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Ischemic heart disease (IHD) is a leading cause of disability and death worldwide,

with immune regulation playing a crucial role in its pathogenesis. Various

immune cells are involved, and as one of the key immune cells residing in the

heart, macrophages play an indispensable role in the inflammatory and reparative

processes during cardiac ischemia. Exosomes, extracellular vesicles containing

lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as

important mediators in the regulatory functions of macrophages and hold

promise as a novel therapeutic target for IHD. This review summarizes the

regulatory mechanisms of different subsets of macrophages and their secreted

exosomes during cardiac ischemia over the past five years. It also discusses the

current status of clinical research utilizing macrophages and their exosomes, as

well as strategies to enhance their therapeutic efficacy through biotechnology.

The aim is to provide valuable insights for the treatment of IHD.
KEYWORDS
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1 Introduction

Cardiovascular disease (CVD) is a leading cause of global mortality, with over 18.5

million deaths attributable to CVD in 2019, with ischemic heart disease (IHD) accounting

for half of all CVD-related deaths worldwide (1). IHD is characterized by reduced blood

flow to the heart, leading to an imbalance between myocardial oxygen supply and demand.

Ischemia of the myocardium can progress to ischemia-reperfusion arrhythmias,

myocardial infarction (MI), and even heart failure (2).

Due to its complex pathophysiological mechanisms, understanding the specific

mechanisms involved in IHD occurrence can contribute to the development of more

effective treatment methods aimed at improving patient survival rates (3–6).
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The underlying mechanisms of most CVDs involve innate and

acquired immune responses. Among them, inflammation is one of

the important complications following IHD, such as MI or

reperfusion injury, and the inflammatory cascade response plays

an important role in myocardial tissue injury, repair, and

remodeling, and mastery of the cell-specific signaling mechanisms

that mediate the inflammatory response is essential for the

treatment of MI (7–11).

Immune cells are involved in microenvironmental changes

following the development of IHD, and macrophages are among

the most abundant immune cells in the heart (12, 13).

In healthy conditions, cardiac-resident macrophages constitute

6–8% of non-myocardial cells in adult mice (14). After myocardial

ischemia, cardiac macrophages undergo marked changes in

phenotype and function and are capable of massive expansion

through their proliferation and recruitment of monocytes, a

behavior implicated in both the injurious and reparative

responses of the heart (7, 15, 16). This is primarily evidenced by

the rapid apoptosis of resident macrophages within 2 hours and

their near depletion within 24 hours following MI (17). Meanwhile,

disruption of cardiac homeostasis leads to recruitment and

differentiation of Ly6Chi monocytes from the bloodstream into

macrophages, replacing resident macrophages and persisting

long-term (18–20). Upon ischemic insult, circulating monocytes

swiftly transition from a rolling to a flowing state via activation of

chemokine ligand 2 (CCL2)/monocyte chemoattractant protein

(MCP)-1 signaling (21). This prompts their infiltration into the

infarcted area, forming a reservoir of monocytes. Stimulated by

factors such as colony-stimulating factor and granulocyte growth

factor within macrophage colonies, these monocytes differentiate

into mature macrophages, thus constituting the primary source of

cardiac macrophages (22).

While resident macrophages are scarce in number, recent

research indicates their ability to proliferate following cardiac

injury, thereby influencing the subsequent recruitment of

monocytes. Following cardiac injury, resident macrophages

produce inflammatory and chemotactic factors responsible for

clearing and degrading apoptotic cardiomyocytes, impacting

cardiac conduction (23–25). These resident macrophages are

typically divided into CCR2- and CCR2+ subsets, each with

distinct mechanisms and functions (26). Tissue-resident CCR2+

macrophages promote monocyte recruitment through a MYD88-

dependent mechanism, leading to MCP release and monocyte

mobilization, while CCR2- macrophages inhibit monocyte

recruitment (27).

Nevertheless, both in terms of quantity and impact, resident

cardiac macrophages are not as influential as circulating monocytes,

which play a predominant role in the ischemic heart (28).

Circulating monocytes differentiate into M1 type early post-MI

and transition to M2 type later (29). Classically activated M1

macrophages primarily engage in phagocytosis, MHC II antigen

presentation, and reactive oxygen species production (30–32),

whereas M2 macrophages stimulate extracellular matrix

production, cell proliferation, and angiogenesis, facilitating tissue

remodeling and repair (33–35). In conclusion, the dynamic

interplay between resident cardiac macrophages and circulating
Frontiers in Immunology 02
monocytes plays a pivotal role in the response to MI and subsequent

cardiac repair processes. Further investigation into the precise

molecular pathways governing macrophage behavior in the

injured heart holds promise for the development of targeted

strategies to enhance cardiac healing and functional recovery.

Exosomes are extracellular vesicles with a diameter of 40–160

nm that are secreted by cells and serve as important vehicles for

paracrine signaling (36). Exosomes play pivotal roles in various

macrophage-mediated effects, serving crucial functions in cellular

processes. Their biogenesis involves distinct stages, commencing

with cellular internalization, where the cell membrane engulfs

extracellular material to form vesicles. Subsequent fusion with

endosomal compartments generates early endosomes, which

mature into intraluminal vesicles (ILVs) within late endosome

multivesicular bodies (MVBs). Ultimately, MVBs merge with the

cell membrane, releasing ILVs as exosomes (37, 38). Exosomes play

a significant role in intracellular and intercellular communication

by selectively delivering cargoes such as nucleic acids, proteins, and

lipids to target cells and organs. They contribute to important

processes including angiogenesis, ventricular remodeling, and

immune response regulation following cardiac ischemia (39). The

therapeutic benefits of exosomes have been validated in various

animal and disease models (40–42). Moreover, the unique

physiological properties of exosomes, including their circulatory

stability, biocompatibility, low immunogenicity, and low toxicity,

make them an excellent carrier for targeted drug delivery, which has

been applied in a range of diseases such as cancer and inflammation

(43). As typical secretory cells, macrophages are capable of secreting

various molecular signaling substances and releasing different types

of exosomes in the ischemic microenvironment (44–46). Based on

this, this review summarizes the research progress in the regulatory

mechanisms and therapeutic effects of different phenotypic

macrophages and their exosomes in IHD over the past five years.

