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New advances in immune
mechanism and treatment
during ocular toxoplasmosis
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Zuhai Zhang1* and Yanhua Du2*

1Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou,
Hubei, China, 2Physical Examination Department, The First Affiliated Hospital of Yangtze University,
Jingzhou, Hubei, China
Ocular toxoplasmosis (OT) is an intraocular infection caused by the parasite

Toxoplasma gondii. OT is manifested as retinal choroiditis and is the most

common infectious cause of posterior uveitis. Invasion of the retina by T.

gondii leads to disruption of the blood-ocular barrier and promotes the

migration of immune cells to the ocular tissues. Cytokines such as IFN-g and

IL-1b are effective for controlling parasite growth, but excessive inflammatory

responses can cause damage to the host. In this review, we will discuss in detail

the latest advances in the immunopathology and treatment of OT.
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1 Introduction

Toxoplasma gondii is an intracellular apicomplexan protozoan parasite that attaches to

the cell membrane via its apical complex and invades all nucleated cells of vertebrates by

gliding motility (1). Toxoplasmosis is an infectious disease caused by T. gondii and is highly

prevalent worldwide. Most primary T. gondii infections are asymptomatic (2), which makes

early detection and treatment challenging in clinical practice. T. gondii comprise 3 major

clonal lineages, namely type I, II and III (2, 3). Type I T. gondii is associated with severe OT,

whereas type II strains are less virulent but are the most common cause of human infections

(4). Type III strains are least virulent and are often found in domesticated and wild animals

and less commonly in humans. Regardless of type, T. gondii can cause life-threatening

disease in immunocompromised or immunosuppressed individuals, including those with

HIV/AIDS (5). Additionally, these populations have a higher risk of recurrence due to

reactivation of latent infection (6). Furthermore, infection during pregnancy can lead to

severe neurological damage and even death in the fetus (7).

T. gondii invasion triggers a series of immune responses such as the release of various

cytokines that are essential for defending the host against the parasite. The process by

which T. gondii invades the eye is complex and involves the migration of the parasite across

the blood-retina barrier into the retina, often resulting in infectious uveitis and other ocular
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complications. Therefore, early diagnosis of systemic toxoplasmosis

is important for the treatment and prevention of OT and its

complications. OT is typically self-limiting and frequently

overlooked. However, its high recurrence rate underscores the

importance of a safe and effective intervention. Current

treatments (ethylaminopyrimidine and sulfadiazine) are

ineffective for eradicating T. gondii and can cause multiple side

effects, which may worsen the health of patients with compromised

systemic conditions. In fact, adverse reactions to toxoplasmosis

treatments have been reported to be the cause of treatment

discontinuation in up to 40% of HIV patients (8).

In this review, we will discuss the systemic and ocular immune

responses elicited by T. gondii infection, identify the limitations

of current toxoplasmosis treatments, and provide insights into

the development of novel therapeutic agents from an

immunological standpoint.
2 T. gondii infection
and dissemination

When an intermediate host consumes raw or undercooked

meat containing T. gondii tissue cysts, the cysts rupture as they

pass through the gastrointestinal tract, releasing bradyzoites. These

bradyzoites infect the host intestinal epithelium and differentiate

into tachyzoites that rapidly replicate and disseminate throughout

the body (9). The most accepted hypothesis for the mode of T.

gondii transmission within the host is the “Trojan horse”

mechanism. In this mechanism, the parasite invades immune
Frontiers in Immunology 02
cells, especially dendritic cells (DC), and exploit their mobility to

disseminate. It has been shown that T. gondii-infected DC cells

synthesize and secrete the neurotransmitter g-aminobutyric acid

(GABA), which activates GABA-A receptors (10) and induces a

hypermigratory phenotype in the cells, ultimately promoting

parasite transmission (Figure 1). In addition, the parasite can

spread through the bloodstream within monocytes (11, 12) and

alter their phenotype to enhance migration (13).
3 Initial host immune responses

3.1 Cellular immunity

IFNg-mediated macrophage activation and CD8+ T cell-

mediated cytotoxicity play important roles in controlling T.

