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Chromatin as alarmins in
necrotizing enterocolitis
Colleen P. Nofi 1,2,3, Jose M. Prince1,3,
Ping Wang1,2,3,4*† and Monowar Aziz1,2,3,4*†

1Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset,
NY, United States, 2Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States,
3Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell,
Manhasset, NY, United States, 4Department of Molecular Medicine, Donald and Barbara Zucker
School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily

affecting premature neonates, marked by poorly understood pro-inflammatory

signaling cascades. Recent advancements have shed light on a subset of

endogenous molecular patterns, termed chromatin-associated molecular

patterns (CAMPs), which belong to the broader category of damage-

associated molecular patterns (DAMPs). CAMPs play a crucial role in

recognizing pattern recognition receptors and orchestrating inflammatory

responses. This review focuses into the realm of CAMPs, highlighting key

players such as extracellular cold-inducible RNA-binding protein (eCIRP), high

mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps

(NETs), histones, and extracellular RNA. These intrinsic molecules, often

perceived as foreign, have the potential to trigger immune signaling pathways,

thus contributing to NEC pathogenesis. In this review, we unravel the current

understanding of the involvement of CAMPs in both preclinical and clinical NEC

scenarios. We also focus on elucidating the downstream signaling pathways

activated by these molecular patterns, providing insights into the mechanisms

that drive inflammation in NEC. Moreover, we scrutinize the landscape of

targeted therapeutic approaches, aiming to mitigate the impact of tissue

damage in NEC. This in-depth exploration offers a comprehensive overview of

the role of CAMPs in NEC, bridging the gap between preclinical and

clinical insights.
KEYWORDS

necrotizing enterocolitis, CAMPs, cell-free DNA, HMGB1, eCIRP, TLR4,
PRRs, inflammation
Introduction

Necrotizing enterocolitis (NEC) is a complex inflammatory gastrointestinal disease

with devastating sequelae (1). Despite decades of research to identify predisposing factors

and effective treatments, NEC remains a leading cause of morbidity and mortality in

neonatal intensive care units, especially in low birth weight infants (2). Related mortality
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rates remain unacceptably high, surpassing 50% in affected infants

requiring surgery for NEC (3). Current understanding of the

development of NEC in premature infants incorporates factors

related to the immature gut, bacterial colonization, and insults

causing inflammation and tissue injury (4). Specifically, factors such

as increased and exaggerated Toll-like receptor (TLR)-based

signaling, compromised microcirculatory perfusion, dysmotility,

intestinal barrier breakdown, and impaired enterocyte defenses

have been implicated in NEC propagation (5). Unfortunately,

momentum in improved pathomechanistic understanding of NEC

has suggested few preclinical therapies without revolutionizing the

clinical management or outcomes for patients.

An exaggerated inflammatory state underlies the acute phase of

NEC pathophysiology (4). Critical immune system components of

inflammation are damage-associated molecular patterns (DAMPs)

and pattern-associated molecular patterns (PAMPs) binding to

pattern recognition receptors (PRRs) and imparting immunologic

responses (6). A subset of DAMPs, we named chromatin-associated

molecular patterns (CAMPs), have been newly classified as critical

endogenous inflammatory promoters (7). CAMPs are molecules

derived from the nucleus or related to chromatin that have similar

nucleic acid derivations and contribute to tissue injury when

released from cells in inflammatory states (7). Molecules that

have been classified in this group include extracellular cold-

inducible RNA-binding protein (eCIRP), high mobility group box

1 (HMGB1), cell free DNA (cfDNA), mitochondrial DNA

(mtDNA), neutrophil extracellular traps (NETs), histones,

extracellular RNA (exRNA), messenger RNA (mRNA), and micro

RNA (miRNA) (7).

The landscape of research uncovering the role of CAMPs and

their receptors in inflammatory diseases is vast (7–10). Evidence

demonstrating clinically high levels of many of these molecules in

sepsis further supports their translational importance (7). However,

despite the elevations of CAMPs in inflammation and the
Abbreviations: NEC, necrotizing enterocolitis; TLR, toll-like receptor; PAMPs,

pathogen-associated molecular patterns; DAMPs, damage-associated molecular

patterns; PRRs, pattern recognition receptors; CAMPs, chromatin-associated

molecular patterns; cfDNA, cell free DNA; mtDNA, mitochondrial DNA;

exRNA, extracellular RNA; mRNA, messenger RNA; miRNA, microRNA;

mtDNA, mitochondrial DNA; NETs, neutrophil extracellular traps; HMGB1,

high mobility group box 1; eCIRP, extracellular cold-inducible RNA-binding

protein; LPS, lipopolysaccharide; rhTM, recombinant human soluble

thrombomodulin; eNOS, endothelial nitric oxide synthase; PAD, protein

arginine deiminase; ETs, extracellular traps; nNIF, NET-inhibitory factor;

H3cit, citrullinated histone 3; circRNA, circular RNA; lncRNA, long non-

coding RNA; SIP, spontaneous intestinal perforation; EV, extracellular vesicles;

UC, ulcerative colitis; IBD, inflammatory bowel disease; TREM-1, triggering

receptor expressed on myeloid cells-1; MOP3, MFG-E8-derived oligopeptide-3;

MFG-E8, milk fat globule-epidermal growth factor VIII; AHR, aryl hydrocarbon

receptor; RAGE, receptor for advanced glycation end-products; cGAS, cyclic

GMP-AMP synthase; STING, stimulator of interferon genes; RIG-1, retinoic

acid-inducible gene-I; AIM2, absent in melanoma-2; NLRP3, nod-like receptor

family pyrin domain containing-3; NLRs, nod-like receptors; RLRs, RIG-I-

like receptors.
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understanding that inflammatory cascades contribute to NEC

severity, limited efforts have been undertaken to gain a global

understanding of these endogenous factors in contributing to

NEC pathogenesis. Thus, this review will discuss the current

knowledge of the role of CAMPs in NEC supported by preclinical

work and clinical evidence. Furthermore, this review will highlight

how therapeutic approaches may be targeted to specific pathways of

inflammatory signaling initiated by CAMPs and their

downstream pathways.
CAMPs in NEC and
therapeutic implications

Extracellular CIRP

Cold-inducible RNA-binding protein (CIRP) belongs to a

family of cold shock proteins that respond to hypothermic stress

(11). Under the physiologic condition, CIRP functions as an RNA

stabilizer and chaperone, facilitating translation within cells (11).

Upon cellular stress, CIRP may be released extracellularly through

active and passive pathways – a process that alters its function (12).

Extracellular CIRP (eCIRP) then functions as a CAMP and is

capable of binding PRRs and initiating inflammatory sequelae

(13). Discovery of the deleterious effects of eCIRP have also

revealed elevated levels in adult patients with sepsis and neonates

with sepsis (11, 14, 15).

Discovery of the dramatic impact of eCIRP in worsening tissue

damage in inflammatory diseases has sparked increasing

experimental studies. A preclinical model utilizing intraperitoneal

injection of cecal slurry into newborn mouse pups (a model

resembling neonatal sepsis with overlap of necrotizing

enterocolitis-like injury) demonstrated increasing levels of eCIRP

(16). In a murine model of colitis, CIRP-deficient mice had

decreased susceptibility to colonic inflammation through

decreased expression of proinflammatory cytokines in the colonic

lamina propria cells, further implicating CIRP’s role in

gastrointestinal inflammatory diseases (17, 18).

eCIRP has also been linked to gastrointestinal diseases in

humans. For example, in patients with inflammatory bowel

disease (IBD), specifically ulcerative colitis (UC), expression of

CIRP in chronically inflamed colonic mucosa was positively

correlated with the expression of proinflammatory cytokines,

antiapoptotic proteins, and stem cell markers (17, 18). Moreover,

CIRP expression was further enhanced in the colonic mucosa of

refractory UC (17, 18). A breakdown of humans and preclinical

model’s, evidence of all CAMPs in gastrointestinal disease, focusing

on NEC, is summarized in Table 1.

Advances in understanding the inflammatory footprint of

eCIRP have sparked new discoveries of eCIRP-directed therapies.

For example, circulating microRNA 130b-3p was found to inhibit

eCIRP-mediated inflammation in experimental intraabdominal

sepsis, and injection of miR-130b-3p mimic reversed eCIRP-

induced inflammation through decreasing its affinity for TLR4

(62). Another therapeutic, C23, an eCIRP-derived peptide, was
frontiersin.org
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TABLE 1 Levels of CAMPs in NEC.

CAMPs
Preclinical
Models
of NEC

Human Neonates with NEC

• eCIRP Mouse model
(utilizing
intraperitoneal
injection of cecal
slurry)
• Increased systemic
levels of eCIRP in
septic mice (15)

Human Serum
• Circulating levels elevated in septic
neonates (15)

• HMGB1 Mouse models
(utilizing formula
gavage/hypoxia)
• Increased serum
HMGB1 in murine
NEC (19)
• Increased
intestinal HMGB1
expression in
murine NEC (19–
21)
Mouse models
(utilizing formula
and enteric bacteria
gavage/hypoxia)
• Increased serum
HMGB1 in murine
NEC (22)
Rat models (utilizing
formula gavage/
hypoxia)
• Increased
expression of
HMGB1 in ileal
mucosa (23, 24)
Rat models (utilizing
formula gavage/LPS/
hypoxia)
• Increased
intestinal expression
of HMGB1 (25, 26)

Human Intestines
• Increased intestinal HMGB1
expression in human neonates with
NEC (19, 24, 27)
Human Serum
• Increased serum HMGB1 in infants
with NEC (22, 28)
• Increased serum HMGB1 in Stage II
and III NEC compared to Stage I NEC
(27)
Human Stool
• Early fecal HMGB1 levels were
predictive of NEC risk (29)
Human Genetics
• Differences in SNP frequencies in
HMGB1 (which may affect HMGB1
expression) were associated with
susceptibility and survival in NEC
neonates (30)

• cfDNA Mouse models
(utilizing formula
and LPS gavage/
hypoxia)
• Increased cfDNA
in plasma of NEC
mice (31, 32)
Pig models (utilizing
preterm delivery by
cesarean section)
• Increased cfDNA
in plasma of NEC
piglets (33)