It evaluates their specific biological functions and provides guidance

for the utilization of macrophage-derived exosomes in low-risk,

highly targeted therapy for IHD.
2 The role of macrophages in IHD

Due to the non-regenerative nature of adult cardiac cells,

prolonged myocardial ischemia often leads to MI, resulting in

irreversible loss of cardiomyocytes and even left ventricular

remodeling and progressive heart failure (47). Therefore,

protecting cardiomyocytes and preventing ventricular remodeling

and heart failure are important strategies for treating IHD.

Studies have shown that ventricular remodeling is closely

associated with dysregulated immune responses, and monocytes and

macrophages are the key effector cells of the immune system (48).

During disease onset, a significant accumulation of blood-derived

monocytes occurs at the ischemic site of the heart, which

subsequently differentiate into macrophages to participate in the

immune response (3). In the early phase of MI, the necrosis of a

large number of cardiomyocytes triggers an intense inflammatory

response, and the number of M1 macrophages will peak at 3–4 days

after MI, participating in the removal of damaged cells and
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phagocytosis of extracellular matrix debris during this inflammatory

phase (49). In the following days, the inflammatory phase gradually

transitions into the reparative phase, where macrophages shift towards

an M2 phenotype. M2 macrophages become predominant from day 5

post-infarction and secrete anti-inflammatory and pro-fibrotic

cytokines to facilitate the repair of injured myocardium. It is

noteworthy that this transition depends on the timely suppression of

the inflammatory response. Prolonged activation of M1 macrophages

can lead to extensive cardiomyocyte death, degradation of extracellular

matrix, expansion of the infarct area, and adverse ventricular

remodeling, ultimately resulting in heart failure (4, 49–54) (Figure 1).
2.1 The role of M1 macrophages in IHD

2.1.1 M1 macrophages are involved in the pro-
inflammatory and fibrotic responses after MI

M1macrophages in IHD are mainly involved in the inflammatory

response of post-infarction myocardial tissue and myocardial tissue

fibrosis, thus aggravating cardiac injury (55). As a result of myocardial

necrosis, the integrity of ECs and their barrier function are impaired,

promoting the release of danger-associated molecular patterns, further

activating intercellular crosstalk signaling and releasing a large amount

of pro-inflammatory mediators, facilitating polarization of

macrophages towards the M1 phenotype (56). Activated M1

macrophages release a significant amount of inflammatory cytokines

and growth factors such as tumor necrosis factor-a (TNF-a),
interleukin-1 (IL-1), chemokines, etc., which further contribute to the

promotion of inflammation and fibrotic responses. For example,

angiotensin II (AngII) AT1 receptors are involved in the

development of myocardial fibrosis through stimulation of the TNF-
Frontiers in Immunology 03
a/NF-kB/CD44-triggered k-signaling pathway (57, 58). Studies have

shown that chemokines are key linking factors between myocardial

inflammation and fibrosis, such that CC chemokine ligand 2(CCL2)

can exert fibrotic effects by recruiting and activating M1 macrophages

expressing its receptor CCR2 (59). In addition, C-X-C chemokine

receptor 4 (CXCR4) is a vital regulator of macrophage-mediated

immune responses, and CXCR4 significantly enhances the

expression of chemokine (C-X-C) motif ligand (CXCL3), thereby

promoting myofibroblast (MF) differentiation (60). In addition to

various cytokines, some microRNAs contained in macrophages

regulate the inflammatory and fibrotic responses after MI. For

instance, studies conducted by Deepak Ramanujam et al. have

demonstrated that microRNA-21 (miR-21) is not only the most

abundant microRNA in cardiac macrophages but also a key factor

contributing to myocardial tissue fibrosis. M1 macrophages secrete

miR-21 in a paracrine manner, targeting cardiac fibroblasts (CFs) and

promoting their transition from a quiescent state to MFs (61). After

MI, there are significant changes in the protein expression levels within

resident macrophages in the heart. Among them, the synthesis and

degradation of matrix metalloproteinases play multiple roles in the

process of ventricular remodeling. Seven days after infarction, the

expression of Mmp14 (MT1-MMP) in macrophages significantly

increases. Specific deletion of Mmp14 in mice can significantly

alleviate post-MI cardiac dysfunction, reduce fibrosis, and protect the

microvascular network in the heart (16). A series of pro-inflammatory

reactions induced by M1 macrophages promotes the occurrence of

cardiac fibrosis, further leading to impaired cardiac contraction and

ejection function, exacerbating the development of heart failure.

Therefore, early and rapid intervention and modulation of the

secretion of relevant cytokines and gene expression can effectively

prevent the progression of IHD.
FIGURE 1

The effect of macrophages and their exosomes in IHD (by Figdraw).
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2.1.2 Involvement of M1 macrophages in
ventricular remodeling

Patients with IHD undergoing reperfusion therapy still face the

challenges of left ventricular remodeling and heart failure after MI (62).

The polarization of macrophages is regulated by multiple proteins, and

a reduction in the expression of protective proteins after MI promotes

the polarization of macrophages towards the M1 phenotype,

exacerbating the inflammatory response and leading to adverse

ventricular remodeling. For example, decreased expression of V-set

and immunoglobulin domain containing 4(VSIG4), a protein that

protects against cardiac injury after ischemia in myocardial tissue,

further activates TLR4/NF-kB and accelerates macrophage polarization

toward M1 macrophages, which leads to increased apoptosis of

cardiomyocytes and aggravates cardiac injury after reperfusion (63).

