NK cells as

well as IFN-g-producing Th1 cells.

B lymphocytes are a major component of the TME, where they are

predominantly associated with TLS. Unlike activated tumor-infiltrating

T cells, which are primarily antigen-primed, B cells at distinct

differentiation stages are detectable within the mature TLS (71). B

cells are identified by surface expression of CD19 and CD20 and GC B

cells intracellularly express activation-induced deaminase, CD38, and

Bcl-6. The presence of CD38+CD138+plasma cells surrounding the B

cell follicle is highly suggestive of the production of antibodies in situ

(72). For lung cancer patients responding well to ICB therapy,

significant enrichment sites of B cells, plasma cells and T cells were

detected in a single-cell profiling study (73). One of the main effector

functions associated with B cells in TLSs is the production of antigen-

specific antibodies that canmark tumor cells for complement-mediated

cell lysis, or antibody-dependent cellular cytotoxicity. The histological

evaluation highlighted the localization of B cells within TLSs and B cell
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signatures were the most differentially expressed genes in the tumors of

ICB responders versus non-responders (74). Although predictive

biomarkers of TLSs and strategies to augment clinical response have

largely focused on the T lymphocyte compartment, B cell subsets also

show great potential in TLSs in the response to ICB treatment.

Among the innate immune cells, the myeloid lineages in TLSs

containing DCs and macrophages play crucial roles in presenting

tumor antigens to lymphocytes and mediating efficient activation.

FDCs help organize B cell follicles and a network of FDCs was

detected in the GC using CD21 or CD23 labeling. Activated DCs

express CD83 or CD86 and mature DCs express DC-lysosome-

associated membrane glycoprotein. Neutrophils express CD66b,

CXCR2 and myeloperoxidase and trigger the production of pro-

inflammatory cytokines that help recruit and activate lymphocytes.

The NCR+ group 3 innate lymphoid cells (ILC3s) accumulating at

the edge of TLSs in NSCLC and secreting pro-inflammatory

cytokines and chemotactic factors may have lymphoid tissue

inducer cell functional capability (75). Apart from the immune

cells, TLSs are organized lymphoid aggregates with a network of

specialized fibroblasts that share many functional and structural

characteristics with SLOs. TLSs are also equipped with specialized

blood vessels like HEVs that facilitate the transmigration of

lymphocytes from the blood into lymphoid tissues. TLSs are

enveloped by collagen and laminin basement membranes called
FIGURE 3

The formation and composition of TLSs in cancer. TLSs located in inflamed tumor sites serve as a niche for protecting against tumor progression.
Specialized high endothelial venules and lymphatic vessels regulate the transmigration of lymphocytes through TLSs. TLSs are composed of T cell
zones including CD4 helper T cells and CD8 cytotoxic T cells, as well as germinal center-like structures containing B cells and plasma cells. Priming
by tumor-associated antigens presented by APCs with strong co-stimulation signalings, cytotoxic effector T cells and antibody-secreting plasma
cells differentiated in TLSs facilitate in situ tumor destruction through distinct mechanisms by direct tumor-lysis or antibody-dependent cellular
cytotoxicity mediated by macrophages and natural killer cells. Meanwhile, a subset of the activated T and B cells will develop into long-lived central
memory lymphocytes, which are capable of rapidly initiating an effective immune response upon encountering the same antigens. TLSs, tertiary
lymphoid structures. Created with BioRender.com.
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extracellular matrix, allowing cell migration and transporting of

antigens and chemokines. TLS development in murine melanoma is

orchestrated by cancer-associated fibroblasts (CAFs) with

characteristics of lymphoid tissue organizer cells that are induced

by tumor necrosis factor receptor signaling. CAF organization into

reticular networks is mediated by CD8 T cells, while CAF

accumulation and TLS expansion depend on CXCL13-mediated

recruitment of B cells expressing lymphotoxin-a1b2 (76).
4.2 The mechanism of TLS neogenesis in
the TME

