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Exosomes, as a class of small extracellular vesicles closely related to the

biological behavior of various types of tumors, are currently attracting research

attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the

stability of their membrane structure and their wide distribution in body fluids

render exosomes promising biomarkers. It is expected that exosome-based

liquid biopsy will become an important tool for tumor diagnosis in the future.

For cancer treatment, exosomes, as the “golden communicators” between cells,

can be designed to deliver different drugs, aiming to achieve low-toxicity and

low-immunogenicity targeted delivery. Signaling pathways related to exosome

contents can also be used for safer and more effective immunotherapy against

tumors. Exosomes are derived from a wide range of sources, and exhibit different

biological characteristics as well as clinical application advantages in different

cancer therapies. In this review, we analyzed the main sources of exosomes that

have great potential and broad prospects in cancer diagnosis and therapy.

Moreover, we compared their therapeutic advantages, providing new ideas for

the clinical application of exosomes.
KEYWORDS
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1 Introduction

In recent years, research has led to the continuous development of various technologies

and the emergence of new drugs for the treatment of cancer worldwide (1–3). Nevertheless,

therapeutic options fail to meet the clinical needs of patients, particularly those with recurrent

or refractory cancer (4, 5). There are conflicting views regarding the appropriateness of

various treatment options. For example, surgical resection is the most common treatment
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option for head and neck cancer (6–8). However, surgery is often

unable to eradicate the tumor, leading to poor treatment effect (6).

For glioma, the most common tumor type in the head and neck,

surgical resection combined with temozolomide adjuvant

chemotherapy is often used (9, 10); nonetheless, patients with

glioma are prone to develop chemotherapy resistance (11, 12).

Chemotherapy resistance is found in patients with various types of

cancer (e.g., glioma, pancreatic, breast). Chemotherapy has limited

effectiveness in the treatment of pancreatic and breast cancers (13,

14); thus, these cancer types are associated with high mortality rates

(15). For the treatment of osteosarcoma, chemotherapy with

doxorubicin has been linked to minimal success because of cardiac

toxicity and limited drug targeting (16, 17), thereby complicating

treatment (18, 19).

Traditional approaches to the treatment of tumors are

characterized by several limitations. Therefore, new treatment

methods have been gradually developed (e.g., immune checkpoint

inhibitor therapy) (20, 21). Immune checkpoint inhibitors enhance

the anti-cancer effect of treatment, thereby blocking the progression

of tumors (22), especially in melanoma, lung cancer, and kidney

cancer (23–25). However, the treatment is not effective against all

tumor types (e.g., ovarian cancer, prostate cancer, pancreatic

cancer, and glioblastoma) because certain tumors are “cold” due

to the inability of immune cells to identify cancer cells (26, 27). This

limits the effectiveness of immune checkpoint inhibitors, thus

resulting in poor immune therapy outcomes (28, 29).

Immunotherapy-based cell therapies, such as mesenchymal

stem cell (MSC) therapy, immune cell therapy (dendritic cells

[DCs], natural killer [NK] cells, T cells, B cells, etc.) (30–32), and

blood cell therapy (33), are also attracting considerable research

attention for the treatment of cancer. Various macromolecules can

be synthesized and secreted to exert paracrine effects and affect the

local microenvironment, thus enhancing the effect of traditional

surgical treatment (34, 35). This therapeutic approach can also

locate the damage site, repair the damaged tissue, and achieve

precise molecular targeting. However, cell therapy has been linked

to risk of tumorigenicity, transmission, and unexpected

differentiation (36). Moreover, due to the controlled regulation of

the immune system, immunotherapy is often associated with severe

adverse effects (e.g., autoimmune diseases, inflammation) (37). If

immunotherapy is to move from preclinical research to clinical

research, it is urgent to understand how to improve the response

efficiency of different types of immunotherapy and avoid the risk of

tumorigenicity, unexpected differentiation and inflammation (38).

Due to the shortcomings of the above therapies, cell-free alternative

therapies (e.g., gene therapy, exosome-based therapy) have attracted

increasing attention (39–41). Cell-free therapies are relatively safe as

compared with cell therapies and overcome the limitations of drug

delivery to achieve effective penetration of target organs (42). Cell-

free therapy can reduce the toxic side effects of radiotherapy and

chemotherapy, as well as improve the patient’s own immunity and

quality of life, This therapy is beneficial for almost all tumor types

(43, 44). In recent years, with the gradual deepening of exosome

research, the absolute advantages of exosomes as cell-free therapy

have emerged (45). As a kind of natural extracellular vesicles,

exosomes contain bioactive molecules for intracellular
Frontiers in Immunology 02
communication and intercellular material transport (46), which

can be used as carriers to deliver small molecules, nucleic acids and

other therapeutic drugs to the affected site (44), improve the local

drug concentration and reduce side effects (47, 48). The low toxicity

and low immunogenicity of exosome-mediated drug delivery

provide hope for cell-free therapy of various diseases (47, 49). In

addition, tumor-derived exosomes (TEX) play an important role in

non-invasive liquid biopsy (50, 51). The discovery of TEX enables

us to have a more comprehensive and specific understanding of

exosomes, and also provides new ideas for clinical diagnosis and

treatment (52).

Exosome-based therapy is a common method of cell-free

therapy, that has shown great potential in inhibiting tumor

progression or enhancing anti-tumor immunity (53). Studies have

revealed that exosomes can easily cross biological barriers (e.g.,

blood–brain barrier [BBB] (54), skin mucosal barrier, placental

barrier) and can be modified to improve their efficiency (55, 56).

Due to the lipid bilayer structure, the unique surface, and their

ability to transfer proteins, exosomes have been utilized as outside

nanoparticle carriers of several drugs, nucleic acids, and protein

receptors for various cancer cells (57, 58). Exosomes are a type of

extracellular vesicles (EVs), along with microvesicles and apoptotic

bodies (59). Microvesicles are 100–1,000 nm in size and are formed

by cell membrane detachment following direct budding. Apoptotic

bodies are protrusions (particle size: 1,000–5,000 nm) formed by the

bubbled membrane of apoptotic cells during programmed cell

death, which subsequently disintegrate (60). Exosomes (diameter:

50–150 nm) are classified as relatively small EVs. Exosomes are

luminal vesicles (ILVs) that bud inward from the inner membrane

during the maturation of multivesolar bodies (MVBs), namely early

endosomes. After processing and modification, exosomes are

formed into late endosomes (61). Exosomes secreted into the

extracellular space act by binding to the corresponding recipient

cells in four ways, including: A. Uptake by target cells via

endocytosis, B. Direct fusion with the cell membrane of target

cells, C. Receptor interaction, D.Targeting CSCs specific panthways:

Wnt, Notch, Hippo, NF-kB, TGFb, etc (62–65) (Figure 1).