On the other hand, ischemia in the myocardium dramatically increases

the expression levels of various proteins that promote M1-type

polarization, further exacerbating the development of ventricular

remodeling. Among them, Dectin-1, a class of proteins that regulates

macrophage differentiation, is highly expressed in the early phase of

cardiac ischemia-reperfusion (I/R), and its elevated expression leads to

the increased polarization of macrophages toward M1 type and

promotes infiltration of Ly-6C+ monocytes and neutrophils, leading

to further myocardial injury and ventricular remodeling (64). In

addition to this, macrophages in the early stages of MI highly

express Lgr4, which leads to inflammatory macrophage activation by

promoting cAMP response element binding protein(CREB) mediated

c-Fos, Fosl1 and FosB trans activation, further leading to reduced

cardiac function, increased myocardial infarct size and poor ventricular

remodeling (65). As with Dectin-1 and Lgr4, increased expression of

grass bacillus proteinogenic-converting enzyme 9 (PCSK9) in

myocardial tissue after acute MI promotes poor myocardial repair by

the polarization of M1 macrophages (66–68).

Following MI, macrophages undergo polarization toward M1

phenotype, thereby instigating the inflammatory cascade.

Furthermore, certain cytokines released by macrophages impede

their differentiation into M2 subtype. Consequently, this cytokine-

mediated hindrance compromises the myocardial tissue repair

mechanism. For example, the increased expression of YAP and TAZ

after MI further increases the secretion of IL-6 by M1 macrophages by

interacting with the histone deacetylase 3 (HDAC3)-nuclear receptor

co-blocker 1 (NCoR1) blocking complex, thereby decreasing arginase-I

(Arg1) expression, further impeding the repair response (69). Timely

regulation of protein expression and maintenance of macrophage

homeostasis would contribute to modulating the healing process

following ischemic injury. For example, research by Wang et al.

demonstrated that inhibition of purinergic receptor 2Y12 (P2Y12) in

macrophages reduced inflammation and improved reperfusion

arrhythmias in a rat I/R model, which served as cardioprotection

(70). Relevant references are also presented in Table 1 for easy

visualization (Table 1).
2.2 The Role of M2 macrophages in IHD

Following early MI, cardiac-resident macrophages become

depleted, which promotes adverse cardiac remodeling in the peri-
Frontiers in Immunology 04
infarct area and severely impairs cardiac function. However, activated

M2 macrophages, similar to cardiac-resident macrophages, have the

capability to promote tissue repair and regulate the homeostasis of

the myocardial microenvironment, thereby exerting crucial

cardioprotective functions (Table 2) (25, 78).

2.2.1 Involvement of M2 macrophages in the
anti-inflammatory response after MI

M2macrophages safeguard the ischemic heart by secreting anti-

inflammatory factors, including IL-10, IL-38, and transforming

growth factor-b (TGF-b), thereby serving as potent anti-

inflammatory agents. Among them, IL-10 can promote the

polarization of macrophages to M2 macrophages and improve the

cardiac microenvironment through M2 macrophage-dependent

hyaluronidase-3/hyaluronic acid degradation mechanism to

further subdue the inflammatory response and promote

myocardial tissue healing (34). IL-38, a newly discovered member

of the IL-1 family, de-activates the c-jun N-terminal kinase/

activator protein 1 (JNK/AP1) pathway by binding to interleukin

one receptor helper-like protein one and increases IL-36

production, regulates dendritic cell-induced cardiac regulatory T

cells, thereby modulating macrophage polarization and improving

myocardial post-infarction ventricular remodeling (71). In contrast

to IL-10 and IL-38, a recent study has shown that transforming

growth factor-b (TGF-b) can reduce cardiomyocyte inflammatory

response, oxidative stress, and cell apoptosis through activation of

the long non-coding RNA ATB, providing multiple avenues to

alleviate cardiac I/R injury (72).
TABLE 1 Effect of M1 macrophage on IHD.

Cell Source Target
pathway

Effect Reference

Mouse macrophages TNF-a/NF-
kB/CD44

Promote
cardiac
fibrosis

(57)

Mouse macrophages MCP-1/CCL2 (59)

Mouse macrophages CXCR4 (60)

Mouse bone marrow-
derived macrophages

microRNA-21 (61)

Mouse macrophages MT1-
MMP/TGFb1

(16)

Rat macrophages VSIG4/TLR4/
NF-kB

Promote
ventricular
remodeling

(63)

Mouse macrophages Dectin-1 (64)

Mouse macrophages Lgr4/CREB/c-
Fos、

Fosl1、FosB

(65)

THP-1-derived
macrophages and human
primary macrophages

PCSK9/TLR4/
NF-kB

(66, 68)

Mouse macrophages YAP、TAZ/
HDAC3- NCoR1/

IL-6/Arg-1

(69)

Rat macrophages P2Y12 (70)
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1402468
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1402468
In addition to cytokines, a variety of proteins play important

roles in the anti-inflammatory process of M2 macrophages.

Legumain, a gene specifically expressed in M2 macrophages, is

involved in the post-myocardial infarction (MI) inflammatory

response by upregulating IL-10 and TGF-b, while downregulating
IL-1b, TNF-a, and IL-6 (23). Similar cardioprotective proteins

include nucleolin, which was previously found to significantly

attenuate myocardial I/R injury by promoting myocardial

angiogenesis and reducing cardiomyocyte apoptosis by Tang et al

(79). Furthermore, their subsequent investigation revealed a

substantial decrease in nucleolin expression during the early stage

of MI, followed by an increase during the later stage. This

upregulation of nucleolin, facilitated by the key regulatory factors

notch homolog 3 (Notch3) and signal transducer and activator of

transcription 6 (STAT6), promotes M2 macrophage polarization,

thus contributing to the anti-inflammatory response (80). It is

worth noting that the role of the Notch signaling pathway in

ischemic myocardium is dual-edged. Activation of the Notch

pathway has been shown to suppress ventricular remodeling in

MI rats, but overexpression of Notch signaling may have fibrotic

effects on cardiac fibrosis (73, 81, 82). Besides, another study has

demonstrated that blockade of the Notch signaling pathway

promotes M2 polarization of cardiac macrophages and improves

cardiac function by inhibiting imbalanced fibrotic remodeling after

MI (74).