According to current studies, the initiation of TLS formation

requires persistent inflammation, chemokine stimulation, and

lymphoid organizer cell signaling activation (77, 78). Key similarities

are shared between the formation of TLSs and SLOs, which provide

optimized immune niches that facilitate efficient cell interactions and

promote effective immune responses. Driven by the expression of the

transcription factors RORgt and ID2, the lymphoid tissue inducer cells

(LTi) initiate the SLO genesis in a lymphotoxin (LT) and TNF

signaling-dependent manner (79, 80). LTa1b2 activates LTb
receptors (LTbRs) on epithelial cells and myeloid lineages, initiating

the expressions of adhesion molecules including VCAM-1, ICAM-1,

MadCAM-1, and PNAd on stromal cells (81, 82). Activated

peritumoral stromal cells differentiate into specialized populations

that secrete homeostatic chemokines and cytokines, including

CCL19, CCL21, and CXCL13. This leads to the segregation of T and

B cell areas with functional microenvironments mimicking SLOs. T

cells expressing CCR7 are attracted by CCL19 and CCL21 to establish a

distinct T cell zone. Moreover, B cells, through the expression of

specific membrane chemokine receptors, undergo transendothelial

migration into the follicle through a process regulated by the

CXCR4-CXCL12 and CXCR5-CXCL13 signaling axis (83). TNF-a
signaling has an important role in ectopic lymphoid structure

formation. In pancreatic cancer, TNF signaling plays a crucial role in

regulating the differentiation and activation of reticular networks

constituted by fibroblast reticular cells (FRCs) and FDCs. Besides,

Chaurio et al. recently reported that repression of Satb1 in CD4 T cells

promotes Tfh cell differentiation and intratumoral TLS formation,

resulting in restricted tumor growth inmice (67). Increased Tfh activity

accelerated TLS-associated CD8 T cell expansion and cytotoxic

functionality (84).

The development of HEVs is another factor that promotes the

formation of TLSs (85). Numerous studies have demonstrated that

the density of HEVs correlates with increased infiltration of CD3+ T

cells and CD20+ B cells in murine cancer models (86). The HEVs

present within TLSs exhibit functional similarities with those in SLOs.

HEVs in TLSs express CCL21 and PNAd, highlighting their crucial

roles in recruiting CD62L+ CCR7+ lymphocytes to lymphoid organs.

In a Treg-depleted tumor mouse model, the HEV neogenesis was

found to be dependent on TNF receptor signaling rather than LTbR
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formation within lymphoid structures (87). The expression of PNAd

is upregulated in response to TNF receptor activation, which is

mediated by LTa3 secreted from CD8 T cells (88).
4.3 Contributions of TLSs to
antitumor immunity

The presence of TLSs is associated with favorable prognosis in

most solid malignancies like melanoma, non-small cell lung

carcinoma (NSCLC) (89), renal cell cancer (RCC) and pancreatic

ductal adenocarcinoma (PDAC) (90). The density of TLSs correlates

with multi-subtypes of functional leukocytes such as Tfh cells,

follicular B cells, and LAMP+ mature DCs, which generate and

boost adaptive immune responses in the TME (91). Furthermore,

multiple gene expression signatures related to TLSs have

demonstrated favorable prognostic value, including the plasma cell

signatures (IGHG, CD138, and XBP1) and the lymphoid chemokine

signatures (including CCL5, CXCL9, CXCL10, and CXCL13) in

human cancers (92). Amongst patients with early-stage NSCLC,

approximately 70% have tumor-associated TLSs. These TLSs

contain immune cells exhibiting activated phenotypes that are

similar to TLSs observed after viral infection (93, 94). Two separate

investigations of NSCLC patients revealed that the presence of TLSs

in lesions following anti-PD-1 therapy or chemotherapy was related

to extended disease-free survival and overall survival (95). However,

there also been reported that intratumoral infiltration of

CXCL13+CD8 T cells determines adverse clinical outcomes and

immunoevasive microenvironment in patients with RCC (96).

High-level CXCL13+CD8 T subset infiltration in TLS exhibited

elevated exhausted markers (such as PD-1, TIM-3, and TIGIT) and

descended activated markers (such as TNF-a and IFN-g).
Emerging research indicates that TLSs play a beneficial role in the

clinical response to ICB therapy, rendering these lymphoid

formations appealing targets for therapeutic intervention. The

combination of anti-angiogenic and immunotherapeutic

approaches synergistically enhances the anti-tumor efficacy by

promoting the formation of a stable vascular network that

facilitates the trafficking and functional activity of effector T cells

(97). Anti-vascular endothelial growth factor (VEGF) therapy

synergized with anti-PD-1 and anti-CTLA-4 treatments induce a

significant intratumoral effector and memory T cell infiltration, along

with the de novo formation of intratumoral TLSs (98). Anti-VEGFR2

and anti-PD-L1 therapies increased the formation of HEVs and

following TLSs in breast cancers and neuroendocrine pancreatic

tumors (99). These HEVs facilitated lymphocyte infiltration and

effector function activated by LTbR signaling. Moreover, LTbR
agonists have been reported to induce HEV generation in resistant

glioblastoma and amplify T cell cytotoxicity (99). This evidence

highlights the essential of intratumoral TLSs in bolstering the

effectiveness of reinvigorated antitumor responses mediated by ICBs.
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5 Lymphoid remodeling and plasticity
for lymphocyte recirculation

