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Genetic mutations in the b-globin gene lead to a decrease or removal of the b-
globin chain, causing the build-up of unstable alpha-hemoglobin. This condition

is referred to as beta-thalassemia (BT). The present treatment strategies primarily

target the correction of defective erythropoiesis, with a particular emphasis on

gene therapy and hematopoietic stem cell transplantation. However, the

presence of inefficient erythropoiesis in BT bone marrow (BM) is likely to

disturb the previously functioning BM microenvironment. This includes

accumulation of various macromolecules, damage to hematopoietic function,

destruction of bone cell production and damage to osteoblast(OBs), and so on.

In addition, the changes of BT BM microenvironment may have a certain

correlation with the occurrence of hematological malignancies. Correction of

the microenvironment can be achieved through treatments such as iron

chelation, antioxidants, hypoglycemia, and biologics. Hence, This review

describes damage in the BT BMmicroenvironment and some potential remedies.
KEYWORDS

beta-thalassemia, osteoblast, impaired hematopoiesis, metabolic abnormalities,
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1 Introduction

BT is an autosomal recessive hematological condition characterized by an imbalance

between a-globin and b-globin chains, leading to inefficient erythropoiesis (1, 2). BT can cause

iron overload (IO), extramedullary hematopoiesis, BM expansion, hemolytic anemia, and

multiple organ involvement, which has a significant clinical impact on patients (2–4). In BT
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1403458/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1403458/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1403458/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1403458/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1403458&domain=pdf&date_stamp=2024-08-05
mailto:kbb165wyj@sina.com
https://doi.org/10.3389/fimmu.2024.1403458
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1403458
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2024.1403458
patients, the unbound a-globin binds to free heme molecules to form

toxic insoluble aggregates (called hemipigment), which precipitate and

destroy the red blood cell (RBC) membrane. Simultaneously, they also

initiate the production of reactive oxygen species (ROS), leading to

oxidative stress and impacting the longevity of specific subsets of RBC

(5, 6). Heat shock protein 70 (HSP70) is consistently expressed in

human erythroblasts. As these erythroblasts mature, HSP70 moves

into the nucleus and protects GATA-1, the primary transcription

factor responsible for erythrocyte production, by preventing caspase-3

cleavage (7). An excess of free a-globin chains binds to HSP70, leaving
GATA-1 unprotected which in turn causes cleavage and degradation

by caspase-3. Ultimately, end-stage maturation arrest and erythroid

progenitor cell apoptosis further impair RBC production (7).

Additionally, ROS facilitates the excessive production of growth

differentiation factor 11 (GDF11) in BT. This excessive production

of GDF11 hinders the process of erythropoiesis in BT by activating

SMAD2/3 signal transduction, which is involved in controlling the

differentiation of RBC. As a result, the differentiation of erythrocytes is

restricted (8, 9). It also promoted erythroid amplification and

ineffective erythrocyte production in BT (8). This series of events

leads to early apoptosis of mature nucleated erythrocytes,

accompanied by hematopoietic amplification, followed by chronic

hemolytic anemia with significant reticulocytosis, severe anemia, and a

series of secondary pathophysiological mechanisms (10).

Heterogeneous populations of stromal cells and extracellularmatrix

form a specific microenvironment in the BM (11). The hematopoietic

stem cells found in the BM establish a dynamic relationship with the

surrounding microenvironment, ensuring the equilibrium of the body’s

hematopoietic system (12). However, the BM microenvironment

changes under some pathological conditions (13). For example, the

tumor cells of acute myeloid leukemia are derived from the malignant

transformation of hematopoietic stem cells and are able to alter the

microenvironment, allowing the BM microenvironment to develop

into a more suitable tumor microenvironment for tumor cell growth

(14). This provides a refuge for malignant cells, allowing them to enter a

chemotherapy-resistant state and become more prone to recurrence

(15, 16). Unlike this, BT is a change in the BM microenvironment

caused by ineffective erythrocyte production (17). This may not provide

benefits for ineffective erythropoiesis, but rather consistently damage

the microenvironment. This review focuses on the possible correlations

between the accumulation of macromolecules in the BM, impaired

maintenance of hematopoietic function, disruption of bone cell

differentiation, destruction of bone structure, thalassemia, and

hematologic tumors. Furthermore, possible approaches that might

potentially provide therapeutic benefits are also discussed. This may

aid in comprehending andmanaging the BMmicroenvironment of BT.
2 Bone marrow microevent and
cellular composition and lineage in
normal condition