Promoting the differentiation of macrophages to M2

macrophages by regulating the expression of specific genes in

mice has emerged as a target for modulating the anti-

inflammatory response. A study by Yuli Yang et al. found that

inhibition of ALK4 gene expression in mice significantly inhibited

the secretion of inflammatory factors by M1 macrophages while

inducing a phenotypic switch from pro-inflammatory M1
Frontiers in Immunology 05
macrophages to anti-inflammatory M2 macrophages and

ultimately promoting cardiac repair after myocardial injury (75).
2.2.2 Role of M2 macrophages on myocardial
fibrosis after MI

M2 macrophages exhibit anti-inflammatory and tissue repair

properties by producing high levels of anti-inflammatory cytokines

and promoting fibroblast progenitor cell proliferation and

differentiation, playing a crucial role in CFs-mediated myocardial

repair (50). Analogous to macrophages, these CFs adopt a pro-

inflammatory phenotype soon after MI, after which they

differentiate into MFs, which secrete anti-inflammatory factors

and extracellular matrix proteins to repair and stabilize cardiac

tissue (83). M2 macrophages can secrete IL-1a and osteopontin to

activate CFs and promote their transformation into MFs, thereby

forming more supportive fibrous tissue at the infarct site and

repairing the vulnerable ventricular wall of the infarcted heart

(76). In addition to promoting CF activation, M2 macrophages

inhibit CF senescence and apoptosis by activating the neuroglial

protein 1 (Nrg1)/epidermal growth factor receptor (ErbB)

pathway (77).

As the exploration of macrophage functions progresses, the

classification of M1/M2 appears simplistic and broad. Mosser and

Edwards proposed a classification system for macrophage function,

categorizing macrophages into classical activation, regulatory, and

repair subtypes (84). Further in vitro experiments have subdivided

M2 macrophages into four subgroups, including M2a, M2b, M2c,

and M2d (85). Among them, M2a macrophages express high levels

of fibrogenic factors, contributing to repair during early stages of

injury, while M2b macrophages are defined as regulatory cells with

potent immunomodulatory and anti-inflammatory effects (85, 86).

In vitro experiments by Yue et al. demonstrated that M2a

macrophages significantly promoted the proliferation and

migration of CFs, the expression of fibrosis-associated proteins,

and the differentiation to MFs, whereas M2b macrophages had the

exact opposite effect on CFs, with a significant antifibrotic effect (86,

87). Subsequently, they evaluated the effects of M2b macrophage

transplantation using a rat I/R model, confirming that M2b

macrophages can reduce cardiac fibrosis, improve heart function

significantly by inhibiting the mitogen-activated protein kinase

(MAPK) signaling pathway, and decreasing the activation of

platelet-derived growth factor receptors (PDGFRs) in CFs (88).

In addition to the common regulation of cardiac fibrosis

through modulating CFs, M2b macrophages can also regulate the

fibrotic process by affecting the lymphatic system. Lymphatic

vessels in the heart drain interstitial fluid to maintain cardiac

homeostasis, and previous studies have shown that exogenous

vascular endothelial growth factor C (VEGFC) can stimulate

lymphangiogenesis in the heart, thereby alleviating myocardial

edema and fibrosis after MI (89). Recent research has revealed

that transplantation of M2b macrophages upregulates the

expression of VEGFC and vascular endothelial growth factor

receptor 3 (VEGFR3) in the hearts of I/R rats, promoting

lymphangiogenesis to reduce myocardial fibrosis and improve

cardiac function (90). Taken together, this series of studies
TABLE 2 Effect of M2 macrophage on IHD.

Cell type Target pathway Effect Reference

human
primary

macrophages

IL-38/JNK/AP1 Anti-
inflammatory

(71)

Mouse macrophages IL-10/hyaluronidase-3/
hyaluronic acid

Anti-
inflammatory

(34)

Mouse macrophages TGF-b/lncRNA ATB Anti-
inflammatory

(72)

Mouse macrophages Nucleolin/
Notch3、STAT6

Anti-
inflammatory

(73)

Mouse macrophages Notch signaling Anti-
inflammatory

(74)

Mouse macrophages ALK4 Anti-
inflammatory

(75)

Mouse macrophages Legumain Anti-
inflammatory

(23)

Mouse macrophages IL-1a;osteopontin Inhibit
cardiac fibrosis

(76)

Mouse macrophages Nrg1/ErbB Inhibit
cardiac fibrosis

(77)
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demonstrates the potential value of macrophage therapy in heart

disease. Further investigations are needed to explore the complexity

of macrophage subtypes and differentiation, as well as the interplay

between different signaling pathways.
2.3 Macrophage phenotype switching
intimately linked to metabolic responses
Resource Identification Initiative

In IHD, the phenotypic polarization and metabolic changes

of macrophages recruited into circulation and residing in tissues

can disrupt the M1/M2 homeostasis, thereby impacting the

balance of cardiac inflammatory effects and determining

disease regression and prognosis (37, 38). The polarization and

activation of macrophages are closely associated with metabolic

reprogramming, which is manifested as a bias in energy utilization,

thereby altering their inflammatory phenotype (91). Macrophages

primarily modulate their inflammatory phenotype through four

energy cycles, including: 1) glycolysis, 2) oxidative phosphorylation

(OXPHOS), 3) tricarboxylic acid cycle (TCA), and 4) fatty acid

oxidation (91, 92). Under normal physiological conditions,

macrophages are intimately integrated to tissue and organismal

metabolism (93). M1 macrophages rely predominantly on

glycolysis, accelerating glucose transport by upregulating the

glucose transporter protein GLUT1 to meet the demands of rapid

ATP production, whereas M2 macrophages utilize fatty acids as a

fuel source for TCA and subsequent OXPHOS (94, 95).