gondii infections. CD8+ T cells are essential for mediating

resistance against T. gondii in mice by stimulating the production

of endogenous interferon-g (IFN-g) within the first few days of

infection (14, 15). T. gondii rhoptry protein (ROP) activates the

signal transducers and activators of transcription (STAT)3/6, which

modulates intracellular signaling pathways and triggers the

production of host IFN-g and IL-12. In rodents, cellular immune

responses mediated by DC cells, T cells, natural killer (NK) cells,

macrophages, and cytokines (IL-12 and IFN-g) are essential for

overcoming primary infection and establishing control over latent

chronic infection (16). Furthermore, T. gondii infection can induce

cell pyroptosis and IL-1b and IL-18 release by activating NLRP1

inflammasomes (17–19).
FIGURE 1

Toxoplasma gondii invades host cells and stimulates GABA synthase (GAD) to synthesize GABA, which binds to GABA-R on the membrane leading to
the excretion of Cl- from the cell, generating a depolarization, which opens the downstream voltage-gated Ca2+ channel (Cav1.3), and Ca2+
inflows into the cell, where it plays the role of a second messenger to promote cell motility, migration, and signaling, and In turn, it spreads
throughout the body, invading the brain, heart, muscles, and eyes.
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3.2 IL-12-mediated immune responses

Mouse experiments have demonstrated that T. gondii induces

IL-12 production via several pathways: (1) Recognition of T. gondii-

derived profilin-like molecules by TLR11 induces IL-12 release in a

myeloid differentiation primary response protein 88 (MyD88)-

dependent manner (20); (2) Recognition of profilin-like proteins

by TLR12 homodimers or TLR11/TLR12 heterodimer leads to IL-

12 production; (3) Detection of T. gondii procyclin-18 (TgCyp18)

by the chemokine receptor CCR5 stimulates IL-12 expression by

DCs (21); (4) T. gondii-mediated TLR9 activation plays a central

role in coordinating DC-mediated IL-12 production and

subsequent IFN-g secretion by CD4+ T cells (22).

It has been shown that injection of CD8(+) DCs with soluble T.

gondii antigen leads to IL-12 production in mice (23, 24). IL-12

activates CD4+ T cells to secrete IFN-g, which induces the

expression of inducible nitric oxide synthase (iNOS) and the

generation of nitric oxide (NO), leading to cytotoxic disruption of

T. gondii vesicles. Khan et al. found that treatment of chronically

infected hosts with antigen-specific CD4+ T cells restored CD8+ T

cell function and prevented reactivation of latent infection (25).

Furthermore, antigen-specific CD8+ T cells effectively eliminated T.

gondii cysts from immunodeficient animals (26).
3.3 Indoleamine 2,3-dioxygenase

When an organism is infected with T. gondii, binding of IFN-g,
tumor necrosis factor-a (TNF-a), lipopolysaccharide (LPS),

cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), CD80/

CD86, and other pro-inflammatory cytokines to epithelial cells,

DCs, and macrophages can induce the expression of indoleamine-

2,3-dioxygenase (IDO) (27, 28). IDO is an intracellular enzyme that

inhibits T. gondii growth (27). However, metabolites from the IDO-

mediated kynurenine pathway (KP) have been shown to inhibit

immune responses by suppressing CD8+ T cell, NK cell, DC, and

macrophage functions, promoting Th2 cell and regulatory T cell

(Treg) differentiation, as well as inducing the production of

transforming growth factor-b (TGF-b) (27). Therefore, IDO

expression must be finely regulated to enhance immune clearance

of T. gondii while minimizing immunosuppression.
4 Migration to immune privileged
regions of the eye

4.1 Migration of T. gondii to the retina

In most cases, T. gondii remains dormant and inactive in the

host without eliciting an immune response (29). Upon entry into

the human body, T. gondii are transformed into rapidly dividing

tachyzoites in the small intestine. These tachyzoites infect most

nucleated cells, triggering inflammatory responses that result in

immune-mediated tissue damage (30). It has been reported that

CD11+ DCs and CD11+ monocytes transport the parasite to brain
Frontiers in Immunology 03
tissues and the retina through the blood-brain barrier and blood-

retina barrier, respectively (12, 31, 32) (Figure 2A). Alternatively, T.

gondii may also reach the retina through direct migration of

tachyzoites across the retinal vascular endothelium (33). This

migration is partly dependent on the interaction between

intercellular adhesion molecule-1 (ICAM-1) on retinal endothelial

cells (34) and micronemal protein 2 (MIC2) on tachyzoites (35)