Cell proliferation and BM activity are increased in the BM of

patients with BT during inefficient erythropoiesis, despite the fact

that the process is not functional, it is not completely halted (18).
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Attenuated Total Reflection-Fourier Transform Infrared

Spectroscopy (ATR-FTIR) found that lipid, protein, glycogen, and

nucleic acid contents in thalassemia BM mesenchymal stem cells

(MSCs) were significantly higher than those in normal MSCs (19).

The content of these macromolecules in BM MSCs of BT patients

after hematopoietic stem cell transplantation was significantly lower

than that before transplantation (19). This indicate that

hematopoietic stem cell transplantation can effectively address the

accumulation of macromolecules in MSCs. Furthermore, the degree

of fat unsaturation in the BM increases proportionally with the

increase in erythropoiesis (20). In patients with BT, the amount of

fat and apolipoprotein D (APOD) in the BM decreases, but the

levels of unsaturated fatty acids(UFA) increase. This phenomenon

is associated with ineffective erythropoiesis (21, 22). Studies have

shown that hydroxyurea therapy can improve the abnormal

metabolic pathways of lipoprotein changes, glycolysis,

Tricarboxylic acid cycle, fatty acid, and choline metabolism in BT

patients (23–25). Additionally, individuals with transfusion-

dependent thalassemia (TDT) commonly experience diabetic

mellitus (DM) as a consequence, and there is a significant

accumulation of glycogen in the BM microenvironment (19, 26).

Patients with thalassemia need to be provided with appropriate

treatment and monitored for a long time. Some patients develop

diabetes even after hematopoietic stem cell transplantation (27).

Oral hypoglycemic agents are effective and safe in the treatment of

DM in TDT patients and can achieve adequate blood glucose

control in a considerable time (28). Due to the accumulation of

glycogen in the BM microenvironment, long-term blood glucose

monitoring and appropriate treatment should be given to patients

with thalassemia. Metformin is an oral hypoglycemic drug with

multiple effects. Additionally, it can help preserve the integrity of

DNA (29). It has a beneficial impact on cardiac function and

reduces the chances of heart failure and renal damage (30, 31).

Engliflozin (Em) also has the effect of controlling blood sugar and

can reverse the PlGF-1 resistance phenotype of hyperglycemic

monocytes. Moreover, Em also can restore EC dysfunction in

hyperglycemia, which may be attributed to the recovery of

VEGFR-2 receptors on the EC surface (32). Most SGLT-1 and 2

inhibitors, including Sotagliflozin, have good effects on improving

ROS, hyperglycemia, EC dysfunction, and heart failure (33, 34).

In the BM of BT patients, excessive a-globin chain accumulates

in the progenitor RBC, resulting in the premature death of the

progenitor RBC in the middle and late stage of BM, further

aggravating the increase of the levels of erythropoietin (EPO) and

growth differentiation factor 15 (GDF-15) (35). Furthermore, the

levels of ferritin in the BM plasma of patients with BT were

markedly elevated compared to both normal people and BT

patients who had undergone transplantation, regardless of their

usage of iron chelators (36–38). At the same time, the content of

ferritin in the BM plasma of BT was also significantly higher than

that in peripheral blood (39). This evidence indicates that there is a

large amount of iron accumulation in the BM of BT patients. An

important explanation for this outcome is that MSCs can take up

iron through ferroportin (For example SLC40A1, a protective

mechanism against accumulation of cytoplasmic free iron) and

transferrin receptor 1 (TFR1), and express the ferritin gene to store
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iron (40). This may be a protective measure against IO. However,