In IHD, changes in cardiac metabolism may disrupt M1/M2

homeostasis, which in turn affects the cardiac inflammatory

response and further influences disease regression and

prognosis. Studies have shown that ischemia leads to an

increased dependence of cells on glycolysis, while hypoxia

induces pro-inflammatory gene expression and metabolic

reprogramming towards glycolysis (96, 97). Following

myocardial tissue injury, macrophages will activate a series of

receptor tyrosine kinases such as Tyro3, Axl, and MerTK, which

mediate the clearance of apoptotic cells and regulate the

production of inflammatory cytokines (98). Among these, cross-

signaling between AX1 and TLR4 transduces to glycolytic

metabolism and pro-inflammatory IL-1b secretion, leading to an

increased inflammatory response within the myocardium,

unfavorable ventricular remodeling and impaired contractile

function (99). Glycolytic metabolism promotes macrophage-

induced fibrosis, whereas inhibition of glycolysis facilitates the

restoration of macrophage energy metabolism from glycolysis to

normal OXPHOS pathway under a normoxic state, further

blocking M1 polarization and thus improving the condition of

ischemic cardiomyopathy (100–102). This undoubtedly provides

excellent targets for targeted therapies to inhibit inflammation, for

example, Zhao et al. used salvianolic acid B to inhibit mammalian

target of rapamycin 1 (mtorc1)-induced glycolysis, which reduced

myocardial M1 macrophages and increased M2 macrophages in

mice at 3 days after I/R and reduced collagen deposition and

improved cardiac dysfunction at 7 days after I/R (103). Notably,

glycolysis does not have only negative effects. Early endogenous
Frontiers in Immunology 06
glycolytic reprogramming after MI can promote the transcription

of reparative genes by promoting histone demethylation in

monocytes, thereby improving cardiac function after MI (104).

Metabolic shifting between glycolysis and mitochondrial

OXPHOS is an important mechanism for the transition of

macrophages to reparative phenotype, and a timely transition of

M1 macrophages to M2 macrophages would contribute to

myocardial repair (105). On the first day after MI, macrophages

polarize towards the M1 phenotype, exhibiting distinct pro-

inflammatory and extracellular matrix degradation characteristics.

However, by the third day post-MI, macrophage proliferation and

phagocytic capacity increase, accompanied by upregulation of genes

associated with mitochondrial function and OXPHOS, indicating

metabolic reprogramming (106). In diseased states, this metabolic

transition is influenced by multiple factors. For instance,

comprehensive metabolomic analysis has indicated that the TCA

cycle may be interrupted during the inflammatory process, resulting

in selective accumulation of intermediates including succinate,

which further impacts oxidative phosphorylation and thus the

metabolic switch of macrophages. Additionally, the further

oxidation of succinate can drive the generation of a large amount

of reactive oxygen species (ROS), exacerbating oxidative damage

(100, 101, 107, 108). Recent studies have shown that activated

macrophages can produce itaconate to inhibit succinate oxidation

and regulate M2 macrophage polarization, indicating that

macrophages possess certain metabolic regulation capabilities

(109). Moreover, alterations in the cardiac microenvironment

exert a profound impact on macrophage metabolism, while the

activity of macrophages reciprocally influences the heart. For

instance, IL-33 can be released by various cells following necrosis.

It not only induces macrophage reprogramming, leading to

uncoupling of the mitochondrial respiratory chain and increased

production of the mitochondrial-derived metabolite itaconate, thus

promoting the resolution of inflammation and initiation of tissue

damage repair; but also activates the JAK/STAT signaling pathway

to induce M2 macrophage polarization, thereby impeding the

progression of cardiac fibrosis and improving cardiac systolic and

diastolic function (110, 111). Indeed, Liu et al. demonstrated that in

vitro induced M2 macrophages could be transplanted into hearts of

heart failure mice models, confirmed that M2 macrophages can

transfer mitochondria to damaged cardiomyocytes, which promote

cell survival under stress conditions and alleviate cardiac fibrosis

and cardiomyocyte apoptosis (112).

Currently, there have been relevant studies on treating diseases

by regulating the polarization state and functions of macrophages at

the metabolic level, showing promising therapeutic benefits (95).

For example, Chen et al. demonstrated that supplementing with w-
alkynyl arachidonic acid can inhibit glycolysis and promote M2

macrophage polarization, leading to reduced infarct size, prevention

of the development of left ventricular dysfunction, and improved

clinical outcomes in a mouse model of MI (113). Further

investigation will contribute to unraveling the intricate interplay

between macrophage energy metabolism and the cardiac

microenvironment and deepen our understanding of this

dynamic change, advancing the development of relevant

therapeutic strategies.
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2.4 Macrophage phenotype switching
intimately linked to microenvironment

Macrophage polarization plays a pivotal role in host defense

and tissue repair, with its regulation extending beyond metabolic

cues to encompass various microenvironmental factors such as

cytokines, cell receptors, and microRNAs. Cytokines, notably, are

key determinants in the transition from M1 to M2 macrophage

phenotypes (114). Exemplifying this, IL-4 orchestrates the shift

from M1 to M2 via JAK1/STAT6 signaling (115). Additionally,

interferon regulatory factors (IRFs) exert critical control over

macrophage phenotypic polarization, transition, and function.

While IRF-1, IRF-5, and IRF-8 contribute to pro-inflammatory

M1 formation, IRF-3 and IRF-4 govern M2 polarization (116).

Furthermore, insulin-like growth factor 2 mRNA-binding protein 2

(IGF2BP2) mediates the conversion of M1 to M2 macrophages

through an m6A-dependent mechanism targeting scleroderma-

related protein 1 (117). Insulin has also been found to modulate

macrophage polarization by activating the PI3K/Akt/Rac-1 and

PPAR-g signaling pathways (118). Cell surface receptor proteins

also participate in M1 to M2 transition; for instance, dual blockade

of TLR4 and TNFR1 promotes M1 to M2 polarization (119).

