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Due to the COVID-19 pandemic, the importance of developing effective

vaccines has received more attention than ever before. To maximize the

effects of vaccines, it is important to select adjuvants that induce strong and

rapid innate and acquired immune responses. Invariant natural killer T (iNKT)

cells, which constitute a small population among lymphocytes, bypass the innate

and acquired immune systems through the rapid production of cytokines after

glycolipid recognition; hence, their activation could be used as a vaccine strategy

against emerging infectious diseases. Additionally, the diverse functions of iNKT

cells, including enhancing antibody production, are becoming more understood

in recent years. In this review, we briefly describe the functional subset of iNKT

cells and introduce the glycolipid antigens recognized by them. Furthermore, we

also introduce novel vaccine development taking advantages of iNKT cell

activation against infectious diseases.
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Introduction

Invariant natural killer T (iNKT) cells, which express an invariant T cell receptor (TCR)

a chain, are a subpopulation of T cells that possess both T cell and NK cell phenotypes (1–

3). Conventional T cells recognize peptides presented on MHC class I or II molecules,

whereas iNKT cells recognize endogenous or exogenous glycolipids presented by CD1d (4–

6). Additionally, iNKT cells have already acquired effector functions during thymic

development, and similar to memory T cells, they rapidly produce large amounts of

cytokines, such as IFNg and IL-4, after activation. Thus, iNKT cells play a role in bridging

innate and acquired immune responses. Since the discovery of iNKT cells, specific ligands

recognized by iNKT cells have been explored and discovered (7, 8). iNKT cells recognize

several glycolipid antigens with similar structures through an invariant TCR, a unique
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feature of these cells. In this article, we review the features of iNKT

cells especially in response to microbes.
Effector subsets of iNKT cells

The invariant TCR of iNKT cells consists of Va14-Ja18 chains
and a restricted repertoire of Vb chains (Vb8, 7, 2) in mice, and

Va24-Ja18 chains and Vb11 in humans (1–3). Upon TCR

stimulation, iNKT cells rapidly produce various cytokines,

including IFNg, IL-2, IL-4, IL-13, and IL-17A, and stimulate other

immune cells. iNKT cells are classified into several effector subsets

similar to conventional T cells based on cytokine production and

regulatory transcription factors (9–11). NKT1 cells predominantly

produce IFNg as T helper (Th) 1 cells, NKT2 cells produce IL-4 and

IL-13 as Th2 cells, and NKT17 cells have functions similar to those

of Th17 cells. These effector subsets are already mature in the

thymus and are distributed to the tissues via their specific

chemokine receptors and adhesion molecules. However,

depending on the intensity of TCR stimulation and the

environment, iNKT cells may produce cytokines such as IL-4

from NKT1 cells and IFNg from NKT2 cells. This suggests that

iNKT cells function as “tuning players” in immune responses. iNKT

subsets localize differently among tissues (12). NKT1 cells are

mostly found in the liver, while NKT2 cells are found in lung and

mesenteric lymph nodes. In contrast, NKT17 cells are found more

abundantly in lymph nodes throughout the body. This distribution

bias may be caused by differences in the cytokines required for

homeostasis in each organ (13). Other functional subsets of iNKT

cells include NKT10 cells (14), which is an immunosuppressive

NKT subset that produces IL-10, and follicular helper NKT

(NKTFH) cells (15, 16), which are phenotypically similar to

follicular helper T (TFH) cells and stimulate B cells with IL-21

and costimulatory molecules. NKT10 and NKTFH cells localized in

peripheral tissues, such as adipose and lymphoid tissue respectively.

Although the detailed mechanisms of differentiation into NKT10

cells remain unknown, the quality and intensity of TCR stimulation

may likely be involved (17, 18).

In contrast to the above effector subset classification, functional

NKT cells may be classified based on the differential surface

expression of CD244 and CXCR6 (19). CD244+ CXCR6+ iNKT

cells (C2 NKT cells) are systemically circulating cells and produce

more IFNg and granzymes than CD244− CXCR6+ tissue-resident

iNKT cells (C1 NKT cells). Hence, C2 NKT cells participate in

antitumor and antimicrobial responses. As iNKT cells in human

blood can be identified by similar surface molecules, this

classification would be useful for the analysis of iNKT cells

in humans.
Glycolipid mediated iNKT
cell activation

The prototype antigen for iNKT cells is a-galactosylceramide

(aGalCer) that is synthesized based on Agelasphin, which was
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isolated from a marine sponge and has antitumor activity (5, 20).