prolonged exposure to iron can change MSCs’ systems for sensing

and storing iron, which is primarily shown by their failure to

stimulate SLC40A1 expression. This can lead to a buildup of

cytoplasmic free iron (40, 41). Increased ROS levels will

accompany iron accumulation in transfusion-independent

patients, and oxidative damage from ROS is a major factor in

thalassemia patients’ cell and tissue damage (42). In recent studies,

it has been observed that the production of ROS can also occur

through the action of cytochrome P450 (CYP450) 4A and 4F, which

induce the production of 20-hydroxyeicosatetraenoic acid (20-

HETE) (43). This overproduction of ROS was observed in

Hbbth3/+ mice “model of b-thalassemia” and was found to be

mediated by a pathway that is dependent on nicotinamide

adenine dinucleotide phosphate (NADPH) (43, 44). Further

increases in ROS levels in BT-MSCs resulted in decreased

expression of antioxidant genes, altered ferroportin activation,

and inappropriate regulation of iron-related genes such as TFR1

in BT-MSCs (42, 45, 46). The iron-overloaded BM environment

impairs iron-sensing mechanisms, which may generate oxidative

stress and alter the functional properties of MSCs (47, 48).

The accumulation of iron poses great harm to the BM

microenvironment, leading to a series of deleterious effects

including ROS. Iron chelation therapy is advantageous for

ameliorating impaired lung function, renal function, cardiac

function, vascular function, endocrine function, ROS, and ROS-

induced chain reactions resulting from IO (49–51). At present, the

most frequently used drugs for iron chelation in thalassemia are

deferoxamine (DFO), deferiprone (DFP), and deferasirox (DFX),

which can reduce the incidence rate and mortality related to organ

iron deposition, including BT patients with Hematopoietic stem cell

transplantation (52). It has been seen that DFX has good safety and

controllability when used in therapy (53–55). Additionally, the

approved luspatercept is an erythroid maturation agent that can

be combined with selected transforming growth factor beta (TGF-

b) superfamily ligands to reduce Smad 2/3 signaling and enhance

late-stage erythropoiesis. Adult patients diagnosed with BT major

(b-TM) now have a novel therapy available for long-term

management (56). This medication seeks to reduce the necessity

for frequent RBC transfusions, decrease anemia, and avoid

excessive iron accumulation (56). Ferritin agonists can not only

improve IO but also manage intermediate b-Anemia and liver

burden in patients with thalassemia (57).
3 Bone micro environment in
thalassemia patient

3.1 Hematopoietic stem cell quiescent
state loss

Compared with normal mice, hematopoietic stem cells(HSCs)

fromHbbth3/+mice lose their quiescent state and enter the cell cycle.
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The primary observation is that the frequency of HSCs in the G0/

G1 phase is significantly diminished, while the proportion of cells in

the S phase increases and the number of colony-forming units is

reduced (17, 58). Transplantation of HSCs derived from Hbbth3/+

mice into normal mice restored the long-term repopulation

capacity of HSCs, whereas HSCs from normal mice transplanted

into Hbbth3/+ mice inhibited the reconstitution process (17). These

pieces of evidence are adequate to indicate that the function of

HSCs is compromised in the myeloid environment of BT. This

design provides more evidence that the BM microenvironment of

the BT has an impact on the biological activity of HSCs. Due to

chronically active ROS, patients with transfusion-dependent BT

require higher stimulation of the CD34+ response to stress and have

higher circulating rates of primitive hematopoietic stem progenitor

cells (HSPCs) (39). Single-cell sequencing approaches revealed a

higher percentage of CD34+ B lymphoid progenitors and a lower

percentage of other stem and progenitor cell types in the CD34

compartment in pediatric BT patients (59). Studies have shown that

daily doses of recombinant parathyroid hormone (PTH) can rescue

HSCs defects by restoring the expression of stem cell genes (17).

The main reason was that after Hbbth3/+ mice received PTH

treatment, the number of resting HSCs increased and the level of

cyclin-dependent protein kinase inhibitor 1C (CDKN1C) was also

recovered (17, 60).