(Figure 2B). T. gondii infection of brain endothelial cells has been

shown to upregulate ICAM-1 expression and thereby facilitate

leukocyte migration across the endothelial barrier (36). In

addition to ICAM-1, vascular cell adhesion molecule-1 (VCAM-

1), activated leukocyte adhesion molecule (ALCAM), and

chemokines CXCL21 and CXCL10 are also involved in T. gondii

migration across the retinal vascular endothelium (32).
4.2 Disruption of the blood-retina barrier

The inner blood-retina barrier (iBRB) is comprised of retinal

endothelial cells, pericytes, Müller cells, and astrocytes. Choroidal

vessels are separated from photoreceptor cells by the retinal

pigment epithelium (RPE), which together with the Bruch’s

membrane, form the outer BRB (oBRB). Entry into the retina

through the choroidal layer requires the parasite to cross the

oBRB. Song et al. found that human monocyte THP-1 cells

infected with T. gondii can migrate across human RPE ARPE-19

cells. Infected monocytes disrupted the oBRB through focal

adhesion kinase (FAK) signaling and partly through CXCL8 (37).
4.3 Retinal immune responses

Müller cells and astrocytes are two types of macroglial cells

found in the retina of many vertebrates, including mammals, and

are essential for maintaining the homeostasis and neural

organization of the retina. Müller cells extend from their apical

end at the outer limb membrane (OLM) to their basal end at the

inner limiting membrane (ILM). Astrocytes are primarily located

in the nerve fiber layer (NFL) and ganglion cell layer (GCL). These

cells secrete prostaglandins (PGE), NO, and arachidonic acid

(AA), as well as molecules that stabilize the tight junctions

between vascular endothelial to protect neurons from potential

inflammatory damage. Furtado et al. showed that tachyzoites

travel to the eyes via the bloodstream and preferentially infect

Müller cells and astrocytes in the retina (38). It is worth noting

that bradyzoites are present as cysts in the inner layers of the

retina and can infect both glial and neuronal cells (39). The form

that T. gondii adopts can be influenced by variations in the host

eye or the virulence of the strain. Therefore, further studies are

warranted to examine how these factors impact the infectious

stage of T. gondii.

Studies have shown that high extracellular levels of TNF-a
exacerbate astrocyte-mediated inflammation and neurodegeneration.

Molecules from inflammatory cells, platelets, and plasma can activate

Müller cells to secrete a wide range of inflammatory mediators such as
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TNF-a, interleukins (IL), interferons, and ICAM-1. Müller cells can

directly mediate cytotoxic effects by upregulating TNF-a or monocyte

chemotactic protein 1 (MCP-1) expression (40, 41), causing further

damage to the retina.

Lie et al. documented increased expression of various immune

molecules in the infected RPE, including BIRC3, CCL2, CXL3,

CXL8, ICAM-1, IL1RN, IL-6, IL-17RB, LRP8, and NF-kB1 (42).

Retinal infection by T. gondii induces VEGF expression in the RPE

via activin-like kinase 4 (ALK4) and hypoxia-inducible factor-1

(HIF-1). Upon injury, Müller cells release high levels of VEGF,

which may disrupt the BRB and potentially facilitate increased T.

gondii migration (40). Furthermore, VEGF production by reactive

astrocytes can exacerbate disease progression by increasing vascular

permeability, promoting neovascularization, and contributing to

cytotoxicity and secondary damage to nearby neurons and glial

cells (41).
Frontiers in Immunology 04
4.4 Intricate balance between
inflammatory and regulatory cytokines

IL-10 is a potent immunomodulatory cytokine and its deficiency

increases the susceptibility to T. gondii infection inmice. IL-10 has been

shown to inhibit T. gondii-induced inflammation (43) by suppressing

Th1 cell differentiation (44), whereas IL-10 deficiency leads to 4- to 6-

fold increase in IL-12 and IFN-g (43, 45). Thus, IL-10 plays a key role in
dampening inflammation and restricting excessive proinflammatory

response. Previous studies have shown that both IL-27 and IL-33

expression is critical for IL-10 production by effector T cells in T. gondii

infection models (46, 47).