Human Intestines
• Increased extracellular DNA score in
humans with NEC (32)
Human Serum
• Trends of elevated circulating cfDNA
1-6 days prior to NEC onset (33)

• NETs Mouse models
(utilizing formula
and LPS gavage/
hypoxia)
• Markers of
neutrophil activation
and formation of
NETs (by SYTOX
orange) increased in
NEC (31, 32)
Mouse models

Human Intestines
• NETs (visualized with SYTOX
orange) were elevated in intestines of
neonates with NEC (32)
• Neutrophil elastase and markers of
NETs increased in neonates with
congenital heart disease-associated
NEC (37)
• NETs visualized within bowel excised
from NEC neonates; calprotectin was
contained within NETs, whereas

(Continued)
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TABLE 1 Continued

CAMPs
Preclinical
Models
of NEC

HumanNeonates with NEC

(utilizing G-CSF/
formula and LPS
gavage/hypoxia)
• G-CSF increased
NEC disease
manifestation in
mice with increased
NETs, whereas
ELANE-knockdown
(mice incapable of
producing
neutrophil elastase)
were protected from
NEC and mortality
(34)
Mouse model
(utilizing
intraperitoneal
injection of cecal
slurry)
• Increased
circulating platelet-
neutrophil
interactions (which
drive NETosis) in
NEC (35)
Mouse model
(utilizing dithizone/
Klebsiella (DK)
infection)
• Increased
nucleosomes in NEC
ileum from mouse
pups (36)

NETs-containing calprotectin were not
identified in non-NEC (38)
Human Serum
• Nucleosomes (marker for NET
release) were elevated in infants with
NEC (36)

• Histones Mouse models
(utilizing formula
and LPS gavage/
hypoxia)
• H3cit cells in the
intestines were
increased in NEC
mice (31, 32)
Mouse models
(utilizing G-CSF/
formula and LPS
gavage/hypoxia)
• G-CSF increased
NEC disease
manifestation in
mice with increased
intestinal H3cit,
whereas ELANE-
knockdown were
protected from
NEC, had
undetectable H3cit,
and had improved
survival (34)

Human Intestines:
• H3cit was elevated in intestines of
neonates with NEC (32)
• H4cit3 was elevated in ileum of
humans with NEC (36)
Human Serum:
• Plasma levels of histones (including
H4, h3cit) were elevated in human
sepsis (39)

• exRNA
and miRNA

Mouse model
(utilizing formula
gavage/hypoxia)
• Differentially
expressed miRNAs
in the intestines:

Human Intestines
• Differentially expressed miRNAs:
miR-431 (53); miR-223 (54); miR-301a
(43); miR-429/200a/b and miR-141/
200c (55); miR-200a-3p and miR-
200c-3p (56); miR-223, miR-451, miR-

(Continued)
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designed to competitively inhibit binding to the downstream

receptor, TLR4 (63). C23 treatment successfully reduced systemic

pro-inflammatory cytokines, attenuated markers of tissue injury,

and prevented severity of sepsis-induced lung injury in a cecal

slurry-based model (63). Another small peptide, M3, was developed

to inhibit eCIRP’s interaction with another downstream PRR,

triggering receptor expressed on myeloid cells 1 (TREM-1) (16).

Treatment with M3 decreased inflammation, reduced lung injury,

and improve survival in a murine models of intestinal ischemia-

reperfusion and intraperitoneal sepsis (16, 64). Anti-inflammatory

therapeutic efficacy of M3 was further replicated in a cecal slurry-

based model of neonatal intraabdominal sepsis, whereby M3

improved cardiac dysfunction, attenuated inflammation and

improved survival (15).

Milk fat globule-epidermal growth factor VIII (MFG-E8, or

lactoferrin) has been implicated as a critical molecule in protecting

premature intestines from inflammation and injury through

clearance of apoptotic cells (65). Among more recent eCIRP-

directed therapeutic advancement has been the creation of a small

opsonic peptide, MFG-E8-derived oligopeptide 3 (MOP3) (66).

MOP3 was designed to function as an eCIRP scavenger, rather

than a competitive inhibitor, thereby “mop-ing” or clearing pro-

inflammatory eCIRP from the extracellular compartment (66).

MFG-E8 is highly expressed in human breast milk, which carries

therapeutic benefits in NEC (possibly through TLR4 inhibition)

(67). The recent discovery of MFG-E8’s additional function of

eCIRP clearance raises a strong possibility for an additional

mechanism whereby MFG-E8 benefits the inflamed intestine

through eCIRP-clearance (66). Experimental evidence in murine

model of intraperitoneal sepsis supports the mechanism of MOP3-

mediated clearance of eCIRP which confers an anti-inflammatory

impact, reduction in tissue injury, and a survival benefit (66). A

summary of CAMPs and PRR-directed therapies to attenuate

gastrointestinal inflammation and NEC is provided in Table 2.

Future work is needed to elucidate the pathomechanistic impact of

eCIRP and potential protein-protein interactions in human NEC.
High mobility group box 1

High mobility group box 1 (HMGB1) is a nuclear nonhistone,

chromatin-binding protein that plays a critical role in DNA

replication and repair, regulation of transcription, and nucleosome

formation (89). Upon extracellular mobilization, HMGB1 functions

as a CAMP, inciting pro-inflammatory responses through binding

downstream receptors, resulting in the recruitment of neutrophils,

activation of macrophages and endothelial cells, and production of

inflammatory cytokines and chemokines (89). HMGB1 is known to

be markedly elevated in human sepsis and contributes as a late

mediator, leading to greater morbidity and mortality (90). Recent

work has focused on uncovering the pro-inflammatory role of

HMGB1 in the pathogenesis of NEC.
TABLE 1 Continued

CAMPs
Preclinical
Models
of NEC

Human Neonates with NEC

miR-141-3p (40);
miR-146a-5p (41);
miR-200a-30 (42)
Mouse model
(utilizing formula
and bacterial
gavage/hypoxia)
• Differentially
expressed miRNAs
in the intestines:
miR-301a (43)
Mouse model
(utilizing formula &
LPS gavage/hypoxia)
• Differentially
expressed in the
intestines: LncRNA
ENO1-IT1, miR-22-
3p (44)
Rat model (utilizing
formula gavage/
hypoxia)
• Differentially
expressed miRNAs
in the intestines:
miR-124 (45); miR-
222 (46); let-7d-5p
(47)
• Differentially
expressed in the
intestines: 53
cirRNA and miRNA
interaction networks
(48)
• Differentially
expressed lncRNAs
in the intestines:
MSTRG.42950,
MSTRG.104993,
MSTRG.61378,
MSTRG.81908 (49)
Rat model (utilizing
formula gavage/LPS/
hypoxia)
• Differentially
expressed miRNAs
in the intestines:
miRNAs: miR-27a-
5p, miR-187-3p
(50); miR-21 (51)
Rat model (utilizing
rat milk substitute)
• Differentially
expressed miRNAs
in the intestines;
miR-34a (52)

1290, miR-4725-3p, miR-431, miR-
4793-3p, miR-21-3p, miR-132, miR-
146b-3p, miR-410, miR-375, miR-203,
miR-200b-5p, miR-194-3p, miR-200a,
miR-215, miR-31, miR-192-3p, miR-
141 (57)
Human Serum
• Differentially expressed miRNAs:
miR-1290, miR-1246, and miR-375
(58); miR-34a (52); miR-141-3p (59);
miR-21 (51)
Human Stool
• Differentially expressed miRNAs:
miR-223, miR-451a (60)
Human Urine:
• Differentially expressed miRNAs:
miR-376a, miR-518a-3p, and miR-
604 (61)
CAMPs, chromatin-associated molecular patterns; NEC, necrotizing enterocolitis; HMGB1,
high mobility group box 1; LPS, lipopolysaccharide; SNPs, single nucleotide polymorphisms;
cfDNA, cell free DNA; NETs, neutrophil extracellular traps; exRNA, extracellular RNA;
miRNA, microRNA; lncRNA, long non-coding RNA; circRNA, circular RNA; H3cit,
citrullinated histone 3; H4cit, citrullinated histone 4; eCIRP, extracellular cold-inducible
RNA-binding protein.
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TABLE 2 Therapeutics Impacting CAMPs and PRR Signaling in NEC.

Targets
Treatment
Strategies

Outcome

eCIRP eCIRP-neutralizing antibody • Attenuated
inflammation, reduced
organ injury, and
improved survival in
polymicrobial sepsis
[cecal ligation and
puncture (CLP)-based]
model (11)

C23 (inhibits eCIRP-
TLR4 interaction)

• Reduced systemic pro-
inflammatory cytokines,
markers of tissue injury,
and attenuated sepsis-
induced lung injury in
murine peritonitis [cecal
slurry (CS)-based]
model (63)

M3 (peptide inhibiting
TREM-1/eCIRP interaction)

• Decreased tissue injury,
systemic inflammation,
and intestinal and lung
injury, and improved
survival in murine
models of intestinal
ischemia/reperfusion (I/
R) injury and
intraperitoneal sepsis
(CLP-based model) (16,
64)
• Improved cardiac
dysfunction, attenuated
serum, cardiac and
pulmonary pro-
inflammatory cytokine
levels, and improved
survival in murine
peritonitis (CS-based)
model (15)

MOP3 (MFG-E8-derived
oligopeptide 3,
scavenges eCIRP)

• Attenuated systemic
inflammation, tissue
injury, intestinal injury,
lung injury, and survival
in murine peritonitis
(CLP- and CS-based)
models (7)

HMGB1 Anti-HMGB1 antibody • Attenuated symptoms
of NEC and
microvascular features in
murine model (formula
gavage/hypoxia); rescued
NO production through
eNOS activation (21)

Glycyrrhizin (GL,
HMGB1 inhibitor)

• Decreased expression
of HMGB1 and
decreased intestinal
injury and inflammation
in rat NEC model
(formula gavage/LPS/
hypoxia) (25)

Sodium butyrate (anti-
inflammatory,
mechanism unknown)

• Decreased intestinal
expression of HMGB1,
decreased histopathologic
injury, and improved
survival in murine model

(Continued)
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TABLE 2 Continued

Targets
Treatment
Strategies

Outcome

(formula gavage/hypoxia/
hypothermia) (20)

Semapimod
(macrophage deactivator)