MSCs have been used in vitro to support the expansion of HSCs

and HSPCs, and in vivo to promote HSPCs implantation (61). BM-

MSCs are also damaged in BT patients, so will HSCs transplantation

with BM-MSCs improve transplant outcomes? Clinical studies have

found that the use of combined BM-derived MSCs does not affect

the transplant outcome of type III thalassemia (62, 63). However, it

has been found that bioactive molecules in extracellular vesicles

derived from MSCS can regulate the expression of HSCs genes

BIRC34, BIRC2, and NF-kB to improve the cloning ability of CD34+

cells (64–66). However, the practical use of exosomes for treatment

has not yet achieved any significant advancements.
3.2 Impaired MSCs function

The preservation of hematopoietic function is closely linked to

the biological role of MSCs. Recent research has revealed a decrease

in the occurrence of CD146+ and CD271+ cells in the BM of BT

patients, and this decrease is inversely associated with levels of ROS

(17). Moreover, the expression frequencies of CD73 and Sca-1 in

MSCs of BM of Hbbth3/+ mice were also found to be decreased (17).

The reduced levels of KIT ligand (KITLG) and CXC chemokine

ligand 12 (CXCL12), which are crucial molecules for the

maintenance of hematopoiesis, hindered the implantation,

retention, survival, and proliferation of HSCs, are also observed

(39, 67). Angiopoietin-1 (ANGPT1) and vascular endothelial

growth factor (VEGFA), which regulate the quiescence of HSPC,

were inhibited as well (39, 68). Fibroblast growth factor 2 (FGF2)

and interleukin 6 (IL-6), which have amplification effects on HSPC
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and paracrine proliferation effects on MSC, are also inhibited (39,

69). Additionally, the amount of CD34+ attracted by BT MSCs is

much lower compared to normal BM-MSCs, and its effect in

promoting the expansion of umbilical cord blood HSCs is also

poor (17, 39, 70). Inhibition of these molecules may be one of the

reasons for the poor efficacy of BT HSCs transplantation.

The ability of CD105+ MSCs obtained from the BM of BT

patients to differentiate into osteogenic cells is significantly limited

(71). Runt-related transcription factor 2 (RUNX2), which is

efficiently activated in normal MSCs, is a key factor regulating

osteocyte production (72, 73). The expression of RUNX2 in MSCs

was seen to be decreased in BT, leading to a downregulation of the

secreted protein acidic and rich in cysteine (SPARC) and collagen

type I alpha 2 (COL1A2) (39). Consequently, the formation of

mineralized bone is hindered (39). The subchondral trabecular

network density, bone mineral density, and trabecular number

were decreased in the BM of Hbbth3/+ mice while the distance

between trabeculae is enlarged (17, 74). This indicates that the

process of MSCs transforming into OBs in the BM environment of

patients with BT is impeded. Compared with the normal BM

microenvironment, the expression of Notch ligand Jagged 1 is

reduced in the BT mouse microenvironment (17). Loss of Jagged1

favors the induction of OBs ablation (17, 75). In a study, the

formation of MSC-derived bone structures of BT in a humanized

ossicle mouse model was significantly delayed (39, 76). The main

manifestations were reduced bone-cell formation, hollow bone

cavity, reduced number of blood vessels, and the formation of

immature bone and abundant extracellular matrix. Moreover, few

hematopoietic cells colonized, consistent with the impaired

maintenance of hematopoiesis described above (39). The

methylation of histone 3 lysine 9 (H3K9) and histone 3 lysine 36

(H3K36) was significantly downregulated in iron-overloaded BT-

BM MSCs. This suggests an altered ability of MSCs to form

appropriate niches in vivo.
3.3 Impaired OBs formation

The first unsuccessful erythropoiesis in thalassemia patients

results in BM enlargement, which lowers trabecular bone tissue and

thins the cortical layer. Second, endocrine disruption brought on by

high iron loading results in higher bone turnover (77). MSCs

derived from the BM of BT patients have weakened cloning

ability, low proliferation rate, and inefficient differentiation ability,

so the MSCs in the BM of BT cannot effectively differentiate into

OBs in vivo. Moreover, the same bones are formed as the bone

disease in BT patients (39). Further development includes

osteoporosis, growth failure, spinal deformity, and fragility

fracture diseases (78, 79). This is a significant factor contributing

to the prevalence of bone-related diseases in BT patients (78, 79).

Reduced OBs activity is the primary cause of low bone mineral

density, and it may not be associated with osteoclast (OC) activity

(17). The levels of alkaline phosphatase (ALP), an indicator of OBs
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activity, and the bone matrix glycoprotein osteopontin(OPN),

mostly synthesized by OBs, were decreased in the Hbbth3/+ mice.