Previous study has shown that IL-6-deficient mice infected with T.

gondii have severe retinal inflammation and high parasite load,

indicating that IL-6 plays a key role in protecting the retina from T.

gondii infection (48). In contrast, a study by Rochet et al. demonstrated
frontiersin.or
FIGURE 2

(A) Slow colonizers (dormant form of Toxoplasma gondii) are transmitted after invasion of the human body and are converted to tachyzoites in the
small intestine. CD11+ dendritic cells and CD11+ monocytes facilitate the transport of tachyzoites to the brain and the retina (crossing the blood-
brain and blood-eye barriers), with the red and green plus signs indicating facilitation. (B) After tachyzoites arrive at the retina with blood, MIC2 is
first secreted from the tachyzoite tip and forms a MIC2-M2AP hexameric complex with MIC2-associated protein (M2AP) in a ratio of 1:1, recognizing
the intercellular adhesion factor ICAM-2 on the host cell membrane. Subsequently, rod protein (rhoptry protein, ROP) is released and interacts with
MIC2 to invade retinal endothelial cells and form parasitophorous vacuole (PV). Finally, dense granule protein (GRA) begin to be secreted, modifying
the PV and facilitating the worm’s access to nutrients necessary for survival and replication.
g
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that topical application of IL-6 antibodies significantly improved retinal

structure and reduced parasite load, suggesting that IL-6 can induce

retinopathy in mice (49). Similarly, T. gondii infection upregulates IL-

17 expression, and IL-17 neutralization is partially protective against

fatal T. gondii-associated inflammation (43, 50). IL-17 is secreted by

astrocytes during acute inflammation and is protective against neural

cell apoptosis and tissue damage in active uveitis by maintaining

homeostasis and inhibiting intracellular calcium increase (51).

However, excess IL-17 can also lead to unwanted tissue damage (43).

Therefore, inflammatory cytokines must be used with caution in the

treatment of toxoplasmosis as theymay hinder parasite eradication and

exacerbate patient discomfort.

Neutrophils play an opposite role to CD8+ T cells during T.

gondii infection. Studies have shown that RPE cells infected with T.

gondii can activate neutrophils via GM-CSF, IL-6 and IL-18 to

produce reactive oxygen species, TNF-a and IL-1b, which are

highly damaging to the retinal tissues (52, 53).

In summary, the balance of various cytokines plays a crucial role

in toxoplasmosis. Certain cytokines (e.g. IL-1b, IL-6, and IL-17) can
act as double-edged swords that protect the host against T. gondii

infection but also cause deleterious effects on host cells.

Consequently, this delicate balance poses challenges in the

development of anti-T. gondii drugs, as any disruption may

negatively impact patient outcomes (Table 1).
5 Ocular immune responses and
clinical manifestations

5.1 T. gondii-induced eye damage

OT is a leading cause of infectious uveitis, which can lead to visual

impairment and blindness (54). OT accounts for 30–50% of all cases of

posterior uveitis and may recur in 40–79% of patients (55). T. gondii

infection during pregnancy may lead to miscarriage or congenital

toxoplasmosis. In contrast to congenital toxoplasmosis, toxoplasmosis

infection acquired after birth is responsible for most OT cases (56). OT

is typically asymptomatic in young children (57). However, patients

over 45 years of age with active lesion have a 10-fold higher risk of

visual impairment. The location of the lesion is critical as macular

involvement can result in 8.95-fold higher risk of visual impairment

than peripheral retinal damage (54). OT usually presents as posterior

uveitis with unilateral choroidal retinopathy and vitritis. Common

complications are increased intraocular pressure, cataract, posterior

vitreous detachment, retinal detachment, retinal choroidal scarring,

and retinal neovascularization (58, 59). Immunocompromised

individuals are also more likely to develop OT, with HIV-positive

patients having a 2.1 times higher risk of the disease than HIV-negative

patients (60).
5.2 Clinical manifestations of OT

Retinal choroiditis is the most common feature of active

intraocular inflammation in patients with OT. Early fundus
Frontiers in Immunology 05
fluorescein angiography (FFA) shows inflammation in areas of