Exosomes contain various types of molecules (e.g., proteins,

lipids, mRNA, DNA) (66). The molecular composition of

exosomes is relatively stable and tissue-specific, and exosomes

play important roles in cell communication (67). Exosomes

exhibit tissue-targeting ability, good biocompatibility, low toxicity,

low immunogenicity (47, 68, 69), and long-term stability and

activity (47, 70). These advantages render exosomes ideal carriers

for the delivery of anti-cancer drugs. Studies have shown that

exosomes-coated drug (e.g., adriamycin, paclitaxel, sorafenib) can

reduce the side effects of drugs, as well as improve treatment

efficiency and drug utilization (71, 72).

Exosomes are derived from a wide variety of cell sources (73)

(Figure 2). They can be obtained from the culture supernatant of

MSCs, immune cells, cancer cells, epithelial cells, endothelial

progenitor cells, platelets, and fibroblasts (74, 75). Furthermore,

they can also be found in various body fluids (e.g., blood, urine,

breast milk, saliva) (76). Exosomes have been used as cell-free

therapy in multiple manners, and are promising biomarkers for

cancer diagnosis and prognosis (77, 78). In addition, exosomes
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derived from different sources showmulti-dimensional features and

functions, providing new ideas for the diagnosis and treatment of

various cancer types (79, 80).
2 MSCs-derived exosomes (MSCs-
Exo) in cancer therapy

MSCs are adult stem cells with potential for self-renewal and

multi-directional differentiation (81). They can be isolated from

bone marrow, fat, umbilical cord, dental pulp, and numerous other

tissues (82, 83). Under appropriate conditions, MSCs can

differentiate into various cell types (e.g., osteoblasts, adipocytes,

chondrocytes) (84, 85). They possess significant anti-inflammatory

properties and play important roles in immune regulation (86),

hematopoiesis, and tissue repair (87–89). Studies have shown that

MSCs have tumor tropism ability, enabling them to offer unique

advantages in tumor therapy and regulate tumor fate (90).

Recently, MSCs-Exo have been shown to act as a novel drug

delivery system to package various target molecules and play a

therapeutic role in various diseases (91). They also play an active

role in the process of vascular development and repair in multiple

tissues (92, 93). MSCs-Exo are characterized by low immunogenicity

(94, 95), high biocompatibility (95, 96), and high stability as a carrier.

These features offer a new option for the delivery of drugs targeting

tumor cells (97). As an ideal drug delivery system, MSCs-Exo can

selectively deliver therapeutic drugs to the target, avoid recognition

and degradation by immune cells, and control the release of

combined therapeutic drugs at the target. Modified MSCs-Exo are

obtained by incorporating different therapeutic agents (e.g., proteins,

RNA, chemotherapy drugs) into MSCs-Exo through several loading

methods (98). At present, these drugs have been loaded into

exosomes by ultrasonic treatment, electroporation, transfection,
Frontiers in Immunology 03
incubation, extrusion, saponin-assisted loading, transgenic, freeze-

thaw cycle, heat shock, pH gradient method, and hypoosmotic

chromatography (99). It has been shown that modified MSCs-Exo

improve the therapeutic efficacy of cancer. Different MSCs-Exo can

also offer their outstanding advantages as drug delivery systems.

Despite the great potential of MSCs-Exo, their application as a drug

delivery system has been hampered by several challenges (100).

Hence, the clinical application of modified Exo warrants

further investigation.

2.1 Exosomes from human umbilical cord-
derived MSCs (hucMSCs)

The human umbilical cord is a promising source of MSCs (101).

Different from bone marrow stem cells and adipose-derived stem

cells (ADSCs), hucMSCs have been associated with painless

collection, easy acquisition (102), more primitive cells, higher

proliferative ability, less immune rejection (103), and ability for

faster self-renewal (104) (Figure 3). The hucMSCs differentiate into

various cells in three germ layers (e.g., bone, cartilage, fat, skeletal

muscle, myocardial cells, endothelial cells), and synthesize and

secrete a group of trophic factors and cytokines (103). They also

support the expansion and function of other cells (e.g.,

hematopoietic stem cells, embryonic stem cells, NK cells, islet-like

cell clusters, neurons, and glial cells), and can migrate to and return

to the pathological area (105). Evidence has shown that hucMSCs-

derived exosomes (hucMSCs-Exo) have similar functions to

hucMSCs, with low immunogenicity and non-tumorigenicity

(102). As a new cell-free alternative therapy, hucMSCs-Exo have

been widely used in regenerative medicine and cancer treatment

(106, 107). Below, we introduce the application of hucMSCs-Exo in

the treatment and diagnosis of cancer in various systems of

the body.
FIGURE 1

The way in which exosomes work: (A) Uptake by target cells via endocytosis (B) Direct fusion with the cell membrane of target cells (C) Receptor
interaction D.Targeting CSCs specific panthways: Wnt, Notch, Hippo, NF-kB, TGFb, etc.
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2.1.1 hucMSCs-Exo for head and neck tumors
Brain tumors are among the deadliest types of cancer (108, 109).

Great progress has been achieved in early diagnosis and treatment

(e.g., surgical resection, adjuvant radiotherapy, and chemotherapy)

(110). Nevertheless, the prognosis of patients with glioma remains

poor and the mortality rate is high due to the lack of radical treatment

(111–113). Moreover, the BBB prevents the complete delivery of

drugs to the brain tissue; thus, the treatment of brain tumors is

challenging (114). Studies have shown that exosomes contain various

long-noncoding RNAs (lncRNAs) and proteins (115), which are
Frontiers in Immunology 04
involved in intercellular communication and cell signal

transduction (40). For example, lncRNA phosphatase and tensin

homolog pseudogene 1 (PTENP1) is a competing endogenous RNA,

which exerts its tumor suppressor function by regulating the

expression of PTEN in many malignant tumors (116). MicroRNAs

(miRNAs) are small noncoding RNA molecules that regulate gene

expression (117). According to their gene targets, miRNAs have been

associated with cancer development and oncogenic (or tumor

suppressor) effects (118). The miRNAs play a role in almost all

aspects of cancer biology (e.g., proliferation, apoptosis, invasion/
FIGURE 3

A comparison of the advantages and disadvantages of exosomes derived from umbilical cord, bone marrow, and adipose-derived mesenchymal
stem cells in clinical application.
FIGURE 2