Additionally, the absence of OPN resulted in HSCs progression into

the cell cycle (80). Studies have shown that PTH can rescue HSCs

function by increasing OPN levels (60). In thalassemia patients, the

primary impairment of osteocyte lineage cells is OBs.

OBs themselves express transferrin receptor (TFR) and divalent

metal transporter 1 (DMT1) (81). In the iron-overloaded BM

microenvironment, iron toxicity can affect OBs to undergo

apoptosis by directly altering bone microarchitecture or inducing

oxidative stress (82, 83). Previous in vitro studies have shown that

increased levels of ROS caused by IO have a severe impact on OBs

proliferation, autophagy occurrence, differentiation, and

mineralization in human, murine, and osteoblast-like cells (40,

84, 85). ROS may function by suppressing the PI3K/Akt/mTOR

pathway, resulting in the stimulation of glycogen synthase kinase 3b
(GSK-3b) (86, 87). Additionally, IO reduces canonical Wnt

signaling, which further activates GSK-3b. The phosphorylation

of GSK-3b is essential for the process of bone formation

(osteogenesis). It directly controls the activity of RUNX2 or

indirectly prevents the breakdown of b-catenin (88, 89). As a

regulator of OBs differentiation and formation, Forkhead box

transcription factor 1 (FOXO1) can directly interact with the

promoter of RUNX2 to regulate its expression (90). FOX1

promotes bone formation by decreasing oxidative stress in OBs.

ROS generated by IO may activate PI3K/Akt, leading to the

inhibition of FOXO1 expression. This, in turn, impairs the

survival of OBs (91, 92).

In addition, high levels of erythropoietin can directly affect the

differentiation and mineralization of OBs progenitors, resulting in

decreased bone density (93). This could be attributed to the

overproduction of fibroblast growth factor (FGF)-5 in bone and

BM erythroid cells, stimulated by erythropoietin through ERK23/1

and STAT2 pathways (94). Consequently, this results in the

upregulation of FGF23 expression in bone and BM erythroid

cells, leading to increased levels in BT patients and mice.

Ultimately, this results in alterations in bone mineralization and

disposition (94, 95). Inhibiting FGF23 signaling through carboxyl

terminated FGF23 peptide is a safe and efficacious therapeutic

approach to rescue bone mineralization and deposition in mice

with b-thalassemia, normalizing the expression of niche factors and

restoring HSCs function (94, 96). Additionally, OBs exposed to

hyperglycemia show impaired function, such as decreased

expression of ALP, GLA proteins, and OPN (97–99).

Bone resorption, a common complication of thalassemia, has

been shown to increase bone mineral density (BMD) in the femoral

neck, lumbar spine, and forearm after two years of bisphosphonate

treatment. After 12 months, the addition of zinc to one’s diet may

lead to an increase in BMD specifically in the lumbar spine and hips

(100). Moreover, supplementing zinc may improve iron-induced

pancreatic exocrine and endocrine dysfunction (101). Current

modalities for the management of osteoporosis in adults with

TDT include inhibitors of bone remodel ing such as
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bisphosphonates and denosumab as well as stimulators of bone

formation, like teriparatide (28).
4 Bone microenvironment in case of
bone marrow transplantation
(BMT) patient

Poor transplantation function is a life-threatening complication

that occurs after transplantation and has poor prognosis, limiting

the success of BMT. The damaged bone marrow microenvironment

is one of the important causes (102). In addition to the damage to

the microenvironment itself, the treatment scheme used for

transplantation can also damage and exacerbate the damage to

the microenvironment. Cyclophosphamide(Cy) chemotherapy

altered survival or proliferation of growth plate chondrocytes and

metaphyseal osteoblastic cells and reduced heights of metaphyseal

spongiosa trabecular bone, which may contribute to chemotherapy

side effects of this drug on bone lengthening and bone mass

accumulation (103). Cy reduces the number and differentiation of

bone mesenchymal stem cells, as well as the formation and activity

of osteoblasts. In addition, Cy inhibits the formation of osteoclasts

by reducing their maturation and activity (104). Bone resorption is

a common complication in thalassemia, and bisphosphonates may

increase bone mineral density (BMD) in the femoral neck, lumbar

spine, and forearm after two years of treatment. Zinc

supplementation may increase BMD in the lumbar spine and hips

after 12 months (100). In addition, supplementing zinc may

improve iron induced pancreatic exocrine and endocrine

dysfunction (101). Current modalities for the management of

osteoporosis in adults with TDT include inhibitors of bone

remodeling such as bisphosphonates and denosumab as well as

stimulators of bone formation (e.g., teriparatide) (28). In addition,

the myeloablative regimen can cause damage to BM EC, and the

hematopoietic defects caused by damaged BM EC are positively

correlated with ROS levels (105).