• Inhibited intestinal
expression of HMGB1
and reduced intestinal
injury in rat NEC model
(formula gavage/
hypoxia) (24)

Recombinant human soluble
thrombomodulin (rTM,
anti-coagulant/anti-
inflammatory,
mechanism unknown)

• Decreased intestinal
expression of HMGB1,
reduced NEC injury and
inflammation, and
improved survival in rat
NEC model (formula
gavage/LPS/
hypoxia) (26)

Anti-HMGB1 antibody • Reduced microglial
activation and neurologic
injury in NEC murine
model (formula and
enteric bacteria gavage/
hypoxia) (28)

cfDNA, NETs,
& histones

DNAse 1 • Reduced serum cfDNA,
decreased markers of
neutrophil activation and
NETs, and reduced H3cit
positive cells; associated
with attenuated NEC
severity, and improved
survival in murine model
(formula and LPS
gavage/hypoxia) (31)
• Decreased pro-
inflammatory cytokines,
decreased platelet-
neutrophil interactions,
and improved survival in
murine peritonitis (CS-
based) model (35)

Cl-amidine (PAD inhibition) • Reduced circulating
cfDNA, decreased NETs
and reduced H3cit
positive cells; associated
with attenuated intestinal
damage and apoptosis,
and improved survival in
murine NEC model
(formula and LPS
gavage/hypoxia) (32)
• In DK (dithizone/
Klebsiella)-infection
murine model, reduced
H4cit, tended to decrease
nucleosomes, however,
did not significantly alter
NEC score and worsened
bacteremia and mortality
(36)
• Decreased pro-
inflammatory cytokines,
decreased platelet-
neutrophil interactions,
and improved survival in

(Continued)
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TABLE 2 Continued

Targets
Treatment
Strategies

Outcome

murine peritonitis (CS-
based) model (35)

nNif (NET inhibitory factor) • Decreased bacterial
killing, decreased pro-
inflammatory cytokines,
decreased platelet-
neutrophil interactions,
and improved survival in
murine peritonitis (CS-
based) model (35)

STC3141 (small polyanion
mCBS, neutralizes
extracellular histones
and NETs)

• Reduced organ
dysfunction and
improved survival in rat
intraperitoneal sepsis
(CLP-based) model (68)
• Improved
hemodynamics and tissue
perfusion, reduced
systemic inflammation
and tissue injury in sheep
fecal peritonitis model (69)

exRNA
and miRNA

miRNA antagonists
and mimics

• miR-222: reversed the
decrease of c-kit
expression in NEC rat
model (46)
• miR-34a: decreased
intestinal villi damage
and inflammatory
cytokines in NEC rat
model (52)
• miR-141-3p: protect
intestinal epithelial cells
from LPS damage by
suppressing RIPK1-
mediated inflammation
and necroptosis (59)
• miR-141-3p: attenuated
inflammatory response
in NEC mouse model
(40)
• miR-146a-5p: inhibited
NLRP3 inflammasome
downstream
inflammatory factors in
cells (41)
• miR-301a: reduced
intestinal tissue damage
and inflammatory
cytokines in murine NEC
model (43)
• miR-200a-3p:
attenuated inflammatory
cytokines in intestinal
epithelial cells induced
by LPS; improved
intestinal tissue damage
in murine NEC (42)
• miR-124: suppressed
the intestinal cell
apoptosis and
histopathologic damage
in rat NEC model (45)
• miR-148a-3p: reduced
NEC incidence and

(Continued)
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TABLE 2 Continued

Targets
Treatment
Strategies

Outcome

inflammation in murine
NEC (70)

Breast milk-derived
exosomes (BMEXO)
containing miRNAs

• miR-148a-3p, miR-
30d-5p, miR-200a-3p in
BMEXO decreased
intestinal inflammation
and improved tight
junctions in murine
NEC (70)

TLR4 C34 (isopropyl 2-acetamido-
a-glucoside [C17H27NO9],
TLR4 inhibitor)

• Inhibited TLR4 in
enterocytes and
macrophages, and
reduced systemic
inflammation in murine
endotoxemia and NEC
model; inhibited LPS
signaling ex-vivo in
human ileum from NEC
infants (71)

C34 analog (isopropyl 2-
acetamido-a-galactoside,
TLR4 inhibitor)

• Suppressed LPS-
induced inflammation in
IECs and monocytes;
greater protection from
inflammatory cytokine
production in murine
endotoxemia than parent
structure of C34 (72)

Human milk
oligosaccharides: 2’-
fucosyllactose (2’-FL) and 6’-
sialyllactose (6’-SL)

• Demonstrated ability to
bind pocket TLR4-MD2
complex; reduced TLR4-
mediated NF-kB
inflammatory signaling
in IEC enterocytes;
protects against NEC in
murine and piglet
models; inhibits TLR4
signaling in NEC and in
human intestine
explants (73)

Breast milk • Inhibited activation of
TLR4 signaling in
enterocytes (via
activation of EGFR and
GSK3b signaling);
inhibited TLR4 signaling
and systemic and
intestinal inflammation
in endotoxemic mice;
protected against NEC in
murine model (67)

A18 [aryl hydrocarbon
receptor (AHR) ligand]

• AHR ligand, indole-3-
carbinole (I3C, of breast
milk) administered in
pregnancy prevents NEC
in mice by limiting TLR4
signaling and expression
in intestines; A18
activated AHR and
reduced TLR4 signaling
in ex vivo human tissue
and prevented NEC in
mice (74)

(Continued)
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TABLE 2 Continued

Targets
Treatment
Strategies

Outcome

Amniotic fluid • Amniotic fluid
inhibited TLR4 signaling
in intestinal epithelium
in utero; amniotic fluid-
mediated TLR4
inhibition reduced
severity of NEC in
murine model (via EGFR
activation) (75)

Lactobacillus rhamnosus
(HN001, probiotic)

• Administration of
bacterial DNA inhibited
TLR4 signaling in ex
vivo human NEC
intestines; probiotic
attenuated NEC severity
in mice and piglet
models via activation of
TLR9 (76)

TREM-1 LP17 (TREM-1
peptide inhibitor)

• Improved survival in
endotoxemic mice;
improved
hemodynamics,
attenuated inflammation
and improved survival in
murine peritoneal
sepsis (77)

LR12 (TREM-1
peptide inhibitor)

• Attenuated colonic
inflammation, reduced
endoplasmic reticulum
stress, and prevented
disease-related changes
in intestinal microbiota
in murine (DSS-induced)
colitis (78)

M3 (peptide inhibiting
TREM-1/eCIRP interaction)

• Decreased organ injury
and inflammation and
improved survival in
inflammatory murine
models [including
intestinal I/R injury,
intraperitoneal sepsis
(CLP), and neonatal
sepsis (CS)] (15, 16, 64)

RAGE Anti-RAGE antibody • Improved survival and
reduced pathologic small
bowel and lung injury in
murine intraperitoneal
sepsis (CLP-based
model) (79)

• cGAS/STING H151 (small molecule
STING inhibitor)

• Attenuated the
inflammatory response
and reduced tissue injury
and mortality in a
murine model of
intestinal I/R injury (80)
• Reduced intestinal
injury, intestinal
inflammation, gut
permeability, and
mortality in murine
intraabdominal sepsis
(CLP-based model) (81)

(Continued)
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TABLE 2 Continued

Targets
Treatment
Strategies

Outcome

NLRP3
Inflammasome

MCC950 (NLRP3 inhibitor) • Improved survival,
reduced intestinal and
neuro-inflammation, and
ameliorated intestinal
damage in murine NEC
model (82)

YQ128 (selective NLRP3
inflammasome inhibitor)

• Attenuated
inflammation in LPS-
stimulated monocytes
and in vivo murine
endotoxemia via selective
inhibition of NLRP3
inflammasome (83)

Bovine milk-
derived exosomes

• Exosomes reduced
intestinal inflammation
in NEC and protected
against NF-kB pathway
activation and NLRP3
inflammasome activation
in murine NEC (84)

PHLDA1 (pleckstrin
homology-like domain
family A member 1)

• Inhibited NLRP3
activation (by activating
Nrf2) to improve
survival, reduce intestinal
inflammation and
prevent oxidative stress
in murine NEC
model (85)

Melatonin (weakens NLRP3
inflammasome activation)

• Improved survival,
reduced histopathologic
injury, and attenuated
intestinal tissue NLRP3
levels in a murine NEC
model (86)

SHMOs (sialylated human
milk oligosaccharides)

• Reduced NLRP3 (and
TLR4) expression in the
ileum of NEC rats;
reduced NEC incidence
and pathologic damage
in rat NEC model (87)

NS8593 (TRPM7 inhibitor) • Alleviated TRPM7-
mediated NLRP3
inflammasome activation
and exhibited protective
effects in rat NEC
model (88)
CAMPs, chromatin-associated molecular patterns; HMGB1, high mobility group box 1
protein; NEC, necrotizing enterocolitis; NO, nitric oxide; eNOS, endothelial nitric oxide
synthase; GL, Glycyrrhizin; LPS, lipopolysaccharide; rTM, recombinant human soluble
thrombomodulin; cfDNA, cell free DNA; NETs, neutrophil extracellular traps; H3cit,
citrullinated histone 3; H4cit, citrullinated histone 4; CS, cecal slurry; PAD; protein
arginine deiminase ; DK, dithizone/Klebsiella; nNif, NET inhibitory factor; ; mCBS,
sodium-b-O-Methyl cellobioside sulfate; DSS, dextran sulfate sodium; CLP, cecal ligation
and puncture; exRNA, extracellular RNA; miRNA, microRNA; RIPK1, receptor-interacting
serine/threonine-protein kinase 1; NLRP3, nucleotide-binding domain, leucine-rich-
containing family, pyrin domain-containing 3l; BMEXO, breast milk-derived exosomesl
eCIRP, extracellular cold-inducible RNA-binding protein; I/R, ischemia/reperfusion ;
MOP3, MFG-E8-derived oligopeptide 3; PRRs, pattern recognition receptors; TLR4, toll-
like receptor 4; IECs, intestinal epithelial cells; NF-kB, nuclear factor kappa light-chain
enhancer of activated B cells; EGFR, epidermal growth factor receptor; GSK3b, glycogen
synthase kinase-3b; AHR, aryl hydrocarbon receptor; TREM-1, triggering receptor expressed
on myeloid cells 1; RAGE, receptor for advanced glycation end products; cGAS, cyclic GMP-
AMP synthase; STING, stimulator of interferon genes; PHLDA1, pleckstrin homology-like
domain family A member 1; SHMOs, sialylated human milk oligosaccharides; TRPM7,
transient receptor potential melastatin 7.
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Murine models utilized to study the condition of NEC have