Exosomes derived from mesenchymal stem cells, immune cells (dendritic cells, macrophages, T cells, B cells, natural killer cells, neutrophils), tumor
cells including hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), gastric cancer (AGS), prostate cancer (PCa), bladder
cancer (BLCa), glioblastoma (GBM), nasopharyngeal carcinoma (NPC), melanoma (MM), colorectal cancer (CRC), oral cancer (OC), non-small cell
lung cancer (NSCLC), cholangiocarcinoma (CCA), osteosarcoma (OS), breast cancer (BC) and other sources are useful for the diagnosis and
treatment of the company working.
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metastasis, angiogenesis) (118). There are many types of miRNA

(e.g., miR-155, miR-10b, miR-21, miR-10a, miR-10a-5p, miR-221)

(119). Among them, miR-10a-5p can promote the progression of

pancreatic cancer, bladder cancer, cholangiocarcinoma, and other

tumors (120–122). Hao et al. investigated the mechanism of lncRNA

PTENP1 in glioma. They found that lncRNA PTENP1 could be

packaged into hucMSC-Exo and transferred to glioma cell line U87

cells, where it bound to miR-10a-5p in tumor tissues (123) (Figure 4).

Thus, it inhibits the expression of tumor suppressor gene PTEN and

prevents tumor progression. The results showed that hucMSCs-Exo

have high anti-tumor ability by regulating the miR-10a-5p/PTEN

signaling pathway (123). This evidence may provide a possible target

for the early diagnosis and treatment of glioma in clinical

practice (123).

2.1.2 hucMSCs-Exo for gastrointestinal tumors
Pancreatic cancer is an insidious and highly metastatic

malignant tumor type (124, 125), which progresses very rapidly
Frontiers in Immunology 05
(126); the 5-year survival rate of patients with pancreatic cancer is

<10% (127, 128). Pancreatic ductal adenocarcinoma (PDAC)

accounts for >90% of pancreatic cancer cases (129), and is one of

the most aggressive types of tumors worldwide with a very poor

prognosis (130). Chemotherapy is currently the first-line treatment

for pancreatic cancer in clinical practice (131); however, its

therapeutic effect is poor due to the existence of chemoresistance

mechanisms (132).

Exosomes are important mediators of intercellular communication

in the development of drug resistance, and can be used as delivery tools

(122, 133). They have become a key carrier to deliver miRNA to cancer

cells (70, 134), and their function is often achieved through pathways

related to transforming growth factor-b (TGF-b) (135). TGF-b is a

member of the TGF-b family of growth and differentiation factors,

which consists of TGF-b, bone morphogenetic proteins (BMPs), TGF-

bs, growth and differentiation factors (GDFs), activin/inhibin,

mullerian inhibitory factor (MIF), and other structural-related

protein family (136). TGF-b is highly associated with cell
FIGURE 4

The mechanism of action and therapeutic targets of hucMSCs-Exo in the treatment of glioblastoma(GBM), pancreatic ductal adenocarcinoma
(PDAC), esophageal squamous cell carcinoma (ESCC), colorectal cancer (CRC), and breast cancer (BC); the mechanism of action and targets for
therapy using BMMSCs-Exo in the treatment of glioblastoma (GBM), oral cancer (OC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC),
pancreatic ductal adenocarcinoma (PDAC), cholangiocarcinoma (CCA), hepatocellular carcinoma (HCC), osteosarcoma (OS) and bladder cancer
(BCa); the mechanism of action for ADSCs-Exo in treating hepatocellular carcinoma (HCC), bladder cancer (BCa) and breast cancer (BC).
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proliferation and differentiation (137), immune surveillance (138),

inflammation, and cancer development (139). However,

overexpression of TGF-b can cause the formation of cancer-

associated fibroblasts, extracellular matrix, and epithelial–

mesenchymal transition (EMT), which could lead to cancer (139).

TGF-b pathway plays a dual role in cancer progression (140, 141); it is

an inhibitor of tumor cell growth and an inducer of tumor metastasis

(142), thereby playing an important role in the development and

metastasis of tumors (143). TGF-b functions mainly by binding to the

corresponding ligands, which are divided into three main classes,

namely cell surface type I and type II serine/serine kinase receptors

(TGFbRI and TGFbRII, respectively) and co-receptors endobilin and

b-glycans (termed type III receptors or TGFbRIII) (144). It acts by
binding to its corresponding receptors and activating the downstream

effector molecule Smad, which is the core of the TGF-b pathway and

the key intracellular effector of TGF-b (129, 145). TGF-b/Smad

signaling plays an important role in fibrosis, and elevated TGF-b
levels in serum or tumor tissues indicate poor prognosis of PDAC,

Ding et al. demonstrated that hucMSCs-Exo could transfer exogenous

tumor suppressor miR-145–5p (146). The hucMSCs-Exo could

downregulate the expression of Smad3 in PDAC cells and inhibit the

proliferation and invasion of PDAC cells. These findings also indicated

that hucMSCs-Exo could be an excellent delivery vector for exogenous

miR-145–5p to inhibit the progression of PDAC (146). Galectin-3

(LGALS3) is a member of the galectin family (147). Galectins are

located on the membrane of various tumor cells and participate in the

regulation of cell growth, inhibition of cell apoptosis, and mediation of

cell adhesion, as well as the formation of new blood vessels, and tumor

invasion and metastasis (148) (Figure 4). Therefore, LGALS3 shows

promise as a therapeutic target for pancreatic cancer. Xie et al. reported

that hucMSCs-Exo could carry miRNA-128–3p to inhibit the

proliferation, invasion, and migration of PANC-1 cells in vitro by

targeting LGALS3 through miRNA (149).

The hucMSCs-Exo also play a great role in the treatment of

colorectal cancer (CRC) and esophageal cancer (107). CRC is the

second most common type of cancer globally (150), and its etiology

includes genetic and environmental factors (151, 152). Treatment

includes endoscopic and surgical local excision, preoperative

radiotherapy and systemic therapy, targeted therapy, and

immunotherapy (153, 154). Succinic acid receptor 1 (SUCNR1)

mutation is a gene mutation causing rectal and gastric cancer. This

gene promotes lung cancer metastasis by promoting macrophage

polarization. Therefore, targeting SUCNR1 may be a promising

approach to CRC treatment. Cell-free alternative therapy has been

gradually applied to CRC (155). Chen et al. found that hucMSCs-

Exo enriched with miR-1827 plays an important role in inhibiting

liver metastasis of CRC by targeting SUCNR1 to inhibit M2

macrophage polarization (Figure 4). These exosomes can inhibit

the progression and metastasis of CRC (156).

Esophageal cancer remains one of the most prevalent and

aggressive types of cancer (157). Clinically, there are two subtypes

of esophageal cancer, namely esophageal adenocarcinoma

and esophageal squamous cell carcinoma (ESCC) (158).