According to reports, atorvastatin is a widely used lipid-

lowering drug in clinical practice, which improves the functional

impairment of BM EPC in the body by downregulating the p38

MAPK pathway. In addition, NAC can reduce ROS levels in vitro

and in vivo, while repairing damaged BM ECs to effectively promote

hematopoietic reconstruction (105, 106). Due to the damage caused

by Busulfan(BU) and Cy, researchers are constantly developing new

protocols for pre-transplantation injection of BU or trisulfan

(TREO) combined with thiacloprid (TT) and fludarabine (FLU)

in patients with thalassemia, which have better overall survival and

event free survival while reducing transplant failure (107). In

addition, the combination of CY, intravenous BU, FLU, TT, and

ATG (named NF-08-TM) has achieved excellent results in

Mediterranean transplantation (108, 109). The RIC regimen

combined with hydroxyurea (HU), alemtuzumab, FLU, melfaram

(MEL), and TT is also superior to the BU-CY regimen (110). You

can also add BIRC34, BIRC2, and NF- k B expression to increase

the cloning ability of CD34 cells.
Frontiers in Immunology 05
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ROS is involved in the impaired function of MSCs, HSCs, OBs

formation, and a series of complications in the BM

microenvironment, which may be the second major factor

affecting the BM microenvironment. The excess ROS can be

neutralized by an efficient antioxidant system, which includes

antioxidant enzymes and non-enzymatic molecules (111).

Common antioxidant enzymes include superoxide dismutase

(SOD), catalase, peroxidase (PRDXs), peroxiredoxin (Prxs), and

glutathione peroxidase (GPXs) (111). However, the mechanism is

inadequate in regulating ROS to reach normal levels in the injured

BM microenvironment. At present, it can be regulated through

other non-enzymatic antioxidant molecules such as glutathione,

flavonoids, thioredoxin, and vitamins A, C, and E. These substances

can be readily acquired as they are frequently found in plants (112).

Resveratrol, found in the skin of fruits including grapes, blueberries,

and raspberries, is a potent scavenger of ROS. It exerts a defensive

influence on lipid peroxidation occurring in the plasma membrane

and guards against DNA damage induced by ROS (113). Quercetin

is a polyphenolic flavonoid found in apples, radishes, coriander, and

cranberries, which can scavenge ROS and can be expressed through

MAPK/ERK1/2, JAK/STAT and TRAIL, AMPK a 1/ASK1/p38,

RAGE/PI3K/AKT/mTOR axis, HMGB1, and NF- k B. Nrf2 and

other signaling pathways regulate cell state (114). N-acetylcysteine

(NAC) is an antioxidant derived from a small amino acid with a low

molecular weight, which allows it to be rapidly delivered to the

cytoplasm (115). Moreover, NAC has been shown to greatly

enhance bone healing and its ability to promote bone formation

is evident. However, further research is required to fully understand

the particular mechanism behind this benefit (115). Other sources

of dietary antioxidants include rutin, anthocyanins, chlorogenic

acid, quinic acid, caffeic acid, etc (116). These substances all regulate

the activity of endogenous oxidase systems and their related

proteins, preventing oxidative damage to organelles, proteins,

nucleic acids, and lipids (117). Although there is evidence to

support these effects at this time, to avoid adverse reactions, it is

important to consider the dose when using these substances.