low fluorescence, followed by progressive leakage from

surrounding retinal vessels and margins of the main lesion,

resulting in areas of high fluorescence (61). Inflammation in the

anterior chamber of the eye can block aqueous outflow channels

leading to increased intraocular pressure (IOP), which is associated

with increased anterior chamber cellularity and macular

involvement (62). Severe vitritis is characterized by a bright white

reflex observed by indirect fundoscopy that resembles “headlight in

the fog” (59). Vitritis can cause anterior retinal membrane

formation and subsequent vitreoretinal traction in the region of

retinal choroiditis, leading to complications such as retinal

detachment, vitreomacular traction syndrome, and vitreous

hemorrhage. Acute OT presents with extensive retinal necrosis

and is usually accompanied by vasculitis. It is predominantly

characterized by multifocal segmental retinal arteritis (SRA), also

known as Kyrieleis arteritis (63). Active lesions are white with

blurred borders located near atrophic or hyperpigmented scars (29).

During the relapsing phase, the lesions occur near previous scars

with varying hyperpigmentation (61). Moreover, T. gondii infection

also promotes the development of punctate extraretinal
TABLE 1 The role of inflammatory factors in toxoplasmosis.

Inflammatory
factor

Source Effect Refs.

IL-1b macrophage Induced inflammation (17,
52)

IL-6 Damaged cells,
tissue damage

Promotes body defense,
but sustained synthesis
has a pathological effect
on chronic inflammation.

(48,
49)

IL-10 Ly6ChighCCR2
+ Monocytes,
B Cells,
Foxp3+ CD4+
Treg cells

Inhibit some of the
inflammation inducedby
Toxoplasma gondii.
such as Th1.

(43–
45)

IL-12 CD8(+) DC,
Macrophage,
B cells

Activation and
stimulation of NK cells,
CD4 T cells and
proliferation of CD8
T cells.

(20–
24)

IL-17 CD4,
CD8 T-cells,
gd T cells

Enhances mucosal barrier
function,
Recruitment of
neutrophils,
Promotes the production
of IFNg and IL-10.

(43,
50, 51)

IL-18 Damaged cells,
tissue damage

Induction of CCL3
production
Promotes IFN-g
production by NK cells

(18,
19)

IL-27 myeloid
cell lineage

Induction of blimp1 and
IL-10 production

(46)

IL-33 Damaged cells,
tissue damage

Induction of CCL3
production
Induction of IL-10
production
by macrophages

(47)
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toxoplasmosis (PORT), neuroretinitis, retinal vascular occlusion,

secondary Coats’ disease, Fuchs’ syndrome, and sclerochoroiditis

(64), all of which are less commonly reported or present in

particular individuals.
6 Diagnostic methods for OT

T. gondii-specific IgG antibodies are detected in most typical

clinical cases, suggesting previous infection (congenital or acquired).

Although a negative result for IgG antibodies almost excludes T.

gondii infection, false-negative results can be observed in rare cases

(65, 66). Laboratory diagnostic methods for systemic toxoplasmosis

include polymerase chain reaction (PCR), serologic testing,

immunohistochemical identification, in vitro culture, and animal

inoculation. Rarely, detection of antigens in serum and body fluids,

skin tests, and antigen-specific lymphocyte transformation have also

been used (67). Detection of specific antibodies in the aqueous and

vitreous humor as well as PCR-based assays can be effectively used to

diagnose OT (68). In addition, the severity and prognosis of OT can

be assessed by imaging tests such as fundus photography, optical

coherence tomography (OCT), OCT angiography, ultrasound,

confocal scanning laser ophthalmoscopy, FFA and indocyanine

green angiography.
7 Breakthroughs in
treatment modalities

7.1 Routine OT treatments

OT is a self-limiting disease that is incurable and prone to

recurrence. Retinal choroiditis caused by T. gondii usually resolves

within 1–2 months (57). The conventional treatment regimen for

OT is a combination of pyrimethamine and sulfonamides

(sulfadiazine) with or without systemic glucocorticoids (69),

which act in different steps of the tetrahydrofolate synthesis

pathway to effectively inhibit parasite growth. In particular,

pyrimethamine blocks dihydrofolate reductase activity, and

sulfadiazine is a competitive inhibitor of p-aminobenzoic acid

(57) that negatively impacts nucleic acid synthesis in T. gondii. It

has been reported that patients treated with glucocorticoids alone

have unfavorable outcomes (70).
7.2 Alternative OT treatments

Trimethoprime-sulfamethoxazol is a common alternative

medication for OT (71, 72) due to its good safety profile,

accessibility and affordability. It has been found that

trimethoprime-sulfamethoxazol in combination with prednisolone

is safer and more effective than conventional OT treatment (73).