Lymphoid structure remodeling is characterized by

lymphangiogenesis and HEV dilation, playing a critical role in

facilitating tumor immune responses especially in tumor

immunotherapy. Persistent exposure to tumor antigens progressively

modifies and remodels LNs structurally and functionally. Tumor-

induced LN remodeling is currently characterized by three principal

processes: (1) lymphangiogenesis. A process involving the development

of lymphatic sinuses and the increasing of lymphatic endothelial cells.

VEGFs transgenically expressed in tumors activated lymphangiogenic

responses in TdLNs (100). An expanded lymphatic vascular network

amplifies the immune interactions in LNs but sometimes may promote

dysfunctional immune responses. (2) HEV dilation and de-

differentiation. The dilation of HEVs is apparent in TdLNs of

patients with ductal carcinoma and becomes further exacerbated

during the progression to invasive ductal carcinoma (16). Following

cancer metastasizes to the LNs, significantly dilated HEVs start to lose

the perivascular expressions of PNAds and CCL21 and this hampers

lymphocyte recruitment (16, 17). (3) Fibrosis of the FRCs-lined conduit

system (101). Fibrosis of the FRC network alters the chemokine

gradients, leading to impaired lymphocyte trafficking and

localization. FRCs function as structural scaffolds to organize and

compartmentalize B cell follicles, T cell zones, and medullary cords

within LNs. Excessive deposition of ECMs obliterates the distinct

compartments and structures of FRC networks, leading to LN

architectural disorganization (102).

The treatment combining ICBs led to a significant enlargement

of HEVs in the mesenteric LNs. Surgical removal of TdLNs or

inhibition of T cell migration through LNs can reduce the response

to anti-PD(L)-1 treatment in melanoma mouse models (103, 104),

suggesting the presence of lymphoid structures and recirculation of

T cells to the tumor sites are crucial for immunotherapies. Recent

progress in engineering lymphoid-like structures using biomaterials

has led to the development of macro-scale biomaterial vaccines.

Macro-scale biomaterial vaccines are developed to engineer

lymphoid organs and remodel multiple types of immune cells

involving DCs, lymphocytes and monocytes (105). The

biomaterial scaffolds were designed to deliver tumor antigens,

adjuvants or antibodies by recruiting and activating immune cells,

particularly DCs, to serve as a localized immune responder in the

surrounding tissues (106, 107).
6 Discussion

Barriers to restricting lymphocyte infiltration vary. Aberrant

tumor vasculatures, altered chemokine secretion profiles, insufficient

adhesive molecule expressions, and immunosuppressive cellular

factors are four contributing factors. Take the limitations of CAR-T

cell therapy in solid tumors as an illustration, the infiltration of CAR-T

cells is influenced by dysregulated tumor vasculatures (108) and

suppressive CAFs (109). CAFs impede CAR-T efficacy through

elevated expressions of immune checkpoints and lymphocyte
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suppression molecules (110). The dysregulated vasculature system

downregulates adhesive molecules required for lymphocyte

transmigration and exacerbates CAR-T cell exclusion. The quantity

and quality of tissue-resident lymphocytes also determine the

antitumor efficacy of ICB therapies. Peripheral tissue-resident

memory T cells evidenced by markers such as CD103, CD69 and

CXCR6 elicited a robust cellular immunity by recruiting and

activating cytotoxic CD8 T cells and NK cells in a PD-L1 blockade

treatment tumor mouse model (111). As is inspired by lymphocyte

recirculation and infiltration, one of the successful synergized

immunotherapies might depend on the thorough acknowledgment

of lymphocyte motility. Appropriate chemotactic signals for CAR-T

cell trafficking and DC-based vaccinations represent improved

therapeutic strategies that enhance functional lymphocyte

infiltration to eradicate tumors (2, 112). APCs possess tissue-specific

imprinting capability to predominantly shape the lymphocyte

recirculation patterns. What’s more, the presence and abundance of

TLSs may serve as valuable biomarkers in predicting patient responses

to immunotherapies and clinical outcomes. Monitoring TLS

formation and lymphocyte trafficking patterns may inform

treatment decisions and personalized therapeutic approaches

tailored to individual patients.
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44. López-Gil JC, Martin-Hijano L, Hermann PC, Sainz B Jr. The cxcl12 crossroads
in cancer stem cells and their niche. Cancers (Basel). (2021) 13(3):469. doi: 10.3390/
cancers13030469