Patients with thalassemia should be advised to add foods high in

these compounds to their diet in addition to receiving therapy.
6 Thalassemia and
hematological tumors

In recent years, with the continuous improvement of treatment

plans, the survival rate of patients with thalassemia has been

significantly improved. However, more complications have

emerged, such as the rising incidence of liver cancer (118). A

comprehensive longitudinal research conducted in Taiwan has

revealed that individuals with thalassemia have a significantly
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elevated total incidence rate of cancer, reaching 52%. Furthermore,

the chance of developing lymphoma or leukemia was found to be

5.32 times greater in these patients. People with transfusion-

dependent thalassemia have a 9.31-fold higher risk of developing

hematological malignancies compared to people who do not require

transfusions (119). Reported hematological tumors include

hematological diseases such as acute lymphoblastic leukemia

(ALL), acute myeloid leukemia (AML), acute promyelocytic

leukemia (APL), chronic myeloid leukemia (CML), essential

thrombocythaemia (ET), Hodgkin lymphoma (HL), multiple

myeloma (MM), myeloproliferative neoplasm (MPN), non-

Hodgkin lymphoma (NHL) and Diffuse large B cell lymphoma

(DLBCL), etc (120–123). The increased tumor risk in patients with

thalassemia may be related to oxidative damage secondary to iron

accumulation, immune abnormalities, viral infections, IO,

hydroxyurea use, and BM stimulation caused by chronic anemia

(124, 125). Furthermore, thalassemia can manifest after the

development of a tumor. The loss of a-globin gene clusters and

the inactivation of somatic mutations in the trans-acting

chromatin-associated protein ATRX usually lead to a significant

decrease in a-globin gene expression (126). This type of acquired

thalassemia is also seen in Hodgkin’s lymphoma, Juvenile

Myelomonocytic Leukemia, and others (127, 128). However, the

mechanism related to thalassemia and hematologic tumorigenesis is

still unclear, which needs more research to reveal.
7 Other

Endothelial cell activation and dysfunction are confirmed in BT,

mostly due to the inhibitory effect of ADMA on NO (nitric oxide)

production and the accumulation of iron, which disrupts

endothelial function (129–131). Endothelial cell apoptosis in the

circulation involves the mitogen-activated protein kinases/Jun N-

terminal Kinase (MAPK/JNK) signaling pathway (132). Currently,

ongoing studies on BT endothelium are mostly centered around

investigating the relationship between direct or indirect measures of

IO (namely serum ferritin, transfusion burden, and MRI results)

and outcome parameters (133). Furthermore, several research

investigations have demonstrated an elevation in levels of

adhesion molecules (intracellular adhesion molecule-1, slCAM-1,

sVCAM-1, E-selectin, and P-selectin) and inflammatory factors (IL-

6 and IL-1b) in individuals with thalassemia, along with an increase

in tissue factor levels (134, 135). Long-term exposure to

compromised erythropoiesis in the BM microenvironment was

not directly considered. According to studies, atorvastatin, a

widely used lipid-lowering drug in clinical practice, improves the

functional impairment of BM EPC in the body by downregulating

the p38 MAPK pathway. Moreover, NAC was also found to reduce

ROS levels in vitro and in vivo, while repairing damaged BM ECs to

effectively promote hematopoietic reconstruction (105, 106).

Macrophages within erythrocyte islands are central to the

normal differentiation and development of erythrocytes (136).
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After being cultured with murine macrophages, it was discovered

that the erythrocyte precursors extracted from BT BM were

phagocytosed by the macrophages (137). Even while erythrocyte

precursors derived from healthy persons were likewise

phagocytosed, there was a significant rise in the activity of BT

BM macrophages (137, 138). This may suggest that macrophage

phagocytosis is enhanced in BT BM. Marrow adipose tissue(MAT),

one of the main components of the BM stroma, plays a crucial role

in maintaining hematopoietic function (139). However, the MAT

was decreased in the BM of BT individuals with inefficient

erythropoiesis, particularly in the BM fat fraction (BMFF) in red

and yellow BM regions. This indicates that the transformation

process of the BM was hindered (35, 140).
8 Conclusion

In summary, the review focused on the compromised BM

microenvironment in patients with BT and the subsequent chain

of events, which has an adverse impact on the patient. Hence, it is

imperative to focus on the compromised BM microenvironment of

patients, particularly IO, ROS, and bone resorption. Patients should

get iron chelation therapy, antioxidant therapy, hypoglycemic

therapy, and therapy to improve bone mineral density at an

appropriate time.
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