MicroRNAs, like miR-126, play a pivotal role in shifting

macrophages from pro-inflammatory M1 to anti-inflammatory

M2 phenotype by downregulating VEGFA and KLF4 expression

(120). In summary, macrophage polarization is intricately regulated

by diverse factors, collectively shaping cellular function and

phenotypic transitions.
2.5 M1/M2 macrophages phenotype
correlates with cardiac rupture post-MI

Following MI, the heightened inflammatory response poses a

significant risk of cardiac rupture (121, 122). Notably, clinical

evidence underscores a direct correlation between the intensity of

inflammation and the incidence of cardiac rupture in MI patients

(123, 124). The risk of cardiac rupture post-MI is primarily

associated with neutrophils, M1 macrophages, M2 macrophages,

myeloperoxidase (MPO), and matrix metalloproteinases (MMPs),

especially the infiltration of macrophages (125, 126). In the

aftermath of MI, macrophages exhibit a biphasic activation

pattern: pro-inflammatory M1 macrophages peak within the

initial 3 days, while pro-fibrotic/repairing M2 macrophages reach

their zenith around day 7 post-MI (127). Building upon this

understanding, recent investigations have sought to elucidate the

distinct roles played by different macrophage subtypes in

modulating the risk of cardiac rupture. One study found that

administration of the natural tetrapeptide Acetyl-Ser-Asp-Lys-Pro

(Ac-SDKP) reduced the number of M1 macrophages in cardiac

tissue post-MI, thereby significantly decreasing the incidence of

cardiac rupture (128). Another study promoted apoptosis of M1

macrophages by knocking out apoptosis inhibitor of macrophage

(AIM), consequently reducing the occurrence of cardiac rupture

post-MI (129). Moreover, MMP-28 has garnered attention for its
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ability to augment the activation of M2 macrophages, thereby

exerting a protective effect against cardiac rupture following MI

(130).Furthermore, studies focusing on macrophage-specific Lgr4

deletion have unveiled a compelling mechanistic link, wherein

ablation of this receptor culminates in a discernible shift in

macrophage subtype composition within the infarcted milieu,

characterized by a decrease in M1 macrophages juxtaposed with

an augmentation in M2 macrophages, ultimately translating into a

lowered incidence of cardiac rupture (65). Collectively, these

findings underscore the pivotal role played by the delicate balance

between M1 and M2 macrophages in dictating the susceptibility to

cardiac rupture post-MI.

In summary, a comprehensive understanding of the intricate

immunological landscape post-MI, with a specific focus on the

nuanced modulation of macrophage subpopulations, holds

immense promise in delineating novel therapeutic strategies

aimed at mitigating the risk of cardiac rupture. These insights

not only deepen our appreciation of the pathophysiological

underpinnings of post-MI complications but also pave the

way for the development of targeted interventions with

translational potential, heralding a new dawn in the realm of

cardiovascular medicine.
3 The role of different phenotypic
macrophage-derived exosomes in IHD

Exosomes carry a cargo of proteins, RNA, DNA, lipids, and

metabolites (such as amino acids, ATP, and acylamide) from the

cell surface and interior. The types and levels of exosome cargo are

influenced by donor cells, microenvironment, or physiological

conditions. Through endocytosis, direct membrane fusion, or

binding to cell surface receptors, exosomes can effectively target

and deliver these biomolecules carrying important information to

recipient cells, playing multifaceted roles in altering cell phenotypes,

regulating gene expression, controlling the recruitment of

inflammatory cells, etc., and participating in the pathogenesis and

development of IHD (36, 131–133). Exosomes mediate signal

exchanges between immune cells and cardiomyocytes. Studying

the exosome cargo and their functions not only provides insight

into the communication between cells in healthy and diseased states

but also lays a foundation for the clinical application of

exosomes. (Table 3).
3.1 Role of M1 macrophage-derived
exosomes in IHD

Previous studies have primarily focused on the role of M1

macrophage-derived exosomes in promoting inflammatory

responses; in fact, it also plays an important crosstalk role in

mediating between macrophages and cardiac cells. In response to

hypoxia/reoxygenation stimulation, miR-29a in exosomes secreted

by activated M1 macrophages mediated cardiomyocyte pyroptosis

(134). Through paracrine effects, M1 macrophage-secreted
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exosomes are well-targeted to CFs and ECs to accelerate cardiac

fibrosis and inhibit vascular neogenesis. Exosomes derived fromM1

macrophages exhibit high expression of miRNA-155, which acts as

a paracrine regulatory factor for CF proliferation and inflammation.

Through exosome-mediated targeting of CFs, miRNA-155 can

down-regulate the expression of Son of Sevenless gene (Sos1) to

inhibit fibroblast proliferation, and decrease the expression of the

anti-inflammatory gene Suppressor of Cytokine Signaling 1 (Socs1)

to accelerate the inflammatory response of CFs (135). As a typical

multifunctional miRNA, miRNA-155 can simultaneously target

multiple molecular nodes. When transferred to ECs through

exosomes derived from M1 macrophages, miRNA-155 can inhibit

the Sirtuin 1 (Sirt1)/protein kinase AMP-activated catalytic subunit

alpha 2 (AMPKa2)-endothelial nitric oxide synthase and Rac

family small GTPase 1 (RAC1)-p21 (RAC1)-activated kinase 2

(PAK2) signaling pathways, thereby reducing the angiogenic

capacity of ECs and impairing cardiac healing (136). M1

macrophage-derived exosomes can also exacerbate ECs injury by

targeting the transport of miR-4532 and activating the SP1 and NF-

kB P65 signaling pathways (137). Additionally, the highly expressed

lncRNA Metastasis-Associated Lung Adenocarcinoma Transcript 1

(MALAT1) in exosomes secreted by M1 macrophages can

competitively bind with miR-25–3p in ECs, promoting the

expression of Cell Division Cycle Protein 42 (CDC42), which in

turn activates the Mitogen-Activated Protein Kinase (MEK)/

Extracellular Signal-Regulated Kinases (ERK) pathway and

inhibits angiogenesis and myocardial regeneration (138).
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3.2 Role of M2 macrophage-derived
exosomes in IHD