Downregulation of miRNA-375 is a common phenomenon in

ESCC, and associated with poor prognosis, low survival rate, and

tumor metastasis (159). Using bioinformatics databases, He et al.
Frontiers in Immunology 06
predicted the target-enabled homolog of miRNA-375 (ENAH),

commonly known as MENA, This is a member of the Ena/

vasodilator stimulated phosphoprotein (Ena/VASP) group and

consists of actin-related proteins that play diverse roles in

different cells. The hucMSCs-Exo delivered miRNA-375, which

combined with ENAH inhibited ESCC cell proliferation, invasion,

and migration, and promoted cell apoptosis and tumor

growth (160).

2.1.3 hucMSCs-Exo for reproductive
system tumors

Ovarian and breast tumors are the main types of reproductive

system cancer that threaten the life and health of women (161).

Ovarian cancer refers to a group of heterogeneous tumors that can

originate from any histological part of the ovary (e.g., epithelial

cells, stromal cells, and germ cells) (162). The treatment of ovarian

cancer includes surgery and chemotherapy. Despite aggressive

treatment, the survival rate of patients with advanced ovarian

cancer remains poor (163). Thus, more effective methods of

diagnosis and treatment are needed (164). Qu et al. found that

hucMSCs-Exo could be used to carry miR-126–3p, forming miR-

126–3p-hucMSCs-Exo. Notably, miR-126–3p was a positive

regulator of angiogenic activity. In the treatment of premature

ovarian cancer, miR-126–3p promotes ovarian angiogenesis and

anti-apoptosis (165).

The hucMSCs-Exo have also been utilized in breast cancer

therapy. Breast cancer is the most common type of cancer in

women, the second most common type among newly diagnosed

cancers worldwide, and the leading cause of cancer-related death

(166). It is a heterogeneous disease involving genetic and

environmental factors. The treatment methods include surgery,

radiotherapy, and chemotherapy. Despite the continuous

improvement of therapeutic methods, drug resistance remains a

great obstacle. New targeted therapies provide novel ideas for the

treatment and diagnosis of breast cancer. Exosomal miR-21–5p is

significantly upregulated and promotes metastasis in several types

of cancer; however, its role in breast cancer has not been thoroughly

investigated. Du et al. found that miR-21–5p can be used in the

treatment of breast cancer (167). Zinc finger protein 367 (ZNF367)

belongs to the zinc finger protein family and is overexpressed in

various types of cancer. ZNF367 inhibited tumor growth,

proliferation, migration, and invasion of breast cancer, promoting

tumor invasion and metastasis. The miR-21–5p carried by

hucMSCs-Exo binds to the 3’-untranslated region (3’-UTR) of

ZNF367 to inhibit the progression of breast cancer (167). The

hucMSC-Exo carried miR-224–5P and miR-148b-3p, which also

played an important role in inhibiting the progression of breast

cancer. Wang et al. found that hucMSCs-Exo carrying miR-224–5p

played a role in autophagy in breast cancer, and miR-224–5p could

target and bind to stem cell-related gene (homeobox A5 [HOXA5])

to regulate autophagy (168). Moreover, it can affect the proliferation

and apoptosis of breast cancer cells. Yuan et al. reported that

hucMSCs-Exo carrying miR-148b-3p inhibited the progression of

breast cancer by downregulating tripartite motif containing 59

(TRIM59). The latter is related to the regulation of the

development of human diseases (e.g., cancer). Elevated TRIM59
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1401852
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1401852
has also been detected in numerous malignancies, including breast

cancer (169). Downregulation of TRIM59 inhibits the progression

of breast cancer (Figure 4).
2.2 Exosomes from bone marrow-derived
MSCs (BMMSCs)

BMMSCs are the first MSCs identified (84). They have been

described as the progeny of fibroblasts possessing colony-forming

ability and differentiation potential (170, 171). In addition to

BMMSCs-specific markers (CD73, CD90, CD105) and negative

surface markers (CD11b, CD14, CD19, CD34, CD45, CD79a), and

human leukocyte antigen-DR (HLA-DR), human-derived

BMMSCs also express other markers (CD10, CD29, CD44,

CD133) (171). BMMSCs are multipotent cells that can

differentiate into osteoblasts, chondrocytes, and adipocytes (172).

They are widely used in the treatment of various diseases due to

their self-regeneration, differentiation, and immune regulation

(downregulation of T cells, B cells, NK cells, and antigen-

presenting cells through various mechanisms) (173). Compared

with hucMSCs and ADMSCs, BMMSCs have high potency for

clinical use in the treatment of various diseases (e.g., bone and

cartilage, immune system, nervous system, cardiovascular, viral/

infectious, cancer, wounds and injuries). The exosomes produced

by BMMSCs can also be utilized for this purpose (174, 175).

Compared with BMMSCs, BMMSCs-derived exosome (BMMSCs-

Exo) have smaller volume, are associated with less immune

rejection, and can easily transport therapeutic agents, thus playing

a great role in overcoming resistance to cancer treatment (Figure 3).

Consequently, BMMSCs-Exo show promise in the treatment

of cancer.
2.2.1 BMMSCs-Exo for head and neck tumors
Anti-angiogenesis strategies are often used in the treatment of

glioma (176). These strategies mainly target the vascular endothelial

growth factor (VEGF) signaling pathway (VEGF/VEGFR) (177),

angiopoietin/Tie2 (Ang/Tie2) signaling pathway, and matrix

metalloproteinases (MMPs) (178, 179). It is well established that

the platelet-derived growth factor/platelet-derived growth factor

receptor (PDGF/PDGFR) axis also plays a key role in glioma

angiogenesis (180). Han et al. reported that BMMSCs-Exo could

inhibit the growth of glioma cells in vitro and in vivo. After co-

culture of BMMSCs-Exo and glioma cells, the number of

endothelial progenitor cells and human umbilical vein endothelial

cells was reduced, and the angiogenesis ability was weakened (181).

The underlying mechanisms were reduced levels of PDGF-BB,

interleukin-1 (IL-1), phosphorylated-protein kinase B (p-AKT)

and cathepsin B (CTSB). These exosomes exert their anti-tumor

effects by downregulating the PDGF/PDGFR axis (181).

Oral cancer is currently the sixth most common type of

malignant tumors worldwide, threatening the health of

individuals (182). The treatment of oral cancer includes

traditional (surgery, radiotherapy, and chemotherapy) and new

(photothermal therapy, exosomes) options. In exosome therapy,
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exosomes are often used to carry miRNA (183). Studies have shown

that the disorder of miRNA is related to the malignant

transformation of tumors (184). For example, miRNA-585 is

lowly expressed in oral cancer and can be used as a tumor

suppressor, Shah et al. found that the expression of miRNA21

was negatively correlated with the prognosis of oral cancer (185).