Even a minimal amount of aGalCer induces IFNg and IL-4

production by iNKT cells. aGalCer has also been used to study

iNKT cell function and vaccines based on their activation, because

this glycolipid induces more robust TCR stimulation in iNKT cells

than known endogenous and pathogen-derived glycolipid antigens

(21). aGalCer-activated iNKT cells reportedly become anergic after

transient activation and proliferation (22). Additionally, when

activated with aGalCer, NKT1 cells produce large amounts of

IFNg and highly express IL-4, which is produced mainly by

NKT2 cells in steady state and is considered a characteristic of

NKT2 cells (23). Therefore, while understanding the function of

iNKT cells under physiological conditions, aGalCer results should
be carefully interpreted. However, aGalCer has become a promising

ligand in vaccine studies utilizing the effects of iNKT cell activation

(24, 25). Moreover, iNKT cells have the potential for replacing

conventional adjuvants. Vaccine studies using aGalCer will be

discussed later in this article.
Physiological glycolipid antigens of
iNKT cells

The physiological glycolipid antigen that most iNKT cells

recognize was identified with the intestinal symbiont

Sphingomonas sp. The a-linked glycosphingolipids (GSLs;

containing a galacturonic acid or glucuronic acid moiety) of

Sphingomonas sp. induce iNKT cells to produce IFNg and IL-4 in

a CD1d-dependent manner (26, 27). Bacteroides, a gram-negative

bacterium that comprises 50% of human intestinal bacteria,

produces sphingolipids similar to aGalCer (28–30). Bacteroides

fragilis produces sphingolipids to regulate both activation and

inhibition of iNKT cells. Among these sphingolipids, GSL-Bf717

inhibits proliferation and IFNg and IL-4 production in iNKT cells;

this effect is important to regulate the number and function of iNKT

cells in intestinal tissues (29). In that study, it was shown that the

regulation of iNKT cells by GSL-Bf717 in the neonatal stages

influences the sensitivity of iNKT cell-mediated colitis in adult

mice. Another study showed that B. fragilis regulates intestinal

iNKT cell function via sphingolipid synthesis and is dependent on

branched amino acids ingested by the host (31). Antibiotic-

associated dysbiosis reportedly affects the number and function of

iNKT cells, resulting in pathological conditions (32), although gut

microbiota composition was not changed in iNKT cell-deficient or

transgenic mice (33). This suggests that indigenous bacteria

contribute to intestinal homeostasis by regulating iNKT cells.

From the perspective of host protection, exogenous glycolipid

antigens recognized by iNKT cells were identified in several

pathogens. Borrelia burgdorferi—the pathogenic bacterium that

causes Lyme disease—produces a diacylglycerol (DAG)-based

glycolipid containing a-linked galactose (aGal-DAG). iNKT cells

recognize B. burgdorferi aGal-DAG via TCR and produce IFNg and
IL-4 (34–36). B. burgdorferi infections in iNKT cell-deficient mice

results in more severe arthritis and carditis compared to non-iNKT

cell-deficient control mice. Additionally, numerous spirochetes
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accumulate in the lesions, suggesting that antigen recognition by

iNKT cells is important for antibacterial immunity. Streptococcus

pneumoniae causes pneumonia, which can result in bacteremia and

meningitis, especially in children and the elderly, and produces an

a-linked glucose (Glc) containing DAG (aGlc-DAG). S.

pneumoniae aGlc-DAG was recognized by TCR on iNKT cells

(37). Neutrophil accumulation in the lungs via IFNg and cytokines

and chemokines, including IL-17 and GM-CSF produced by iNKT

cells, is reportedly important during pneumococcal infections (38–

40). Dendritic cells (DCs) play an important role in the stimulation

of iNKT cells. Maturation of DCs through Toll like receptors

upregulates CD1d and introduces TCR stimulation into

surrounding iNKT cells together with IL-12. Activated iNKT cells

then produce IFNg and express CD40L, enhancing IL-12

production from DCs that further augments the immune

response. More importantly, these glycolipids can activate not

only mouse but also human iNKT cells.

Not all pathogens have glycolipid antigens that are recognized

by iNKT cells. The filamentous fungus Aspergillus fumigatus and

the gram-negative bacterium Salmonella typhimurium reportedly

activate iNKT cells despite not having microbial glycolipid antigens

(41, 42), and that this effect is CD1d dependent. This suggests that

iNKT cells are activated by endogenous antigen/CD1d-mediated

TCR stimulation as well as indirect stimulation by cytokines from

antigen-presenting cells that were activated via pattern

recognition receptors.