demonstrated increased expression of HMGB1 and increased serum

HMGB1 levels (19). Various studies using animal NEC models have

replicated the findings of elevated HMGB1, especially in the small

intestines (20–26, 28). Remarkably, elevations in HMGB1

expression in murine NEC preceded evidence of intestinal injury

(21). Moreover, in vitro work has supported that stimulation of

intestinal epithelial cells with lipopolysaccharide (LPS, the outer

membrane and immunogenic component of gram-negative

bacteria) increased expression of HMGB1 (25). Mechanistic work

has uncovered that inhibited enterocyte migration by HMGB1

occurs in a TLR4-dependent manner, which was unique to

enterocytes, as HMGB1 enhanced the migration of inflammatory

cells in vitro and in vivo (19). In this work, the overall net effect of

HMGB1 signaling was a TLR4-dependent increase in cell force

adhesion, which accounted for impaired enterocyte migration –

demonstrating how TLR4 activation by HMGB1 delayed mucosal

repair (19). The overarching impact of HMGB1 in NEC

pathogenesis has been related to sequelae of inflammation

causing direct intestinal injury; however, additional work has

highlighted off-target implications of HMGB1 in systemic

manifestations of NEC. For example, a mechanism of gut-lung

connection in NEC has been demonstrated whereby intestinal

TLR4 activation induced HMGB1 release from intestine, which

then activated pulmonary epithelial TLR4 and led to neutrophil

recruitment and inflammation in the lung (22). An additional

mechanism of gut-brain connection in NEC was suggested,

whereby HMGB1 was released from the intestine and activated

brain microglia thereby contributing to neurocognitive defects (28).

The translational capacity of preclinical evidence of HMGB1 in

exacerbating NEC is rooted in the human condition. Patients with

NEC have been shown to have higher expression of HMGB1 than

healthy control counterparts (19, 27). Levels of HMGB1 were not

substantially different in patients with Stage II or Stage III NEC

(when measured in the stool), or patients who were managed

medically or surgically (when measured in the serum) (91, 92).

Nevertheless, HMGB1 levels in stool samples were higher in

preterm neonates compared to full-term neonates with birth

weight less than 2.5 kg, and early HMGB1 fecal levels were

predictive of NEC risk, thus implicating stool HMGB1 as a

potential clinical biomarker in this disease (29). Further evidence

of the clinical relevance of HMGB1 is provided by differences in

single nucleotide polymorphisms (SNP) frequencies in HMGB1

(which may affect expression) that were associated with

susceptibility and survival prognosis in neonates with NEC (30).

Targeting of HMGB1 has been explored to attenuate NEC

pathophysiology. In vitro testing of enteral miconazole was

effectively able to reduce HMGB1 in Caco-2 cells under hypoxic

stress (93). In a rat NEC model, inhibition of HMGB1 expression

improved intestinal inflammation in NEC (25). Another study used

administration of semapimod (a macrophage de-activator), which

inhibited HMGB1 upregulation and partially protected against

intestinal injury in experimental NEC (24). Separately, the

molecule recombinant human soluble thrombomodulin (rhTM)

binds and antagonizes HMGB1, thus addressing elevated tissue

levels of HMGB1 in preclinical NEC, and provided an anti-
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inflammatory impact (26). Treatment of NEC pups with an anti-

HMGB1 neutralizing antibody attenuated intestinal microvascular

features and symptoms of NEC; however, this was not found in

eNOS-/- mice (endothelial nitric oxide synthase), suggesting

HMGB1 inhibition increased intestinal perfusion in an eNOS-

dependent manner as a mechanism for attenuating NEC (21).

Sodium butyrate has also been shown to decrease intestinal

HMGB1 expression and translated to improved intestinal

inflammation and survival outcomes in murine NEC (20). This

work suggests that the amplification of cascades involving HMGB1

may be inhibited by butyrate treatment through the TLR4/NF-kB
pathway, and through this mechanism inhibited intestinal

inflammation in NEC (20). Evidence revealing the important role

of HMGB1 in NEC supports further investigation into HMGB1-

directed therapies to prevent and attenuate NEC pathogenesis.
Cell free DNA

During active and passive forms of cell death, cellular DNA

exits the cell and becomes immunogenic extracellular or cell-free

DNA (cfDNA) (94). cfDNA including pathogen-derived CpG and

damage cell-released nuclear or mitochondrial DNA subsequently

activate the immune system through association with DNA sensors

on the cell surface and sensors within immune cells (94).

Importantly, cfDNA has been reported to contribute to the

severity and length of the inflammatory response, but also

represents a biomarker for inflammatory diseases (94). For

example, plasma levels of cfDNA are elevated and linked to

increased mortality in humans with sepsis (95). Increasing

work has implicated the role of cfDNA in exacerbating

NEC pathophysiology.

Evidence supporting the translation of cfDNA inflammatory

pathways in NEC is rooted in preclinical modes. First, a preclinical

model replicating NEC utilizing preterm pigs revealed increased

plasma levels of cfDNA and neutrophil-associated proteins, and the

abundance of these levels correlated (33). In a murine NEC model,

cfDNA was significantly elevated in the serum of pups upon NEC

induction, which was associated with increased intestinal injury and

inflammation in the intestines (31). Serum cfDNA was also shown

to correlate with NEC macroscopic and microscopic manifestations

in mice, and increases appeared to occur in a time-dependent

manner (32). A related form of extracellular DNA, mitochondrial

DNA (mtDNA) has also been studied in murine NEC, where

mtDNA release from the intestine into circulation was increased

in experimental NEC conditions (96). Findings supporting the role

of increased aberrant cfDNA in NEC have been translated to

human infants. Notably, cfDNA and DNase have been suggested

as potential biomarkers for diagnosing early and late-onset neonatal

sepsis in preterm infants (97). Specific to NEC, plasma cfDNA

tended to be elevated in pre-term infants 1 to 6 days before NEC

diagnosis compared to controls (33). Furthermore, elevated levels of

cfDNA and related markers were detected in humans with NEC,

and demonstrated to be similar to those in mice subjected to NEC

insult, highlighting the relevance of cfDNA and the translational

potential between species (32).
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Finally, the importance of understanding the role of cfDNA is

further emphasized in evidence supporting it as a valuable

therapeutic target. For example, treatment with inactivated

DNase 1 (a cfDNA directed therapeutic probe) not only reduced

the rate of NEC induction in mice but improved NEC-related

survival in the model (31). Furthermore, treatment with Cl-

amidine (causing protein arginine deiminase (PAD) inhibition)

reduced tissue damage, inflammation, and mortality in murine

NEC (32). Given that DNase and PAD inhibition also reduce

NETosis, there is likely overlap given that extracellular strings of

DNA comprise NETs content. As such, the interplay of these

mechanisms and therapeutic strategies will be discussed further in

the respective NETs section.
Neutrophil extracellular traps

Extracellular traps (ETs) are comprised of extracellular meshes

of DNA structures, granule proteins, and chromatin, which may be

aberrantly released upon cellular activation (98). ETs released by

neutrophils are among the most widely studied and referred to as

neutrophil extracellular traps (NETs), which may aid in pathogen

clearance (9). Once NETs are released extracellularly, various

proteins can adhere, including CAMPs and other components of

primary and secondary granules and can confer bactericidal activity

(99). However, the immune footprint impartment by NETs can be

two-fold. Although NETs serve a role in protecting hosts from

infectious diseases, pathologic NET release can exacerbate

inflammation and increase tissue injury (99). For example,

although NET formation may be a protective response in early

sepsis, excessive NET formation may induce thrombosis and

propagate multisystem organ failure in severe sepsis (9). Given

NETs are composed of cfDNA, much of the work uncovering the

role of cfDNA in NEC overlaps with the study of NETosis. Despite

the challenges associated with detection of NETs (due to their

fragility and turnover), related work has shed new light on the role

of NETosis in the propagation of NEC.

NETosis has been shown to be elevated in mice upon NEC

induction compared to controls (32, 36). In these cases, SYTOX

orange allowed for direct visualization of NET formation. The

importance of neutrophils and NETs was further supported by a

novel animal model of NEC whereby mice stimulated to increase

neutrophil concentrations had exacerbated NEC pathology (34).

The role of NETosis in preterm infants with NEC has also been

explored (100–102). Deficiency in NET formation identified in

preterm infants has been linked to a reduction in extracellular

bacterial killing in vitro, which may impact the susceptibility of

neonates in particular to infectious processes, including NEC (101).

In human tissues collected from neonates with NEC, visualization

of NETosis (by SYTOX orange) was increased in a similar manner

to that seen in murine NEC (32). Other work has demonstrated that

NEC neonates had increased fecal calprotectin compared to NEC

rule-out neonates, and calprotectin within bowel excised from NEC

neonates was contained within NETs (38). On the other hand,

NETs-containing calprotectin were not identified in non-NEC

surgically obtained bowel, suggesting calprotectin may be released
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as a result of neutrophil infiltration and NET formation within the

intestines in the pathogenesis of NEC (38).

Clinically, subtypes of NEC have been differentiated in infants

with congenital heart disease, where it is proposed that the

pathophysiology is more directly impacted from ischemia/

reperfusion injury sustained from inadequate blood supply to the

superior mesenteric artery, resulting in poor bowel perfusion (37).

In these cardiac-related NEC cases, neonatal intestinal tissue had

increased staining for neutrophil elastase and citrullinated histone 3

(H3), as well as increased systemic neutrophils, compared to

inflammatory NEC patients. This points to the possibility that

NETs partially mediate the component of ischemia/reperfusion-

induced injury in NEC (37). Despite evidence suggesting the

involvement of NETs in the pathogenesis of NEC, overlap of

NET influence in other gastrointestinal inflammatory diseases

complicates its use as a biomarker due to limited specificity (103).