M2 macrophage-derived exosomes account for an essential part

of the therapeutic role played by M2 macrophages. They carry miR-

148a that inhibits the expression of thioredoxin-interacting protein

(TXNIP) and inactivates the TLR4/NF-kB/NLRP3 inflammasome

signaling pathway, thus playing a cardioprotective role (139). They

also mediate CF proliferation, migration, and MF transformation by

transferring CircUbe3a to recipient cells targeting the miR-138–5p/

Rhoc axis (140). Concurrently, exosomes derived from M2

macrophages can regulate the death program of cardiomyocytes

through various mechanisms, with numerous miRNAs playing a

role. Concurrently, exosomes derived from M2 macrophages can

regulate the death program of cardiomyocytes through various

mechanisms, with numerous miRNAs playing a role. Specifically,

miR-1271–5p reduces the apoptosis of cardiomyocytes by

downregulating the expression of SOX6, whereas miR-378a-3p

mitigates cardiomyocyte pyroptosis by inhibiting the expression

of ELAVL1, thus destabilizing the NLRP3 inflammasome and

subsequently blocking the activation of the NLRP3/Caspase-1/

GSDMD pathway (141, 142). In summary, exosomes derived

from M2 macrophages can mitigate the damage caused by IHD

and improve the prognosis of the disease through various pathways,

such as alleviating inflammatory injury, reducing cardiomyocyte

death, and promoting cardiac repair. Therefore, they hold promise

as potential sources for therapeutic exosomes.
4 The therapeutic potential of
macrophages and their exosomes
in IHD

Macrophages and their exosomes play important roles in the

progression of IHD at different stages. M1 macrophages primarily

mediate early inflammatory responses, while M2 macrophages

regulate the cardiac repair process. As crucial mediators of

intercellular communication, exosomes have significant roles in

modulating immune responses and facilitating communication

between macrophages, cardiac cells, and the microenvironment.

Further exploration of the functions and specific mechanisms of

macrophages and their exosomes holds promise for uncovering

their potential therapeutic applications.

In recent years, regenerative medicine has been widely applied in

the treatment of IHD. The efficacy of stem cell therapy, particularly

mesenchymal stem cell (MSC) therapy, has been confirmed by

numerous preclinical and clinical studies (143, 144). There is also

abundant preclinical evidence supporting the use of exosome therapy

in animal models (145). Macrophages, due to their specific functional

roles in the pathological process of IHD, often serve as target cells in

related research. For instance, the studies conducted by Deng et al.

and Xu et al. explored the therapeutic mechanisms of MSC-derived

exosomes in the treatment of MI, although they act through different
TABLE 3 Effect of macrophage-derived exosomes on IHD.

Source
of

exosomes

Cargos Effect Target
pathway

M1-
macrophages

miR-
29a (134)

Accelerate cardiac fibrosis
and inhibit

vascular neogenesis

–

M1-
macrophages

miR-
155 (135)

Promote cardiac fibrosis Sevenless 1/SON

M1-
macrophages

miR-
155 (136)

Inhibit angiogenesis
Myocardial repair

Sirt1/AMPKa2;
RAC1-PAK2

M1-
macrophages

miR-
4532 (137)

Inhibit angiogenesis
Myocardial repair

SP1/NF-kB P65

M1-
macrophages

miR-25–
3p (138)

Inhibit angiogenesis
Myocardial repair

MALAT1/miR-
25–3p/CDC42

M2-
macrophages

miR-
148a (139)

Anti-inflammatory TXNIP and the
TLR4/NF-
kB/NLRP3

M2-
macrophages

CircUbe3a
(140)

Inhibition of fibrosis miR-138–5p/
Rhoc axis

M2-
macrophages

miR-378a-
3p (141)

Inhibition of
cardiomyocyte pyroptosis

NLRP3/Caspase-
1/GSDMD

M2-
macrophages

miR-
12715p
(142)

Inhibition of
cardiomyocyte apoptosis

TLR4/NF-
kB/NLRP3
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signaling pathways, both studies demonstrated that they improved

cardiac injury by modulating macrophage phenotypic polarization

(146, 147). There have also been studies on directly transplanting

macrophages for the treatment of IHD. As mentioned earlier,

transplantation of M2 macrophages has shown beneficial effects in

reducing cardiac fibrosis and improving heart function in both I/R

rats and heart failure mice models (88, 112). Macrophages have the

advantage of an innate ability to migrate and settle into damaged

tissue, which contributes to the functional implantation of

transplanted cells in the damaged heart (78). However, cell therapy

itself faces challenges such as poor recruitment and survival rates after

transplantation into ischemic hearts. Additionally, macrophage

transplantation presents difficulties in maintaining activated

macrophages and has lower clinical feasibility (148). Pretreatment

of macrophages may be able to partially address these issues. Chen

et al. pre-treated bone marrow-derived macrophages with a sodium-

dependent glucose transporter 2 inhibitor (SGLT2i) before

transplantation into a mouse model of MI. This resulted in the

suppression of inflammation, reduction of myocardial cell apoptosis,

and promotion of the transformation of native cardiac macrophages

into theM2 phenotype, which contributed to the reduction of adverse

ventricular remodeling after MI (149). Similarly, Podaru et al.

stimulated bone marrow-derived monocytes with macrophage

colony-stimulating factor (M-CSF) and IL-4 to induce their

differentiation into M2 macrophages before transplantation,

resulting in significant improvement in cardiac function and

structure in MI mice. The highlight of this study is that the

generated M2 macrophages not only enhance the reparative

secretion profile of endogenous reparative macrophages but also

possess good stability, maintaining an M2-like phenotype even in

the inflammatory environment after MI (150). Overall, macrophage

transplantation for the treatment of IHD has accumulated some

preclinical research data. However, further optimization of cell

delivery routes and studies involving the use of human cells are

needed before entering clinical trials. In comparison, a more

convenient alternative may be the direct delivery of exosomes that

carry the therapeutic functions of parent cells. For macrophages,

blocking the transport of M1 macrophage-derived exosomes and

promoting targeted delivery of M2macrophage-derived exosomes, or

promoting macrophage transformation from the M1 to M2

phenotype through the uptake of exogenous exosomes can all

contribute to the repair of damaged myocardial tissue.