How are iNKT cells able to recognize a wide variety of

glycolipids? Previous structural analysis of the iNKT cell TCR-

glycolipid-CD1d complex has demonstrated that the TCR of iNKT

cells changes the conformation of the CD1d-glycolipid antigen

complex (43, 44), which may allow iNKT cells to recognize

different but structurally similar glycolipid antigens. Contextually,

iNKT cells reportedly produce IFNg when exposed to IL-12 from

antigen-presenting cells stimulated by LPS (21, 45). However,

during TCR-independent activation, iNKT cells produced IFNg
but not IL-4 (21). Thus, although iNKT cells can be stimulated in

the absence of TCR stimulation similarly as NK cells, CD1d-

dependent TCR stimulation is important for IL-4 production.
Vaccine and NKTFH cells

There have been attempts to employ glycolipids as therapeutics for

various infectious diseases as well as in vaccines. iNKT cell-mediated

vaccines augment cellular and humoral immunity. For cellular

immunity, mice immunized with malarial antigen plus aGalCer
were more protected against malaria than those immunized with

the antigen alone (46). Additionally, mice immunized with the

Mycobacterium tuberculosis antigen plus aGalCer were also

protected from bacterial infection (47). Following administration,

aGalCer stimulates iNKT cells, thereby increasing the number of

antigen-specific CD8 T cells in an IFNg-dependent manner. Other

synthetic glycolipids were used in several studies. Although aGalCer
induces IFNg and IL-4 production in iNKT cells, a-C-GalCer (48) and
OCH (49) induce relatively biased cytokine production toward IFNg
and IL-4, respectively, in these cells.
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iNKT cells reportedly enhance B cell responses during influenza

infections under physiological conditions (50). iNKT cells play an

essential role in the initial formation of germinal centers (GC),

which is microstructure that regulates selection and proliferation of

antigen-specific B cells and is essential for antibody production.

During infection with the influenza virus, iNKT cells become a

source of IL-4 that is important not only for the induction of GC but

also for class switching and production of IgG1. Also, vaccines

containing a glycolipid as an adjuvant efficiently induce antibody-

producing responses mediated by B cells through the activation of

iNKT cells. Intranasal influenza hemagglutinin (HA) and aGalCer
vaccines more strongly induce HA-specific IgG in serum and HA-

specific IgA in mucosa than HA vaccine alone as well as exert a

potent protective effect even against lethal doses of influenza virus

infection (51–53). Although follicular helper T (TFH) cells play an

important role in the antibody-producing response in vivo (54),

follicular helper NKT (NKTFH) cells play a more central role in the

antibody-producing response induced by aGalCer-contained
vaccines (15, 16).

A vaccine containing liposome-encapsulated PBS57, an

aGalCer analog and pneumococcal capsular polysaccharide (CPS)

induces NKTFH cells (55). CPS-specific IgG1 induction by this

vaccine is dependent on CD1d expression on B cells and DCs,

indicate that the interaction of CPS-specific B cells and NKTFH cells

is important for specific antibody production. NKTFH cells

contribute to antigen-specific B cell responses via stimulatory

molecules, including as IL-21 and ICOS, and their follicular

differentiation is controlled by transcription factor Bcl6 (15).

However, the detailed differentiation mechanisms have not been

elucidated. Normally, NKTFH cells are not found in the thymus and

appear in the spleen and lymph nodes only upon the activation of

iNKT cells with aGalCer. This indicates that potent TCR

stimulation by aGalCer is important for NKTFH cell

differentiation. However, aGalCer stimulation alone does not

induce NKTFH cell differentiation in vitro, suggesting that

environmental factors are essential for acquiring follicular

phenotypes. Moreover, our recent study clarified that Gr-1+ cells

promote NKTFH cell differentiation by producing interleukin-27

(IL-27) post-aGalCer administration (56). IL-27 modulates

mitochondrial metabolism in activated iNKT cells and optimizes

the energy demand required for NKTFH cell differentiation. Gr-1+

cell-derived IL-27 is induced by iNKT cells via IFNg production.
Recently, it was shown that administration of nanoparticles

embedded with aGalCer activates iNKT cells in vivo more

efficiently than soluble aGalCer. Additionally, delivery by

nanoparticles enables activation of iNKT cells at doses 1,000×

lower than those used for in vivo studies and does not induce

iNKT cell anergy. Although nanoparticle vaccines inhibit T-

independent reactions by tolerizing or eliminating polysaccharide-

specific B cells, T-dependent reactions following vaccination

efficiently induces antigen-specific antibodies and protects mice

from lethal S. pneumoniae infection (57).