Nevertheless, further research is required to elucidate the

mechanistic components of NETosis and its impact on human

development of NEC.

The dual role of NETs in the gut complicates studies targeting

NETosis to impart therapeutic benefit (104). Positively, NETs

released in the gut may reduce the translocation of bacteria and

support the healing of the intestinal mucosa (104). On the other

hand, excessive NET formation can negatively impact intestinal

barrier function by directly damaging the intestinal mucosa (105,

106) The majority of studies targeting NETosis in experimental

NEC (using LPS, formula, and hypoxia-based models) demonstrate

a positive impact with strategies inhibiting excessive NET release.

For example, treatment with inhibitors of NETosis including DNase

1 and Cl-amidine, nNIF (NET-inhibitory factor), and models using

ELANE-knockdown (animals without neutrophil elastase) were

protective against NEC severity, demonstrating improved

inflammatory profiles and prolonged survival (31, 32, 34, 35). On

the other hand, conflicting evidence has been raised with the use of

Cl-amidine to target NETs in an alternative model. Specifically, in a

dithizone/Klebsiella model of NEC, treatment with Cl-amidine did

not impact circulating neutrophils or affect intestinal injury scores;

rather, Cl-amidine resulted in increased systemic inflammation,

bacterial load, organ injury and mortality (36). This work suggested

the possibility that NETs may be involved in the innate immune

defense by preventing systemic bacteremia, and thus may have

some protective role (36). Altogether, these studies further highlight

the nuanced physiologic trade-off of NETosis. Furthermore,

contradictory data across models suggests that the overall impact

of NETosis may not only be time-dependent but also is likely

disease- and model-specific and largely dependent on the level of

enteric bacterial translocation. Increased attention to the balance of

NET formation and its relation to disease progression will be vital to

delineate effective therapeutic strategies that prevent and treat

intestinal insults in NEC.
Histones

Histones are cationic, intra-nuclear proteins that serve to

maintain the normal structure of chromatin (107). In states of
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cellular stress and in a process similar to DNA, histones and DNA-

bound histones (nucleosomes) are released into the extracellular

space (as in the case of necrosis, apoptosis, and ETosis) (108).

Extracellular histones, which may exist as free histones or DNA-

bound, are then capable of propagating inflammation, although

different forms may induce different cytotoxicity and

proinflammatory signaling (108). Previously, intravenously

injected histones were found to be lethal in mice, and plasma

levels of histones were increased in human sepsis (39, 109). Further,

it has been demonstrated that histones may cause cellular injury

through a TLR4-dependent manner – a receptor that has been

highlighted as critical component to initiate NEC (110). Thus, the

role of extracellular histones in inflammatory diseases, including

NEC, warrants exploration.

Given that limitations of available techniques complicate

differentiation between free versus DNA-bound extracellular

histones, much of the work elucidating the role of histones in

NEC stems from studies of NETosis, where histones may be

released among components of ETs (108). For example,

citrullinated histone H3 (H3cit), considered a marker of NETs,

was elevated in mice upon NEC induction (32). H3cit scores in NEC

intestines were also elevated in experimental models (31). Findings

in animal models have also been translated to infants. In peripheral

blood of septic infants, citH3-DNA levels were increased and with

strong specificity, suggesting a possible early biomarker for neonatal

sepsis (111). Specifically in NEC, levels of H3cit were elevated in

human NEC samples (32). Furthermore, levels of nucleosomes were

elevated in the serum of infants with NEC stage II and above

compared to gestational age-matched controls, further suggesting

the role of extracellular histones in NEC pathogenesis (36).

Translational evidence supporting the targeting of histones

stems from studies of NETosis in NEC. For example, DNase 1

attenuated NEC severity and reduced H3cit scores in mouse

intestines in experimental NEC (31). PAD4 functions to

citrullinate histones in activated neutrophils, enhancing

chromatin unraveling and NET formation (112). Using PAD4

inhibitor to treat experimental NEC effectively reduced H3cit

levels, along with reducing inflammation, intestinal injury, and

mortality in NEC (32). Newer small polyanions such as STC3141

(sodium-b-O-Methyl cellobioside sulfate, mCBS) have been

developed specifically to neutralize extracellular histones and

NETs (68, 69). Promising early preclinical evidence utilizing

STC3141 demonstrated effective neutralization of histones and

NETs while reducing organ dysfunction and improving survival

in animal models of intraperitoneal sepsis (68, 69). Altogether, this

evidence supports the role that extracellular histones may play in

exacerbating NEC pathogenesis and the potential to target aberrant

histones as a strategy for reducing inflammation in the treatment

of NEC.
Non-coding RNA

Endogenous RNA can engage nucleic-acid sensing PRRs and

initiate inflammatory sequelae (113). It is well recognized that
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TABLE 3 RNAs identified in the pathogenesis of NEC.

miRNAs in NEC Signaling pathways Impact

↑ in NEC:
miR-431 (53)

Downregulates: ESRRG,
LGR5, NFKB2, PLA2G2A,
PRKCZ
Downregulates: FOXA1

↑ intestinal injury
and inflammation

Downregulates:
HNF4A, PRKCZ

↑ tight
junction
dysregulation

↑ in NEC:
miR-1290
miR-1246
miR-375 (58)

Downregulates: FOXA1 ↑ intestinal injury
and inflammation

↑ in NEC:
miR-124 (45)

Downregulate:
ROCK1, MYPT1

↑ intestinal injury,
apoptosis,
and inflammation

↑ in NEC:
miR-181a-5p
miR-124-3p
miR-194-5p
miR-362-3p (49)

Upregulates: TLR4, TORC2,
Notch, P53, mTOR

↑ intestinal injury
and inflammation

↑ in NEC:
miR-27a-5p (50)

Effects PRKCA, PLCB3,
VANGL1, SFRP1

Deranged
intestinal renewal

↑ in NEC:
miR-222 (46)

Downregulates: c-kit ↑ intestinal injury
and inflammation

↑ in NEC:
miR-223 (54, 60)

Downregulates: NFIA ↑ intestinal injury
and inflammation

↑ in NEC:
miR-34a (52)

Downregulates: SIRT1 ↑ intestinal injury
and inflammation

↑ in NEC:
miR-146a-5p (41)

Upregulates: NLRP3 ↑ intestinal injury
and inflammation

↑ in NEC:
miR-301a (43)

Unknown ↑ intestinal injury
and inflammation

↑ in NEC:
lncRNA
MSTRG.42950
lncRNA
MSTRG.104993 (49)

Interaction with miRNAs
miR181a-5p, miR-124-3p,
miR-194- 5p, and miR-362-3p
TLR4
TORC2
Notch
P53
mTOR

NEC development

↑ in NEC:
miR-451, miR-4793-
3p, miR-21-3p, miR-
431, miR-1290 (57)

TLR4/NF-kB
AP-1/FOSL1
FOXA1
HIF1A

↑ intestinal
inflammation and
hypoxia/
oxidative stress

↓ in NEC:
lncRNA
MSTRG.61378
lncRNA
MSTRG.81908 (49)

Interaction with miRNAs
miR181a-5p, miR-124-3p,
miR-194- 5p, and miR-362-3p
TLR4
TORC2
Notch
P53
mTOR

NEC development

↓ in NEC:
miR-203, miR-31,
miR-194-3p (57)

TLR4/NF-kB
AP-1/FOSL1
FOXA1
HIF1A

↑ intestinal
inflammation and
hypoxia/
oxidative stress

(Continued)
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nucleic-acid and RNA sensing pathways are relevant beyond

microbial sensing, and have been documented to contribute to

various inflammatory disease models (113). Non-coding RNAs

have been previously implicated in gastrointestinal disease

pathology, including IBD and colitis (48). miRNAs have been

implicated to impact biological functions in gastrointestinal

diseases, such as through affecting cell apoptosis, cell

proliferation, intestinal epithelial barrier function, and

inflammation infiltration by post-transcriptional gene silencing

(114). As elevated circulating levels of miRNAs have also been

demonstrated in septic patients previously, increasing attention has

been paid to studying these molecules in neonatal gastrointestinal

inflammatory disease, including NEC (115).
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There is a growing body of literature uncovering the impact of

RNAs in NEC, which are summarized in Table 3 (116). Intestinal

epithelial cell death and breach of mucosal integrity is an important

initiating process in NEC development. Certain RNAs have been

implicated in this process, for example, circular RNAs (circRNA)

were differentially expressed in an animal NECmodel and impacted

apoptotic signaling and death receptor activity, thereby

contributing to cell death (48). Many differentially expressed

miRNAs have been identified in NEC impacting intestinal

epithelial cell death, including, miR-200a-3p, miR-141-3p, miR-

431, and miR-21 (40, 42, 51, 53, 59). In searching for early NEC

biomarkers using differential microarray analysis of NEC infants

plasma, three miRNAs (miR-1290, miR-1246, and miR-375)

emerged as being highly sensitive (0.83) and specific (0.92) in

NEC detection (58). In one of the largest studies, miR12-90 was

also noted to be more specific to NEC, as this was found to be

distinguishable from non-NEC, sepsis cases (58).

Along with intestinal epithelial cell death in the early

pathogenesis of NEC is the hal lmark of exaggerated

inflammation, with the importance of PRRs (like TLR4) being

emphasized. miRNA’s linked to inflammatory sequelae in NEC

include miR-124, miR-223, miR-222, miR-34a, and miR-146a-5p

(41, 45, 46, 52, 54). In looking at the interaction of long non-coding

RNAs (lncRNA), differentially expressed lncRNAs were identified

in a rat NEC model (upregulated MSTRG.42950 and

MSTRG.104993, and downregulated MSTRG.61378 and

MSTRG.81980) which bound target miRNAs (miR181a-5p, miR-

124-3p, miR-194- 5p, and miR-362-3p) to modulate TLR4 signaling

in NEC inflammation (49). Let-7d-5p, a member of a miRNA

family involved in self renewal, was downregulated (with higher

expression of LGALS3) in a rat NECmodel, and implicates the anti-

inflammatory role of let-7d-5p through TLR4-axis in NEC (47).

As intestinal epithelial cells are subjected to injury and

inflammatory insult, a key component in NEC pathology is the

impaired regenerative ability of the gut subjected to repetitive stress.