Alternative treatments with systemic or local (intravitreal)

antibiotics (74, 75) have emerged in recent years. Intravitreal

injection of clindamycin and dexamethasone has been shown to
Frontiers in Immunology 06
achieve effective control of retinal chorioretinitis (76, 77). In

addition, antibiotic treatment may reduce the risk of recurrent T.

gondii-related retinal choroiditis, but there was insufficient evidence

to support its benefit in patient outcomes (75).

Two other antiparasitic drugs, atovaquone and azithromycin,

have been found to be effective against OT in experimental studies

(78) but not in preventing recurrence of retinal chorioretinitis in

humans, which may be attributed to the drug resistance in T.

gondii (79).
7.3 Treatment for OT complications

Verteporfin photodynamic therapy (V-PDT) and intravitreal

injection of anti-VEGF antibody (bevacizumab) are safe and

effective treatments for toxoplasmosis-associated choroidal

neovascularization (CNV) in the macula, and the former has

shown better results in children (80–82).
7.4 Exosome treatment for T. gondii-
induced uveitis

Bai et al. verified the role of exosomes secreted by mesenchymal

stem cells (MSCs) in an experimental rat model of autoimmune

uveoretinitis (83). The authors found that periocular injection of

hMSCs-derived exosomes reduced leukocyte infiltration in the eye

and alleviated uveitis, attenuating harmful Th1 and Th17 cell-

driven immune responses (84). Heightened Th1/Th17 immune

responses have been reported in the eyes of OT patients (55), and

high levels of Th1 cytokines such as IL-2, IFN-g, IL-6, IL-17, and
MCP-1 were detected in the aqueous humor of OT patients (85). IL-

17A is highly expressed in the aqueous humor of OT patients (86)

and in the retina of T. gondii-infected mice (87). The balance

between Th17 and Th1 responses (especially IFN-g) is critical for
the outcome of infection. Sauer et al. reported a novel in vivo

therapeutic approach for inhibiting intraocular inflammation

through intravitreal injection of IL-17A monoclonal antibodies

(86). Thus, MSCs may serve as a feasible treatment for ocular

inflammation caused by T. gondii infection, and hMSCs-derived

exosomes have a broad potential for the treatment of

retinal chorioretinitis.
7.5 TgMyoA as a potential target for
toxoplasmosis treatment

The MyoA motility complex of T. gondii has long been

recognized as an attractive target for drug development (88–90).

T. gondii motility is driven, at least in part, by this unusual XIVa-

like myosin motor protein myosin A (MyoA), which is found only

in apicomplexan parasites and a small number of ciliates. Depletion

of T. gondiiMyoA (TgMyoA) leads to significantly reduced parasite

motility, host-cell invasion, and host-cell efflux (91). A drug

screening study by Kelsen et al. identified KNX-002 as a
frontiersin.org
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compound that inhibits TgMyoA ATPase activity and parasite

movement, supporting TgMyoA as a druggable target for

toxoplasmosis. However, the risk of drug resistance warrants

further investigation (92).
8 Discussion

Toxoplasmosis is a refractory infectious disease caused by the

parasite T. gondii. Current treatments are unable to cure

toxoplasmosis, and their side effects may exacerbate the health of

some patients with poor systemic conditions. Therefore, the

development of new, highly effective, and low-toxicity anti-T.

gondii drugs and preventive vaccines is a key direction of future

research. Furthermore, improving the diagnosis and surveillance of

toxoplasmosis, interdisciplinary cooperation and public health

education are also crucial for controlling the disease and ensuring

timely and effective treatment.

T. gondii invasion in the eye is complicated by the presence of

the BRB and the specialized functions of various retinal cells. This

complexity makes it challenging to apply findings from non-ocular

models to the pathophysiology of OT. New insights into the

immune mechanisms of OT may provide clues for the

development of topical medications that can minimize ocular

complications and eradicate parasites from the eye to prevent

recurrence. Therefore, further studies are warranted to clarify the

mechanisms of retinal infiltration and inflammation in OT.
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