Xie et al. used a nano-miRNA system to achieve targeted therapy of

oral cancer. Exosomes delivered miR-101–3p in vitro and in vivo to

inhibit the proliferation, invasion, and migration of oral cancer cell

line TCA8113, as well as inhibit tumor growth by targeting and

downregulating collagen type X alpha 1 chain (COL10A1) of the

collagen family (186). Therefore, BMMSCs-Exo upregulating miR-

101–3p may become a new direction for the development of oral

cancer treatment (186). However, the underlying mechanisms

require further investigation (Figure 4).
2.2.2 BMMSCs-Exo for respiratory tumors
Cyclin E1 (CCNE1) is an oncogenic driver gene that promotes

the progression of various cancer types (e.g., lung, ovarian,

endometrial) (187). CCNE2 protein forms a complex with cyclin

dependent kinase 1 (CDK1), promoting cell cycle switching from

G1 to S phase (188). Liang et al. reported that CCNE1 and CCNE2

can be used as therapeutic targets for non-small cell lung cancer,

and BMMSCs-Exo carrying miR-144 could target CCNE1 and

CCNE2. Downregulation of CCNE1 and CCNE2 can inhibit the

development of non-small cell lung cancer cells (189).

2.2.3 BMMSCs-Exo for gastrointestinal tumors
The miR-4461 contained in BMMSCs-Exo targets envelope

coatomer protein complex b2 (COPB2) and inhibits the

migrat ion and invasion of CRC cel ls . BMMSCs-Exo

overexpressing miR-16–5p inhibit the proliferation, migration,

and invasion of CRC cells (115). Moreover, they stimulate the

apoptosis of CRC cells by downregulating integrin-a2 (ITGA2)

(190). Scavenger receptor class A member 5 (SCARA5) is a newly

discovered tumor suppressor which inhibits the phosphorylation of

AKT and phosphatidylinositol 3-kinase (PI3K) in CRC cells and

tumors. Notably, SCARA5 in BMMSCs-Exo inhibits CRC

progression by inactivating PI3K/AKT (191, 192). This evidence

highlights the potential clinical utility of SCARA5-containing

BMMSCs-Exo in the treatment of CRC (192). BMMSCs-Exo may

also be used in the treatment of colitis. Moreover, the effect of

interferon-g-induced (IFN-g-induced) BMMSCs-Exo in this setting

was obvious. IFN-g directly targets and inhibits signal transducer

and activator of transcription 3 (STAT3) by upregulating the

expression of miR-125a and miR-125b, thereby inhibiting T

helper 17 (Th17) differentiation and enhancing the ability of

BMMSCs-Exo to improve the colitis phenotype in mice (193).

The role of BMMSCs-Exo in the treatment of pancreatic cancer

cannot be ignored. BMMSCs-Exo significantly inhibited the

invasion, migration, and proliferation of PDAC cells, as well as

tumor stemness (194). Exosomes extracted from BMMSCs with

high levels of miR-1231 inhibit the activity of PDAC, and exosomal

miR-1231 may also be a potential indicator for the diagnosis of

pancreatic cancer in the future (195). The induction of more
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intratumoral effector immune cells and the reversal of

immunosuppression are the key to the treatment of PDAC (196).

BMMSCs-Exo delivery system was constructed using oxaliplatin

prodrug surface modification as an immunogenic cell death trigger.

BMMSCs-Exo were used to improve PDAC-targeting ability and

increase drug accumulation in PDAC cells (197).

In addition to the construction of a nano-miRNA system,

exosomes are often used to deliver chemotherapy drugs (e.g.,

doxorubicin, paclitaxel, curcumin, temozolomide, 5-fluorouracil

[5-FU]) (198). The delivery of chemotherapeutic drugs can

reduce drug resistance and the toxicity of direct use of

chemotherapeutic drugs, as well as achieve more targeted therapy

and improve the utilization of drugs (199). Chen et al. reported that

the anti-cholangiocarcinoma drug 5-FU was loaded into BMMSCs-

Exo using sonication and incubation methods. The anti-tumor

activity of 5-FU-BMMSCs-Exo was higher than that of free 5-FU.

BMMSCs-Exo-delivered 5-FU can combat cholangiocarcinoma in

vitro, achieving targeted delivery (200).

Li et al. investigated the role of exosomal miR-338–3p derived

from BMMSCs in hepatocellular carcinoma (HCC). They found

that exosomal miR-338–3p upregulation or EST1 silencing

inhibited the proliferation, invasion, and migration of HCC cells,

and induced apoptosis (201). BMMSCs-Exo-delivered miR-338–3p

can delay the development of HCC by targeting and

downregulating EST1, thus providing a new promising

therapeutic target for HCC (202).

2.2.4 BMMSCs-Exo for skeletal system tumors
Osteosarcoma is a type of bone tumors with a high incidence in

children and adolescents (203, 204). It has been reported that

transformer 2 beta homolog (TRA2B) is overexpressed during the

progression of osteosarcoma, and BMMSCs-Exo can carry miR-206

and target TRA2B to inhibit the progression of this disease (205).

Wei et al. also found that BMMSCs-Exo carried chemotherapy drug

doxorubicin to treat osteosarcoma. Moreover, use of the nano-drug

delivery system reduced the cardiotoxicity of treatment with

doxorubicin and improved its targeting effect (206). BMMSCs

exosome mimetic was prepared, and doxorubicin was embedded

into it to form a complex for the treatment of osteosarcoma (206).

The exosome mimetic-doxorubicin showed more potent tumor

inhibitory activity and fewer side effects than free doxorubicin.

This novel bio-nanomedicine system may provide a good strategy

for the development of novel precision drugs for osteosarcoma.

2.2.5 BMMSCs-Exo for urologic tumors
Bladder cancer is the most common malignant tumor type in

the urinary tract. Surgical resection is often used for the treatment

of bladder cancer (207). In recent years, with the continuous

development of nanotechnology, new ideas for the treatment of

bladder cancer have been reported. LncRNA PTENP1 is a

competing endogenous RNA (208). It has been reported that

lncRNA can be transferred to tumor cells through BMMSCs-Exo,

Liu et al. found that BMMSCs-derived exosomal lncRNA PTENP1

inhibited the progression of bladder cancer by upregulating

SCARA5 expression through miR-17 uptake (209). Exosomes
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derived from PTENP1-overexpressing BMMSCs abolished the

promotion of miR-17 overexpression or SCARA5 knockdown on

the malignant phenotype of bladder cancer cells. It has also been

shown that they inhibit the growth of bladder cancer tumors in

nude mice in vivo. This effect is achieved through the miR-17/

SCARA5 axis (209). These data provide a potential new therapeutic

target for the treatment of bladder cancer.