The administration of NKT-specific glycolipid alone induces

protection against microbial infections. 7DW8-5, the primary

compound of aGalCer, activates human and mouse iNKT cells

more potently than aGalCer (58). Intranasal administration of
frontiersin.org
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7DW8-5 provided protection against respiratory pathogens,

including SARS-COV2, RSV, and influenza viruses. However, as

administrating 7DW8-5 to mice postinfection was ineffective,

glycolipids may be more suitable for vaccine-like therapy. Herein,

the authors underscore that aGalCer and 7DW8-5 may potentially

be used in clinical applications as long as their safety is considered.

More importantly, their simplicity and affordability will assist in the
Frontiers in Immunology 04
development of next-generation vaccines. aGalCer has already been
used to treat patients with tumors, and that no significant toxicity

was reportedly observed (59). Additionally, toxicity was not

observed in monkeys treated with excessive amounts of 7DW8-5

as a vaccine adjuvant (60). Although additional safety studies are

warranted, aGalCer and 7DW8-5 are expected to be used in

clinical studies.
TABLE 1 Glycolipid antigens for invariant natural killer T (iNKT) cells .

Antigens Sources (Microorganisms etc) Cytokines* References

Bacterial

GSLs Sphingomonas sp. IFNg, IL-4 (26, 27)

GSL-Bf717, aGalCerBf Bacteroides fragilis IFNg, IL-4 (28–31)

aGal-DAG Borrelia burgdorferi IFNg, IL-4 (34–36)

aGlc-DAG Streptococcus pneumoniae IFNg, IL-4 (37)

Synthetic

aGalCer Synthesized based on the structure of agelasphins** IFNg, IL-4 etc. (5, 20, 21)

OCH aGalCer analog IFNg < IL-4 (49)

a-C-GalCer (7DW8-5) aGalCer analog IFNg > IL-4 (48, 58)
** Agelasphins are marine sponge glycolipids. *Cytokines produced by iNKT cells.
FIGURE 1

Glycolipid-dependent or -independent reaction of iNKT cells direct multiple outcomes. 1) Several microbial lipid antigens, which are derived
Streptococcus pneumoniae and Borrelia burgdorferi, activate iNKT cells through CD1d presentation on antigen-presenting cells (APCs). Activated
iNKT cells rapidly produce IFNg and augment innate and acquired immune responses, which are essential for protection against acute bacterial
infections. Not only IFNg but IL-4, IL-17 and GM-CSF are also involved in iNKT cell-mediated protective responses. 2) Infection with Salmonella
typhimurium stimulates APCs by LPS and induces IL-12 production (probably also IL-18 production). iNKT cell activation and IFNg production are
dependent not only on IL-12 but also partially on TCR stimulation by endogenous ligands presented by CD1d. 3) During viral infections involving
murine cytomegalovirus (MCMV), iNKT cells produce IFNg even in the absence of glycolipid antigens and is dependent on IL-12 and Toll like
receptor signaling. 4) In intestinal tissues, among symbionts, Bacteroides fragilis affect the number of iNKT cells in the young and regulate
homeostasis throughout life via multiple a-galactosylceramide (BfaGCs), which has immunomodulatory signaling and actions. In the skin, iNKT cells
also support tissue homeostasis by regulating local iron metabolism with transferrin production, which depends on CD1d.
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Concluding remarks

iNKT cells play an important role in microbial infections. Their

importance is evidenced by the fact that in some infections,

pathogens adopt strategies to reduce CD1d expression (61, 62).

Although iNKT cells constitute a small population of T cells with a

poor diversity of TCR, they enhance as well as regulate immune

responses through the recognition of various glycolipid ligands

(Table 1). iNKT cells are more prominent in subtle responses to

environment as compared with conventional T cells, i.e., as a

“tuning player” in immune reactions, which may be important

for induction of proper immune reactions. These functions would

be why iNKT cells have persisted despite evolution. Studies have

also shown the functional significance of iNKT cells not only for

protection against pathogens but also in the establishment and

maintenance of tissue homeostasis (Figure 1). Tissue accumulation

of iNKT cells during fetal life is necessary to maintain intestinal

tract and skin homeostasis (63, 64), and iNKT cells are also involved

in regulating peripheral serotonin release. These show that iNKT

cells contribute not only to the immune system but also to systemic

homeostasis (65).

Although iNKT cells rapidly respond during microbial

infections, their functions are diverse, and their importance in

various tissues need to be elucidated. iNKT cell-mediated vaccines

are potent and are expected to be components of next-generation

vaccines. However, due to their diverse functions, the route of

administration, timing, and duration warrants further investigation.
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