Researchers have further developed and optimized exosomes

based on their characteristics. In terms of the therapeutic benefits of

exosomes themselves, although exosomes exhibit good targeting

ability, they have low persistence, and the use of biologics that can

prolong their duration of action would enhance their efficacy.

Biomaterials, such as hydrogels, have been widely employed in

the delivery of exosomes due to their excellent biocompatibility,

stability, and mechanical properties, which effectively extend the

duration of action and even enhance therapeutic effects (151). For

instance, Zou et al. constructed a composite system called Gel@Exo

by combining conductive hydrogel with umbilical cord MSC-

derived exosomes to improve their therapeutic effects on MI. This

composite system offers advantages such as controllable gel kinetics,

injectability, conductivity matching with natural myocardium,
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adaptability to heartbeats, softness, dynamic stability, and good

cellular compatibility. It significantly improves the retention time of

exosomes in the heart and optimizes their therapeutic effects (152).

Furthermore, engineering modifications of exosomes can enhance

their stability, bioactivity, and target binding capability at both

cellular and tissue-specific levels, thereby further improving their

therapeutic efficacy for diseases (153, 154). Techniques such as pre-

treating parent cells and incorporating self-assembling peptides into

the exosomes membrane allow the generated exosomes to better

cope with the complex physiological environment of ischemic

hearts (155, 156).
5 M1/M2 macrophages and their
exosomes in clinical application

Clinical trials of macrophages and their exosomes for the

treatment of cardiovascular diseases are still in the early stages, but

preliminary results have shown promise. In 2013, Perin et al.

(NCT00824005) significantly improved the left ventricular ejection

fraction (LVEF) of patients with chronic ischemic heart disease by

administering non-expanded autologous bone marrow macrophages

via transendocardial injections. This trial demonstrated the potential

positive outcomes of ex vivo expansion of macrophages for cardiac

repair in patients with chronic ischemic heart disease (157). Further

investigations revealed a total of 11 completed clinical studies on cell

therapy using macrophages, focusing on conditions such as

cardiomyopathy, arterial diseases, tumors, and other ailments.

Among them, three trials (NCT01670981, NCT01020968, and

NCT00765518) involved intramyocardial injection of Ixmyelocel-T,

which contained a mixture of macrophages, granulocytes, monocytes,

mixed myeloid progenitor cells, lymphocytes, and mesenchymal

stem/stromal cells, to treat heart failure due to ischemic dilated

cardiomyopathy. These studies showed a reduction in major

adverse cardiovascular events and improvement in symptoms,

attributing the effectiveness to the M2 macrophages in Ixmyelocel-

T. These M2 macrophages were found to be effective in removing

apoptotic cells, limiting tissue damage, and promoting wound

healing, confirming the efficacy of macrophage therapy (158,

159).Additionally, two studies on autologous M2 macrophage

therapy in children with severe cerebral palsy and patients with

non-acute stroke confirmed the clinical efficacy of M2 macrophages

in promoting neurological recovery without serious adverse events or

cellular rejection (160, 161), further demonstrating the safety and

efficacy of this approach.

As for exosome-related clinical trials, research has focused on

exosomes secreted by plasma, mesenchymal stem cells, and human

induced pluripotent stem cells for conditions like cancer,

myocardial infarction, and decompensated cirrhosis. However,

there have been no studies on exosomes secreted by M1 and M2

macrophages for the treatment of ischemic heart disease (IHD) yet.

Nonetheless, a clinical trial investigating the phenotype of

macrophages and their exosomes in type 2 diabetic patients who

develop myocardial infarction (NCT02768935) suggested that the

treatment of IHD with macrophages and their exosomes was

progressing toward clinical therapy.
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Overall, while there are fewer clinical trials involving

macrophages and their exosomes in IHD, the available data have

laid the initial groundwork for the development of new therapeutic

strategies. As more studies are conducted, we can expect to gather

more clinical evidence regarding the potential use of macrophages

and their exosomes in the treatment of cardiovascular diseases.
6 Perspective

From the perspective of the delivery characteristics of exosomes,

as endogenous extracellular vesicles, they possess excellent blood

stability, substance transport properties, and high targeting ability,

making them promising candidates as nanocarriers for drug delivery

(162–165). This has the potential to overcome the limitations

associated with traditional treatments for CVDs, such as low

bioavailability, poor retention, inadequate targeting, and complex

drug resistance. By utilizing methods such as ultrasound, transfection,

incubation, transgenesis, freeze-thaw cycles, and heat shock, drugs

can be loaded into exosomes for delivery, aiming to achieve

therapeutic effects and improve prognosis (162). The study by Gao

et al. utilized macrophage-derived exosomes as a nanoplatform for

loading the anti-inflammatory drug methylprednisolone acetate,

enhancing its anti-inflammatory and antioxidant effects, rescuing

the viability of an in vitro inflammatory cardiomyocyte model, and

providing preliminary evidence for the effectiveness of macrophage-

derived exosomes as a drug carrier for cardiac immunotherapy (166).

On the other hand, due to their abundant cell sources and diverse

cargo, exosomes exhibit complex functional heterogeneity, which

presents tremendous potential in clinical applications, including

disease diagnosis. For instance, several studies have indicated that

non-coding RNAs, such as miR-183, miR-21, and miR-208a, found

in circulating extracellular vesicles, are closely associated with

myocardial ischemic injury and hold promise as future biomarkers

for IHD (167–169).
7 Conclusion

In summary, macrophages and their exosomes actively

participate in and regulate the progression of IHD, potentially

serving as key therapeutic tools for IHD treatment in the future.
Frontiers in Immunology 10
Additionally, ongoing optimization of cell therapy and advanced

engineering techniques for exosomes are driving the development of

related therapeutic strategies. Further exploration of the functions

and mechanisms of macrophages and their exosomes will contribute

to a deeper understanding of the pathophysiological mechanisms

underlying IHD and provide new insights for its treatment.
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