Prostate cancer is the most common type of cancer in men

worldwide (210). Patients with advanced or metastatic prostate

cancer expire due to the disease even after therapeutic interventions

(e.g., radiotherapy, surgery, androgen deprivation therapy,

chemotherapy) (211). Malla et al. reported that miR-99b-5p is

enriched in serum exosomes of patients with prostate cancer

undergoing radiotherapy (212). Moreover, Jiang et al. reported

that miR-99b-5p mimics or inhibitors were transfected into

BMMSCs-Exo, and prostate cancer cell line LNCaP cells were

stimulated using BMMSCs-Exo with miR-99b-5p (213). It was

found that BMMSCs-Exo significantly inhibited the malignant

phenotype of prostate cancer cells, and transfection of BMMSCs

with a miR-99b-5p mimic further enhanced the inhibitory effect on

the progression of prostate cancer, Transfection of BMMSCs-Exo

with a miR-99b-5p inhibitor promoted prostate cancer progression

in vitro (213). Further studies on the mechanism underlying the

inhibitory effect on prostate cancer found that miR-99b-5p could

bind to its downstream target insulin-like growth factor 1 receptor

(IGF1R), downregulate it, and inhibit the progression of prostate

cancer. BMMSCs could attenuate the progression of prostate

cancer, and exosomal miR-99b-5p and IGF1R were involved in

the regulatory process. This evidence contributes to our

understanding of the pathogenic mechanism of prostate cancer.

Li et al. also reported the function of BMMSCs-Exo carrying miR-

187 in prostate cancer (214). Of note, miR-187 can be used as the

main diagnostic marker of metastatic prostate cancer (215). Studies

have shown that upregulation of miR-187 leads to decreased CD276

expression (B7 homologue 3 protein, namely B7-H3, a newmember

of B7 family immunoregulatory proteins and a promising target for

cancer immunotherapy) and inhibits the Janus kinase 3/STAT3/

SLUG (JAK3/STAT3/SLUG) signaling pathway, It has been

demonstrated that BMMSCs-Exo carrying miR-187 can inhibit

the progression of prostate cancer through targeting CD276 and

the JAK3/STAT3/SLUG axis (Figure 4).
2.3 ADSCs-derived exosomes (ADSCs-Exo)

ADSCs exhibit positivity for tumor susceptibility 101 (TSG101),

CD63, CD9, CD13, CD29, CD44, CD73, CD90, and CD105 (216);

in contrast, they show negativity for calnexin (CANX), CD31, and

CD45 (217). Compared with BMMSCs, ADSCs have a longer life

span, higher proliferative ability, shorter doubling time, and later

senescence in vitro (218). Furthermore, the collection of ADSCs is

more convenient and less invasive, while the yield is larger.

Although ADSCs offer multiple advantages, their clinical

application is limited due to the possible promotion of tumor

development (Figure 3). Subsequent research revealed that the
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promotive effect of ADSCs on cancer is attributed to the adipose tissue

around the tumor and its progenitor cells (219). ADSCs exhibit

selective tumor homing ability, rendering them a suitable vehicle for

anti-cancer drug delivery (143). By improving the targeting ability of

drugs, it is also possible to improve the treatment efficiency and safety

of high-dose use (220). ADSCs are often used in regenerativemedicine

and autologous transplantation, and have great potential for tissue

regeneration and wound repair. In recent years, with the continuous

development of nanotechnology, ADSCs-Exo have attracted

increasing attention. ADSCs-Exo possess many therapeutic bioactive

factors unique to stem cells, which can accelerate wound healing and

are essential for tissue repair (221). They also play a key role in

enhancing cell regeneration (222), promoting angiogenesis (223),

regulating inflammation, and remodeling the extracellular matrix.

ADSCs-Exo are often used in tendon repair, corneal skin

regeneration, treatment of diabetic skin injury, regulation of

inflammation and angiogenesis, fracture healing, etc (224).

ADSCs-Exo are an ideal potential drug delivery carrier with

broad application prospects in tumor therapy (225). Lou et al.

reported that ADSCs-Exo can be used as an effective carrier for the

delivery of miR-199a. They can effectively improve the sensitivity of

HCC cells to doxorubicin by targeting the mechanistic target of

rapamycin kinase (mTOR) pathway (226). Studies have also shown

that the delivery of miR-122 through ADSCs-Exo provides a new

idea for improving the sensitivity of HCC to chemotherapy (227).

Rezaeian et al. showed that ADSCs-Exo could affect prostate cancer,

bladder cancer, and renal cancer cell lines. The 5637 cell line of

primary bladder tumor, ACHN cell line of metastatic renal

adenocarcinoma, LNCaP cell line of metastatic prostate cancer,

and the prostate adenocarcinoma PC3 cell line were used. It was

found that ADSCs-Exo exert a synergistic apoptotic effect on

LNCaP, PC3, and 5637 cells, but not on ACHN cells. This

difference was attributed to the increase in tumor protein 53

(TP53) expression and decrease in BCL2 gene expression in the

PC3, 5637, and LNCaP cancer cell lines treated with exosomes

(228). Liu et al. used ADSCs-Exo as a vector to deliver tumor

suppressor miR-138–5p for the treatment of bladder cancer. The

results showed that ADSC-Exo-miR-138–5p could inhibit the

proliferation, migration, and invasion of bladder cancer cells in

vitro and in vivo, This evidence indicated that ADSCs-Exo-miR-

138–5p is a promising therapeutic agent for bladder cancer (213).

Shojaei et al. used ADSCs-Exo to deliver the tumor suppressor miR-

218 (downregulation was associated with EMT and angiogenesis) to

breast cancer cells; the purpose of that study was to evaluate the

tumor suppressor properties of miR-218 in vitro. The results

demonstrated that ADSCs-Exo could effectively restore the levels

of miR-218 in breast cancer cells and significantly reduce the

expression of miR-218 target genes (RUNX family transcription

factor 2 [RUNX2] and RPTOR independent companion of MTOR

complex 2 [RICTOR]) in breast cancer cells (MDA-MB-231). The

findings also indicate that miR-218 can prevent breast cancer

progression by simultaneously targeting angiogenesis and EMT

(229). Shojaei et al. also studied the usefulness of ADSCs-Exo as a

carrier of miRNA-381. The treatment significantly downregulated

the expression of genes and proteins related to EMT and inhibited

the progression of triple-negative breast cancer in vitro (230).
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MSCs are the most widely used cells in cell therapy (231).