Differentially expressed miRNAs have been identified in NEC

linked to this process, including miR-27a-5p, rno-miR-187-3p,

miR181a-5p, miR-124-3p, miR-194- 5p, and miR-362-3p (49, 50).

Another critical component of NEC pathogenesis is the role of

impaired gut perfusion. Differentially expressed miRNAs in NEC

have been implicated in altering blood flow, including miR-429/

200a/b and miR-141/200c, miR-200c-3p and miR-22a-3p, and a

network of dysregulated miRNAs (miR-31, miR-451, miR-203, and

miR-4793-3p) (55–57). Some miRNAs have been linked to other

components of NEC, including dysbiosis. For example, the bacteria

Fusobacterium nucleatum was found to be abundant in patients and

animal models of NEC, and that miR-22-3p was a target of this

bacteria (through LncRNA ENO1-IT1), suggesting this axis as a

target in NEC (44).

Critically important in miRNA discovery is understanding the

translational capacity to target differentially expressed miRNAs.

Many of these human-based studies have been corroborated in

animal models (43). Furthermore, miRNA mimics and antagonists

have demonstrated ability to impact downstream signaling and

NEC outcomes by targeting respective miRNAs (40, 42, 43, 45, 46,

52, 70). Some limitations for clinical translation have been
TABLE 3 Continued

miRNAs in NEC Signaling pathways Impact

↓ in NEC:
miR-141-3p (40, 59)

Upregulates: RIPK1; MNX1 ↑ intestinal injury
and inflammation

↓ in NEC:
miR-187-3p (50)

Effects PRKCA,
PRKCB, PPAR

Deranged
intestinal renewal

↓ in NEC:
miR-429/200a/b
miR-141/200c (55)

Upregulates: VEGF1, FLT1,
KDR, SELE, HGF

↑ alterations in
intestinal
microcirculation
and perfusion

↓ in NEC:
miR-200a-3p
miR-200c-3p (56)

Upregulates: KDR, BDNF,
YWHAG, YWHAE, YWHAB

↑ alterations in
intestinal
microcirculation
and perfusion

↓ in NEC:
let-7d-5p (47)

Upregulates: LGALS3 (TLR4/
NF-kB)

↑ intestinal injury
and inflammation

↓ in NEC:
miR-200a-3p (42)

Upregulates: RIPK1 ↑ intestinal injury
and inflammation

↓ in NEC:
miR-21 (51)

Downregulates: PTEN/GSK-
3b
Upregulates: PI3K/AKT

↑ cellular apoptosis
and
intestinal necrosis

↓ in NEC:
miR-22-3p (44)

F. Nucleatum/ LncRNA
ENO1-IT1/miR-22-3p/IRF5

↑ inflammation

↓ in NEC:
miR-148a-3p (70)

Upregulates: p53
Downregulates: SIRT1

↑ intestinal injury
and inflammation
miRNA, microRNA; NEC, necrotizing enterocolitis; RIPK1; receptor-interacting protein
kinase 1; MNX1, motor neuron and pancreas homeobox 1; ESRRG, estrogen related
receptor gamma; LGR5, leucine rich repeat containing G protein-coupled receptor 5;
NFKB2, nuclear factor kappa B subunit 2; PLA2G2A, phospholipase A2 group IIA;
PRKCZ, protein kinase C zeta; FOXA1, forkhead box A1; HNF4A, hepatocyte nuclear
factor 4 alpha; ROCK1, rho associated coiled-coil containing protein kinase 1; MYPT1,
myosine phosphate targeting family; RIPK1: receptor interacting serine/threonine kinase 1;
TLR4, toll like receptor 4; TORC2, CREB regulated transcription coactivator 2; P53, protein
53; mTOR, mechanistic target of rapamycin kinase; PRKCA, protein kinase C alpha; PRKCB,
protein kinase C beta; PPAR, peroxisome proliferator activated receptor; PLCB3:
phospholipase C beta 3; VANGL1, VANGL planar cell polarity protein 1; SFRP1, secreted
frizzled related protein 1; VEGF, vascular endothelial growth factor; FLT1, fms related
receptor tyrosine kinase 1; KDR, kinase insert domain receptor; SELE, selectin E; HGF:
hepatocyte growth factor; BDNF, brain derived neurotrophic factor; YWHAG, tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation protein gamma; YWHAE, tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, YWHAB:
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta; LGALS3,
galectin 3; NF-kB, nuclear factor kappa B; c-kit, receptor tyrosine kinase; NFIA, nuclear factor
I A; SIRT1, sirtuin 1; NLRP3, NLR family pyrin domain containing 3; PTEN, phosphatase and
tensin homolog; GSK-3b, glycogen synthase kinase-3 beta; PI3K/AKT, phosphatidylinositol
3-kinase/protein kinase B; lncRNA, long non-coding RNA; IRF5, interferon regulatory factor
5; AP-1, activator protein 1; FOSL1, FOS like 1; HIF1A, hypoxia inducible factor 1 alpha
subunit; NOD2, nucleotide binding oligomerization domain containing 2.
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identified. For example, increased expression of miRNAs (miR-223

and miR-451a) were identified in human NEC stool samples,

however considerable overlap in levels between NEC and non-

NEC patients may interfere with diagnostic and therapeutic

capabilities of targeting miRNAs (60).

Increasing attention has been paid to small carriers of nucleic

acids, including miRNAs, lncRNAs, and circRNAs, contained in

extracellular vesicles (EVs) (117). In one study, EVs in the urine of

premature neonates with NEC had differentially decreased

expression of miRNAs (miR-376a, miR-518a-3p, and miR-604),

and transduction molecules associated with these miRNAs

(including TP53 and RPS15) were transcriptionally reduced in an

animal model, suggesting crossover between models and human

disease (61). Stem-cell derived exosomes, which contain RNAs,

have also been explored as a therapeutic option to ameliorate NEC

(118). Moreover, EVs containing RNAs in milk have been

implicated to play a beneficial impact in NEC (119); however,

greater study is needed to determine the nature of these vesicles

cargo and their exact role in the mechanisms underlying

NEC development.
Targetable signaling pathways

Toll-like receptors

Various CAMPs have been identified as ligands of toll-like

receptors (TLRs). Specifically, evidence supports that HMGB1,

eCIRP, and extracellular histones are ligands of TLR4; cfDNA,

mtDNA, extracellular histones, and HMGB1 are ligands of TLR9;

extracellular histones and HMGB1 are ligands of TLR2; and

exRNAs are ligands of TLR’s 3, 7, and 8 (10). TLRs function to

sense PAMPs and DAMPs (including CAMPs) through their N-

terminal extracellular leucine-rich repeats (120). When immune

cells are exposed to the ligands of TLRs, they exhibit intracellular

signaling cascades that can induce the expression of a variety of

overlapping and unique genes involved in immune and

inflammatory responses (121). Dramatic progress has been made

in the last decade in improving our understanding of TLRs, which

has largely been driven by a desire to understand the pathogenesis

of clinical inflammatory conditions – that mainly being septic shock

(122). As TLR4 has been widely recognized as the main receptor of

LPS, it has garnered great attention in studying pathophysiology of

infections and pro-inflammatory diseases.

The connection of TLRs to NEC pathophysiology has largely

hinged around TLR4 (123). The importance of TLR4 in NEC

pathobiology roots in the discovery that the expression levels of

TLR4 are higher in premature intestines compared to full-term

intestines, in both human infants and other model species (124,

125). Activation of TLR4 by extracellular ligands has been shown to

contribute to NEC development (125, 126). The focus on the role of

TLR4 has been paid to the initial recognition and host response to

gram negative bacteria (127) the Specifically, the mechanism of

TLR4 involvement in NEC is described whereby the intestines of

premature infants become colonized with gram-negative bacteria,

which activate TLR4 and trigger pro-inflammatory downstream
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signaling cascades (128). This leads to increased enterocyte

apoptosis and necroptosis, impaired mucosal healing, and

enhanced pro-inflammatory cytokine release (129, 130). This

injury contributes to a ‘leaky gut barrier’ where increased

bacterial translocation can further activate TLR4 on the

mesenteric endothelium leading to vasoconstriction by

endothelial nitrate (71, 131). Subsequent reduction in blood flow

and reduced intestinal perfusion contributes to worsened intestinal

ischemia and necrosis (131). TLR4 signaling also impacts T cell

profiles, as increased recruitment of pro-inflammatory Th17

lymphocytes at the expense of anti-inflammatory regulatory T

cells worsens the exaggerated inflammatory response in the

bowel (132).

TLR4 signaling has been linked to NEC pathogenesis through

additional mechanisms. For example, the role of dysbiosis has been

a long-recognized component of NEC pathology (133). Much work

has suggested that the functional expression of TLRs is critical in the

dynamic interaction between the host epithelium and the

microbiota that enables successful intestinal adaptation to the

commensal microbiota (134–136). Specified bacterial changes

(such as increases Proteobacteria and decreases in Firmicutes and

Bacteroidetes), have been further implicated in NEC development

and are rich in TLR4 ligands (137). Remarkably, the focus on TLR4

activation has remained on activation by bacterial ligands; however,

notable ligands of TLR4 include endogenous activators, including

CAMPs. Despite the link of CAMPs in activating TLR4 and

contributing to other inflammatory diseases, there is a gap in

understanding how these various molecules converge into existing

proposed pathways. Likely, activation of TLR4 in NEC development

occurs through the binding of both bacteria and endogenous

CAMPs in concert.

A vast body of work supports the interplay of TLR4 in NEC. In

an experimental NEC model, mice lacking TLR4, specifically on the

intestinal epithelium, were protected from NEC development and

associated inflammatory sequelae (138). Further animal work

supports the mechanism by which TLR4 activation disrupts the

enteric nervous system of the newborn intestine, and subsequent

enteric glial loss triggers dysmotility and initiation of early NEC

pathogenesis (139). The discovery of activating mutations in TLR4

signaling pathways seen in infants with NEC further supports the

translation of these findings to the human condition (140, 141).

In discovering the interplay of TLR4 activation and NEC

development, harnessing mechanistic discoveries for therapeutic

utility is critical. Pharmacologic inhibitors of TLR4 have been

developed and tested to attenuate NEC in experimental

conditions. A family of TLR4 inhibitors has been identified to

reduce intestinal inflammation in experimental NEC (72).