45. Gérard A, Cope AP, Kemper C, Alon R, Köchl R. Lfa-1 in T cell priming,
differentiation, and effector functions. Trends Immunol. (2021) 42:706–22.
doi: 10.1016/j.it.2021.06.004

46. Härzschel A, Zucchetto A, Gattei V, Hartmann TN. Vla-4 expression and
activation in B cell Malignancies: functional and clinical aspects. Int J Mol Sci.
(2020) 21(6):2206. doi: 10.3390/ijms21062206

47. Hickman A, Koetsier J, Kurtanich T, Nielsen MC, Winn G, Wang Y, et al. Lfa-1
activation enriches tumor-specific T cells in a cold tumor model and synergizes with
ctla-4 blockade. J Clin Invest. (2022) 132(13):e154152. doi: 10.1172/JCI154152

48. Guo J, Xu Z, Gunderson RC, Xu B, Michie SA. Lfa-1/Icam-1 Adhesion Pathway
Mediates the Homeostatic Migration of Lymphocytes from Peripheral Tissues into
Lymph Nodes through Lymphatic Vessels. Biomolecules. (2023) 13(8):1194.
doi: 10.3390/biom13081194

49. Song W, Antao OQ, Condiff E, Sanchez GM, Chernova I, Zembrzuski K, et al.
Development of tbet- and cd11c-expressing B cells in a viral infection requires T
follicular helper cells outside of germinal centers. Immunity. (2022) 55:290–307.e5.
doi: 10.1016/j.immuni.2022.01.002

50. Pejoski D, Ballester M, Auderset F, Vono M, Christensen D, Andersen P, et al.
Site-specific dc surface signatures influence cd4(+) T cell co-stimulation and lung-
homing. Front Immunol. (2019) 10:1650. doi: 10.3389/fimmu.2019.01650

51. Chen L, Shen Z. Tissue-resident memory T cells and their biological
characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol.
(2020) 17:64–75. doi: 10.1038/s41423-019-0291-4

52. Guerrero PA, Tchaicha JH, Chen Z, Morales JE, McCarty N, Wang Q, et al.
Glioblastoma stem cells exploit the Avb8 integrin-tgfb1 signaling axis to drive tumor
initiation and progression. Oncogene. (2017) 36:6568–80. doi: 10.1038/onc.2017.248

53. Bagati A, Kumar S, Jiang P, Pyrdol J, Zou AE, Godicelj A, et al. Integrin Avb6-
tgfb-sox4 pathway drives immune evasion in triple-negative breast cancer. Cancer Cell.
(2021) 39:54–67.e9. doi: 10.1016/j.ccell.2020.12.001

54. Vannini A, Leoni V, Barboni C, Sanapo M, Zaghini A, Malatesta P, et al. Avb3-
integrin regulates pd-L1 expression and is involved in cancer immune evasion. Proc
Natl Acad Sci U.S.A. (2019) 116:20141–50. doi: 10.1073/pnas.1901931116

55. Hwang MA, Won M, Im JY, Kang MJ, Kweon DH, Kim BK. Tnf-A Secreted
from macrophages increases the expression of prometastatic integrin Av in gastric
cancer. Int J Mol Sci. (2022) 24(1):376. doi: 10.3390/ijms24010376

56. Li S, Sampson C, Liu C, Piao HL, Liu HX. Integrin signaling in cancer:
bidirectional mechanisms and therapeutic opportunities. Cell Commun Signal. (2023)
21:266. doi: 10.1186/s12964-023-01264-4

57. Mikhak Z, Strassner JP, Luster AD. Lung dendritic cells imprint T cell lung
homing and promote lung immunity through the chemokine receptor ccr4. J Exp Med.
(2013) 210:1855–69. doi: 10.1084/jem.20130091

58. Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y, Hidalgo S,
et al. Transcriptional and functional analysis of cd1c(+) human dendritic cells identifies
a cd163(+) subset priming cd8(+)Cd103(+) T cells. Immunity. (2020) 53:335–52.e8.
doi: 10.1016/j.immuni.2020.06.002
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