Importantly, cell therapy is also associated with some significant

risks. In some cases, ADSCs-Exo may also promote tumor

progression. For example, Qu et al. found that ADSCs-Exo

secreted into ascites activated the mitogen-activated protein

kinase (MAPK) signaling pathway through forkhead box M1

(FOXM1) thereby regulating the ADSCs-Exo-mediated

progression of ovarian cancer and promoting peritoneal

metastasis of epithelial ovarian cancer (232). Wang et al. reported

that ADSCs-Exo could promote the invasion, migration, and

proliferation of osteosarcoma cells, as well as increase

the expression of collagen b(1-O)galactosyltransferase 2

(COLGALT2) (233). Lin et al. also reported that ADSCs-Exo

could activate the Wnt/b-catenin signaling pathway, thus

promoting the migration and proliferation of breast cancer cell

line MCF7 (234) (Figure 4).
2.4 Other MSCs derived exosomes

In addition to mesenchymal stem cells (MSCs) derived from

umbilical cord, bone marrow and adipose tissue, exosomes derived

from dental pulp, peripheral blood and placenta have great

potential in disease treatment and biomarker diagnosis, and are

expected to become a reserve force for treatment and diagnosis

(235, 236). Dental pulp stem cell-derived exosomes (DPSC-Exos)

have similar biological characteristics with bone marrow blasts and

are closely related to tissue regeneration (237). Qiao et al. found that

DPSC-Exos can inhibit periodontitis and promote epithelial healing

in rats with periodontitis, and its mechanism is to regulate

inflammation by inhibiting the IL-6/JAK2/STAT3 signaling

pathway (238). The advantages of clinical transfusion and easy

availability of peripheral-blood-derived exosomes have broadened

the scope of their clinical application. Kang et al. prepared a mouse

model of myocardial infarction and found that exosomes loaded

with miR-21 mimics enhanced fibrosis, while exosomes loaded with

miR-21 inhibitors reduced fibrosis, Human peripheral blood-

derived exosomes loaded with miRNA can be used as a

therapeutic tool for heart diseases (239). Placental mesenchymal

stem cell-derived exosomes (Pd-MSC-Exos) can be detected in

maternal blood as early as 6 weeks after conception (240), and

their levels increase with gestational age (241). Zheng et al. analyzed

the mechanism of Pd-MSC-EVs affecting liver fibrosis and found

that Pd-MSC-EVs may inhibit the activation of hepatic stellate cells

(HSC) through the miR-378c/SKP2 pathway. Thus, Pd-MSC-EVs

are expected to become effective drug candidates for the treatment

of liver fibrosis (242).
2.5 MSCs-derived exosomes for skin
injury treatment

Mesenchymal stem cells are currently known to be the only cells

that can be prepared on a large scale and have the ability to prepare

exosomes on a large scale (243). Therefore, compared with

exosomes from other sources, exosomes derived from
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1401852
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jin et al. 10.3389/fimmu.2024.1401852
mesenchymal stem cells have the following advantages: easy access,

low immunogenicity, inhibition of the function of various immune

effector cell types, promotion of immune regulation, anti-

inflammatory, anti-aging and wound healing (191). Therefore,

mesenchymal stem cells have become an ideal cell source in

regenerative medicine and immunotherapy (244). MSCs-Exo can

also be used for the treatment of skin lesions caused by chronic

diabetes, Yang et al. combined hucMSCs-Exo and Pluronic F-127

(PF-127) hydrogel in diabetic rats and found that it could

significantly accelerate the speed of wound healing, promote

granulation tissue regeneration by increasing the expression of

Ki67 and CD31. The expression of vascular endothelial growth

factor (VEGF) and transforming growth factor beta-1 (TGFb-1)
was up-regulated to promote wound healing (245). Song et al.

constructed ECM hydrogel loaded with ADSCs-Exo, and once

injected into the wound site, ECM-Exo formed the hydrogel at a

physiological temperature of nearly 37°C. ADSCs-Exo can be

released slowly and continuously from the hydrogel to maintain a

high concentration at the wound site. The ECM hydrogel gradually

degrades in vivo. It can effectively reduce inflammation and

promote angiogenesis, collagen deposition, cell proliferation and

migration to accelerate wound healing (246), Wang et al. mixed

collagen (COL-I) and platelet-rich plasma (PRP) and added

thrombin to prepare a biological carrier, and delivered ADSCs-

Exo in the carrier. The study found that the scaffold released a large

number of growth factors, such as TGF-b, PDGF, FGF, HGF, and

VEGF. These growth factors play a key role in wound healing and

angiogenesis. Meanwhile, ADSCs-Exo also plays an important role

in promoting tissue repair, regeneration and angiogenesis. In vitro

experiments proved that the ADSCs- Exo based stents can induce

angiogenesis, accelerate the healing process (247). The application

of MSCs-Exo and its carrier provides a new idea for the treatment of

skin injury. In addition, Hu et al. compared human amniotic

mesenchymal stem cells (hAMSCs) and Schwann cell-like cells

(SCLCs) derived exosomes in the treatment of peripheral nerve

injury (PNI). The results showed that SCLCs-Exo enhanced the

recovery of motor function in the rat model, alleviated

gastrocnemial-muscle atrophy, promoted axon regeneration,

myelination and angiogenesis, and up-regulated the expression of

glial cell-derived neurotrophic factor, myelin positive regulator and

myelin protein in Schwann cells. SCLCs-Exo is a potential new

treatment for PNI (248).
3 Immune cell-derived exosomes
(IM-Exo) in cancer therapy

Immune cells include NK cells, monocytes, macrophages,

and granulocytes (mainly neutrophils) related to the innate

immune response, as well as T lymphocytes, B lymphocytes, and

DCs related to the adaptive immune response (249). These immune

cells are involved in immune defense, immune surveillance, and

immune clearance, playing an important role in maintaining

human homeostasis.

The composition of IM-Exo consists of specific proteins,

particularly tetrastransmembrane proteins (e.g., CD9, CD63,
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CD81, CD82), interacting with other proteins expressed on target

cells (e.g., major histocompatibility complex [MHC] molecules,

integrins) (250). In addition to proteins, unique lipids such as

nucleic acid components include DNA, RNA (miRNA), lncRNA

(metastasis associated lung adenocarcinoma transcript 1

[MALAT1], linc-POU class 3 homeobox 3 [linc-POU3F3],

ZNFX1 antisense RNA 1 [ZFAS1], and growth arrest specific 5

[GAS5]). IM-Exo can stimulate immune cells (e.g., DCs, T cells) to

fight pathogens, viral infections, and cancer cells. The effects of IM-

Exo have become the focus of various nano-biomedicine studies,

ranging from the medical use of diagnostic reagents based on

nanoplatforms to the development of therapeutic interventions as

well as vaccine applications. Thus, IM-Exo may be ideal for

“immunotherapeutic diagnostics” (251).With the wide application

of nanotherapeutics, IM-Exo have attracted considerable attention.