Specifically, C17H27NO9 (C34), a 2-acetamidopyranoside is a

readily absorbed and nontoxic oligosaccharide that inhibits TLR4.

C34 demonstrated great promise by preventing NEC incidence in

mice and piglets and decreased TLR4 signaling and inflammation

ex vivo in resected ileum from infants with NEC (142). This body of

work suggests similar analogs of TLR4 inhibitors may hold

therapeutic value and improve clinical treatments for NEC.

Other mechanisms of TLR4 inhibition to improve outcomes in

NEC have been identified. For example, breast milk has long been
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recognized to be protective against NEC development. A potential

link is provided in that breast milk was found to be a potent

inhibitor of TLR4 signaling by preventing glycogen synthase kinase

3b activity (67). It is possible that MFG-E8 (lactoferrin) provided in

breast milk inhibits the ability of LPS binding protein to adhere to

TLR4, and thereby inhibits LPS-stimulated TLR4 signaling (143).

The human milk oligosaccharide 2’-fucosyllactose and 6’-

sialyllactose was also found to protect against NEC by inhibiting

TLR4 (73). Downregulation of TLR4 signaling by breast milk may

reverse the inhibition of intestinal stem cell proliferation and

mucosal healing, which are themselves inhibited by TLR4 (67,

138). Activation of aryl hydrocarbon receptor (AhR) either by its

ligand indole-3-carbinol or by breast milk components also

prevented experimental NEC through inhibition of TLR4

signaling (74).

The use of probiotics to prevent NEC development has also

been explored. CpG-containing bacterial DNA (which uniquely

bypassed the potential adverse effects of live bacterial treatment),

was found to be effective against experimental NEC in mice and

piglets through inhibition of TLR4 (and activation of TLR9) (76).

Despite numerous trials demonstrating a reduction in the incidence

of NEC and prevention of mortality with probiotic administration

in preterm infants, there has subsequently been conflicting evidence

and concern raised regarding the safety and efficacy of routine

probiotic use, preventing ubiquitous uptake in the U.S (144, 145).

Although controversy remains over the use of probiotic

supplementation in infants at risk for NEC, probiotics may have

significant impacts on not only TLR-signaling, but other CAMP-

driven pathways that may contribute to NEC development. Further

studies are needed in this regard, with a focus on probiotic impact

on CAMPs and the associated mechanisms that influence

gastrointestinal inflammatory phenotypes in NEC. Another

strategy in NEC treatment utilized simulated amniotic fluid and

yielded promising results, likely through targeting mucosal

protection conferred by amniotic fluid, which is rich in growth

factors and exerts anti-TLR4 effects (75). Currently, the clinical trial

NCT02405637 is evaluating the efficacy of synthetic amniotic fluid

in preventing NEC among very low birth weight infants (146).

Together, these targeted strategies provide mechanistic

understanding and potential preventative strategies against NEC

linked through TLR4.

The convergence of a multitude of factors identified in NEC

pathogenesis around TLR4 has accelerated focus on this bacterial

receptor; however, other toll-like receptors can recognize CAMPs

and impact immune balance and responses. For example, TLR9 is

found on endosomes and recognizes nucleic acids derived from

pathogens and self- damaged cells (122). Originating from bacterial

DNA, TLR9 is a cell receptor for unmethylated CpG dinucleotides.

TLR9 acts as an antagonist of TLR4 and has been shown to be

protective against NEC severity (147). Specifically, the TLR9/TLR4

link has been demonstrated whereby murine and human NEC

intestines had decreased TLR9 and concurrently increased TLR4

expression (148). Targeting TLR4 (through enteral administration

of adenovirus expressing mutant TLR4) resulted in increased

expression of TLR9 in intestines and reduced NEC severity in

neonatal mice (148). Furthermore, TLR9 activation with CpG-DNA
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reduced NEC severity, and genetic knockdown of TLR9 exacerbated

NEC severity in mice, further supporting the role of TLR9 in NEC

pathogenesis (148).

Recently, the dysregulation of TLR repertoire in NEC has been

further elucidated. In a murine NEC model and consistent with

previous studies, TLR4 was shown to be increased up to 1.7 fold in

NEC intestinal tissue, (and slight increases in TLR8 and TLR13,

although not significant) (4). Expression of other TLRs was

decreased in jejunal and ileal tissue from NEC pup models,

including TLR1 (up to 58% decrease), TLR3 (42% decrease),

TLR5 (74% decrease), TLR6 (93% decrease), TLR9 (70%

decrease), TLR11 (94% decrease), and TLR12 (92% decrease) (4).

There were no detectable differences of TLR2 and TLR7 expression

between NEC and dam-fed pups (4). Together, these data suggest

the modulation of intestinal baseline TLR repertoire, including their

interrelation, as mechanisms underlying NEC susceptibility and

development. Future research is needed to untangle the

multifactorial components of TLR activation, including by

CAMPs in addition to bacteria, and interaction of receptors and

ligands in NEC pathophysiology.
Triggering receptor expressed on myeloid
cells-1

Although all ligands have not been completely identified, the

CAMPs, HMGB1 and eCIRP, have been identified as ligands of

triggering receptor expressed on myeloid cells-1 (TREM-1) receptor,

along with LPS, a stimuli of TLR4 (10, 149). TREM-1 is a PRR which

can be upregulated and amplify immune responses in inflammatory

states (150). Exaggerated inflammation mediated through TREM-1

activation is considered a critical contributor to the pathophysiology

of sepsis through promoting release of inflammatory cytokines and

chemokines (151). Elevated expression of TREM-1 has been

identified on immune cells of septic patients, along with circulating

levels of cleaved soluble extracellular TREM-1 (sTREM-1) (152, 153).

Increasing discovery of TREM-1 involvement in acute inflammation

has linked TREM-1 upregulation and activation to numerous

diseases, including those affecting the gastrointestinal system.

TREM-1 signaling has been studied in pathologic states of bowel

inflammation. In experimental mouse models of colitis and patients

with IBD, intestinal TREM-1 expression was upregulated and

correlated with disease severity (154). sTREM-1 was also positively

correlated with Crohn’s disease activity index and clinical activity

indexes of UC in IBD patients compared to healthy controls (155).

Although the vast majority of resident intestinal macrophages lack

expression of TREM-1 in physiologic conditions, aberrant immune

reactions against luminal antigens and alarmins may be disease-

promoting factors, contributing to TREM-1 upregulation and

immune imbalance in gut inflammatory disorders.

TREM-1 has been investigated as a potential therapeutic target in

neonatal inflammatory conditions (156). For example, LP17 was one

of the first peptides developed to inhibit TREM-1, and demonstrated

the ability to improve survival in endotoxemic mice (77). LP17 has

been suggested as a possible therapeutic target in neonatal disease,

including sepsis (156). Blocking TREM-1 with this antagonist peptide
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1403018
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nofi et al. 10.3389/fimmu.2024.1403018
(LP17) also attenuated clinical severity and histopathologic damage

in experimental model of murine colitis (154). Pharmacologic

inhibition of TREM-1 with different therapeutic peptide, LR12,

along with genetic knockdown of TREM-1, was also successful in

protecting mice from severity of colitis (78). A newer inhibitory

peptide, M3, was designed specifically to interfere with TREM-1

activation by eCIRP (64). M3 treatment effectively attenuated disease

severity in cecal slurry-induced sepsis and improved cardiac function

and survival in the same model (15, 64). Although the intraperitoneal

sepsis induced by cecal slurry captures some elements of NEC

pathophysiology, further research is needed to uncover the role of

TREM-1 in exacerbating NEC development and the potential of

TREM-1 directed therapies to prevent excessive inflammatory

damage and disease severity.
Receptor for advanced glycation
end-products

Microbial products, as well as endogenous CAMPs (cfDNA,

exRNA, and HMGB1) have been shown to be ligands of the

receptor for advanced glycation end-products (RAGE) (10). Due

to its ability to recognize a broad range of structurally diverse

ligands, including endogenous and exogenous molecules, RAGE has

been classified as a PRR and is a key regulator of the innate immune

response (157). The upregulation of RAGE in gut-specific

inflammation follows previous systemic findings in sepsis and

accompanies upregulation of its ligands (158, 159). For example,

RAGE expression was found to be increased in the inflamed small

bowel of Crohn’s disease patients compared to non-inflamed bowel

(160). A possible mechanism may involve recruitment of

neutrophils by HMGB1 activating RAGE (161). Further, a specific

RAGE polymorphism was suggested to protect from structuring

Crohn’s disease, possibly by increasing the levels of soluble RAGE

(sRAGE) which neutralizes pro-inflammatory mediators (162).

The translational capability of targeting RAGE to reduce gut

inflammation has been investigated. For example, in in vitro studies,

RAGE blockade in stimulated immune cells isolated from Crohn’s

disease mucosa decreased secretion of inflammatory cytokines

(160). In a more translational model, administration of sRAGE

(which may act as a decoy receptor) was effective at suppressing

inflammation and gut injury in a murine colitis model (163).

Moreover, an anti-RAGE antibody demonstrated ability to

prolong survival and reduce pathologic organ injury in a murine

model of intraperitoneal sepsis (79). To our knowledge, only one

study has linked RAGE to NEC pathology (24). Specifically in

investigating HMGB1, expression of RAGE was found to be

upregulated (along with its respective ligand) in the ileal mucosa

of NEC rats compared to breast-fed controls (24). In this work,

treatment with a macrophage deactivator (semapimod) in rat NEC

model reversed NEC-induced upregulation of RAGE (along with

HMGB1), possibly through cytokine inhibition and blockade of

MAP kinase (24). Although direct targets of RAGE have not been

studied in NEC specifically, collective work revealing RAGE

upregulation in inflamed intestines support its possible use as a

therapeutic target.
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cGAS-STING

Certain CAMPs, including cfDNA, mtDNA, and NETs, have

demonstrated capacity to activate cyclic GMP-AMP (cGAS) and the

cyclic GMP-AMP receptor, stimulator of interferon genes (STING)

(164–166). Although cGAS can detect pathogenic DNA to trigger

an innate immune response, cGAS can also be activated through

endogenous DNA, including CAMPs, resulting in the production of

secondary messenger, cGAMP. cGAMP then activates the

endoplasmic reticulum-localized adaptor protein, STING, which

when activated induces a strong type 1 interferon response (167).

This pathway has emerged as a key mediator of inflammation in

states of infection, cell stress, or tissue damage (167). Overactivation

of cGAS-STING has emerged as a key pathway promoting

inflammation in gastrointestinal diseases (168).

Animal models have been utilized to probe the influence of

cGAS-STING signaling in gut inflammation. For example, in a

murine model of enterocolitis (manifested by loss IL-10),

experimental enterocolitis was less severe with cGAS-deficiency

and was completely abrogated with STING-deficiency (169). In a

model of DSS-induced colitis, STING protein expression was

increased, and STING agonist worsened colitis whereas STING-

knockdown reduced the severity of colitis (170). Furthermore,

constitutive activation of STING in mice led to intestinal

dysbiosis and spontaneous colitis, of which the altered

microbiome was found to exacerbate intestinal inflammation

through STING ubiquitination and activation (171). Recent

evidence has highlighted the importance of this pathway in

human diseases, as patients with UC were found to have elevated

colonic levels of STING (171).

Insights into the molecular biology and impact of the cGAS-

STING pathway have allowed for the development of selective

small-molecule inhibitors targeting the cGAS–STING axis to treat

diseases, including reducing gut inflammation (167). For example,

H151 was developed as a small molecule inhibitor of STING, and

has demonstrated ability to reduce tissue injury and mortality in a

murine model of intestinal ischemia/reperfusion injury (80). The

beneficial impact of H151 on the gastrointestinal tract was

recapitulated in a murine model of intraabdominal sepsis by

reducing intestinal injury, intestinal inflammation, gut

permeability, and preventing mortality (81). Although no

previous studies have investigated the role of cGAS-STING

signaling in NEC, future work is needed to identify the impact of

this pathway, either through activation by microbial pathogens or

endogenous CAMPs, and the potential for targeted therapies to

similarly attenuate this gastrointestinal inflammation.
Intracellular sensors: RIG-I, AIM2,
and NLRP3

CAMPs are also capable of activating cytosolic sensors. For

example, exRNA and cfDNA can activate retinoic acid-inducible

gene I (RIG-I) (172). RIG-I detects microbial DNA and endogenous

RNAs and DNAs and induces a pro-inflammatory type 1 interferon
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response (172). cfDNA has been shown to impart signaling through

recognition by cytosolic sensor absent in melanoma 2 (AIM2) (10).

AIM2 is a member of innate immune sensors that can detect

aberrant self-DNA or pathogenic foreign DNA and lead to

inflammasome assembly and cytokine secretion (173). Histones,

exRNA, and eCIRP can activate a similar cytosolic sensor, nod-like

receptor family pyrin domain containing 3 (NLRP3) (10).

Nucleotide-binding oligomerization (NOD)-like receptors (NLRs)

constitute a class of PRRs contained within inflammasomes, and

include both AIM2 and NLRP3 (174). Triggering of these

intracellular signaling pathways (and their convergence) leads to

the induction of numerous cytokines and chemokines and has been

studied in relation to exacerbating inflammatory diseases (175).

Preclinical work has highlighted the relevance of these cytosolic

sensors in gut inflammation (176). For example, generation of RIG-

I-deficient mice demonstrated a colitis-like phenotype and

increased susceptibi l i ty to DSS-induced colit is (177).

Furthermore, RIG-I-knockdown caused colonic inflammatory

infiltrate, decreased size and number of Peyer’s patches, and

dysregulated T cell activation (177). AIM2 has also been linked to

gut inflammation. For example, AIM2 deficient mice were found to

develop severe dysbiosis-mediated colitis through loss of

commensal regulation, highlighting the interaction between

cytosolic sensors, microbial colonization, and immune balance

(178). Furthermore, in patients with IBD, AIM2 was expressed in
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macrophages and epithelial cells of the small and large intestines,

suggesting a role for AIM2 in gut-related inflammatory diseases

(179, 180).

Although RIG-I and AIM2 have not been studied in NEC

specifically, the NLRP3 and inflammasome pathway has been

considered in this disease. In an animal model of NEC, NLRP3

mRNA levels were significantly raised in the intestinal tissues of rats

(181). This was further corroborated in that murine NEC intestines

had upregulated NLRP3 (82). NLRP3-deficient mice also exhibited

decreased intestinal injury and improved mortality (182).

Importantly, the NLRP3 inflammasome enzymatic protein

caspase-1 and its downstream inflammatory factors are not only

increased in NEC intestinal samples from mice, but are also

increased in NEC samples from humans (41). Intestinal lamina

propria of NEC patients had high NLRP3 (182). Increases in

NLRP3 expression were found in patients with NEC in other

studies as well (87, 88).

The translational implication of these activated pathways has

been revealed within studies of NLRP3. For example, a second-

generation NLRP3 inhibitor, YQ128, selectively inhibited NLRP3

and attenuated inflammation in a murine model of endotoxemia

(83). Inhibition of NLRP3 with therapies like MCC950 and

PHLDA1 (pleckstrin homology-like domain family A member 1)

also improved intestinal inflammation and survival in experimental

NEC (82, 85). Blocking calcium efflux mediated by the membrane
FIGURE 1

CAMPs, PRRs, and the Development of NEC. CAMPs, including eCIRP, cfDNA, exRNA, HMGB1, histones, and NETs are released upon cellular stress.
CAMPs are recognized and activate downstream PRR pathways including TLRs (especially TLR4 and TLR9), cGAS-STING, RAGE, RIG-1, AIM2, and
NLRP3. Activation of immune sensors leads to release of pro-inflammatory mediators and causes intestinal inflammation, enterocyte injury and cell
death, intestinal barrier dysfunction, bacterial translocation, and impaired microcirculation, all contributing to NEC development. CAMP, chromatin-
associated molecular patter; PRR, pattern recognition receptor; NEC, necrotizing enterocolitis; eCIRP, extracellular cold-inducible RNA binding
protein; cfDNA, cell-free DNA; exRNA, extracellular RNA; mtDNA, mitochondrial DNA; HMGB1, high mobility group box 1; NETs, neutrophil
extacellular traps; TLR, toll-like receptor; TREM-1, triggering receptor expressed on myeloid cells-1; RAGE, receptor for advanced glycation end-
products; cGAS, cyclic GMP-AMP (cGAS), STING, stimulator of interferon genes; RIG-1, retinoic acid-inducible gene-I; AIM2, absent in melanoma-2;
NLRP3, nod-like receptor family pyrin domain containing-3.
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protein, transient receptor potential melastatin 7 (TRPM7) also

reduced damage in experimental NEC by inhibiting NLRP3

inflammasome activation (88). The miRNA mimic (miR-146a-5p)

inhibited NLRP3 inflammasome downstream inflammatory factors

in cells and is another possible relevant factor in inflammatory

signaling in NEC (41). Moreover, treatment with bovine milk-

derived exosomes in an animal model of NEC attenuated lung

injury by reducing NLRP3 inflammasome activation and NF-kB
signaling (84).

The crosstalk between PRR-pathways is implicated in work

evaluating multiple signaling mediators. For example, in enterocytes,

suppressor of cytokine signaling 3 (SOCS3) protected against NEC

through by modulating NLRP3/AIM2 inflammasome activation in a

TLR4-dependent manner (183). Melatonin also demonstrated

improved survival in murine NEC model and attenuated mRNA and

protein levels of both NLRP3 and TLR4 (86). Additional work revealed

that an improved inflammatory profile in NEC by inhibiting HMGB1

was through inhibiting NLRP3 via TLR4 and NF-kB signaling

pathways (25). Sialylated human milk oligosaccharides (SHMOs)

supplementation ameliorated the elevation of TLR4 and NLRP3 in

the ileum of NEC rats (87). Finally, it was suggested that Cronobacter

sasakazakii infection contributes to increased inflammasome (NLRP3)

and TLR4-mediated intestinal damage in NEC models (184). A

summary of these various therapeutics that impact signaling

transduction pathways in NEC is further included in Table 2. Many

of these studies lack robust mechanistic understanding yet identify

mediators of convergent pathways and implicate an interplay of many

pro-inflammatory signaling cascades.

Although there are still gaps in understanding the roles of

cytosolic sensors such as RIG-1-like receptors (RLRs) and NLRs in

NEC development specifically, cellular perturbations during

inflammation in NEC results in the release of host CAMPs (or

microbes) which may then be sensed and activate downstream

pathways. An overview of CAMPs and their contribution to NEC

pathobiology though PRR sensing is provided in Figure 1. Further

research is needed to better understand these signaling events in

NEC and their crosstalk to facilitate targeted anti-inflammatory

therapeutic development.
Conclusions and future directions

Immune imbalance and exaggerated inflammatory signaling

exacerbate NEC development. Thus, an improved understanding of

the inciting inflammatory factors and signaling pathways is vital to

uncovering NEC pathophysiology and developing effective

treatments. First, improved identification of the critical ligands in

early intestinal inflammation is needed. As it is understood that

NEC onset occurs only once the premature gut has been colonized

by bacteria, it is likely that microbial pathogens are early players

involved in sensing by PRRs to initiate inflammation (128).

However, additional endogenous factors, such as CAMPs, have

been implicated to play a key role in causing inflammation to run

amok. Likely, these endogenous factors released upon initial tissue

injury then contribute to tipping the immune balance towards
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uncontrolled inflammatory insult in the gut, subsequent systemic

inflammation, and devastating end-organ injury. Although ongoing

research highlights the importance of CAMPs and their

downstream signaling cascades in this disease, further work is

needed to investigate therapeutically targeting these pathways to

improve outcomes. Moreover, translational work uncovering the

interplay of dysbiosis and host CAMPs on PRR sensing will guide

differentiated strategies for prevention and treatment. Will

maintenance of a homeostatic, anti-inflammatory microbiome

more effectively help prevent NEC development, while targeting

CAMPs and signaling pathways provide a better anti-inflammatory

treatment strategy once inflammatory aberrancy begins?

Understanding the time course and interplay of the multifactorial

components of NEC pathophysiology will drive strategic

breakthroughs to revolutionize needed clinical treatments for this

devastating disease.
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106. Domıńguez-Dıáz C, Varela-Trinidad GU, Muñoz-Sánchez G, Solórzano-
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