IM-Exo possess immunomodulatory properties (252). They express

various antigens on their surface and can be used for antigen

presentation, immune activation, and metabolic regulation.

Moreover, they can mediate crosstalk between innate and

adaptive immunity (253). They can also reshape the pro-

inflammatory microenvironment to inhibit tumor progression, or

assist in the preparation of vaccines with anti-tumor effects (78).

Additionally, they can promote tumor progression by inhibiting

the killing effect of NK cells, CD8+ T cells, and other cells,

promoting tumor cells, or inhibiting immune cells. Owing to

their excellent biocompatibility, low immunogenicity, high

loading capacity and easy cellular uptake, exosomes derived from

immune cells are used as drug carriers in anti-tumor therapy to

deliver miRNA, mRNA, or chemotherapy drugs (254, 255). Based

on their favorable features, such exosomes have great potential in

the treatment of diseases. In the section below, we will introduce the

exosomes derived from T lymphocytes, B lymphocytes, DCs,

macrophages, NK cells, neutrophils, and mast cells, as well as

discuss their clinical advantages.

The current methods for the isolation of exosomes include

differential centrifugation, immunoaffinity capture, exosome

precipitation, and filtration membrane method (256). Differential

centrifugation uses multiple cycles with different centrifugal forces

and centrifugation times to achieve the effect of separation, and its

essence is to separate exosomes according to the density and size

difference between exosomes and other components in cells, large

vesicles, and debris samples. It is the most commonly used method

in the process of exosome isolation, also known as the “gold

standard” (257). This method requires almost no technical

expertise, is easy to operate, and only requires an ultracentruge

for long-term operation, with less capital consumption. However,

the disadvantage of this method is that it is time-consuming,

requires a large number of starting samples, and has low

efficiency when separating exosomes from viscous liquid (258).

Immunoaffinity capture method, bound to specific antibodies that

recognize exosome-specific surface markers. This method can

separate the subsets of exosomes with high purity, and is often

used for the isolation of plasma exosomes. The disadvantages are

small sample volume and high reagent cost (259). Isolation of T-

cell-derived exosomes, captured by anti-CD3 antibodies, Aneta

Zebrowska et al. isolated CD3+ exosomes from human plasma
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and demonstrated their use as “T cell biopsies “ (260). Exosome

precipitation methods include polyethylene glycol precipitation

(PEG) and lectin precipitation. The advantages of this method are

that the process has minimal harmful effect on the isolated

exosomes, and the isolation method is fast and simple, and does

not require technical expertise or expensive equipment (261). The

disadvantages are limited analytical power and lack of selectivity. A

filter membrane was used to separate exosomes from other

macromolecules. It does not require special instruments and takes

a short time, but it will cause deformation and rupture of the

exosomes, which will affect the results of the analysis (258).

However, this situation can be reduced by monitoring and

regulating the transmembrane pressure. Exosome characterization

is the quantitative and qualitative analysis of the total number of

exosomes, proteins, lipids and DNA/RNA using physical and

chemical composition analysis (262). Physical analysis is achieved

by nanoparticle tracking analysis (NTA), dynamic light scattering

(DLS), flow cytometry, transmission electron microscopy (TEM),

and resistive pulse sensing (RPS), which provides insight into

particle size and or concentration. Chemical composition analysis

is usually performed by staining, immunoblotting, or proteomic

analysis and gives information about the content of the isolated

vesicles (263).

Luana Lugini et al. separated mononuclear cells (PBMC) from

whole blood after Ficoll-Histopaque 1077 gradient, then added

monoclonal antibodies against CD3, CD4, CD8, CD20 and CD14,

and purified NK cells by negative magnetic bead selection. After

purification, the selected NK cells were CD56+,CD3-,CD14-, and

the supernatant was collected. The exosomes were isolated from the

supernatant of NK cells by using an ultracentrifuge (264). Due to

the scarcity of NK cells in human lymphocytes, changes in

phenotype, and impaired function during cancer progression, it is

necessary to develop new protocols to activate and expand NK cells

to achieve adoptive transfer in sufficient numbers in vitro and to

make them a viable approach to control the immune system against

cancer (265), Subsequently, many candidate effectors were

identified based on proteomic analysis and functional studies.

Such as Fas ligand, TRAIL, NKG2D, beta actin and fibrinogen,

that NK cells derived EVs may be as a viable cancer immunotherapy

strategies (265).

Aled Clayton et al. studied expression and function on the

exosomes of antigen presenting cells (APC). It was found that both

CD55 and CD59 are expressed by APC-derived exosomes and play

a role in protecting them from complement attack (266). The

specific mechanism is that CD55 can inhibit the initial deposition

of complement C3b, and CD59 can inhibit the formation of

membrane attack complex. To play a protective role. Veerman

et al. compared EVs obtained from conditioned cell culture medium

and 250ml or 3 ml plasma by five commonly used methods based on

different principles, including precipitation, membrane affinity,

size exclusion chromatography, iodixanol gradient, and

phosphatidylserine affinity, and found that EV subsets and

lipoproteins are highly heterogeneous in different isolation

methods. The precipitat ion method has the smallest

concentration of EV, the membrane affinity method has a large

cup type of EV, and the size exclusion chromatography method has
Frontiers in Immunology 11
the highest heterogeneity of EV population. The methods used for

the separation of different samples are different, so the appropriate

method should be adopted in the separation (267). Therefore, in the

process of sample processing and separation, samples from different

sources are separated by different methods. It is very important to

choose the appropriate method according to the characteristics of

the separated samples.

As drug nanocellulars, exosomes derived from immune cells

have good biocompatibility, low immunogenicity, high stability and

inherent tumor targeting, which can be used for tumor targeted

therapy and is expected to be used in clinical practice as a cancer

vaccine (268). Krug et al. investigated whether the use of combined

isolation of exosomal RNA (Exo-RNA) and cell-free DNA (cfDNA)

could improve blood liquid biopsy for EGFR mutation detection in

NSCLC patients. Matched pretreatment tumor and plasma were

collected from 84 patients, and it was found that Exo-RNA based

liquid biopsy improved the sensitivity of liquid biopsy, and can be

used in any cancer patient suitable for liquid biopsy, which has great

potential in future research (269). In addition, Bernard et al.

reported for the first time the feasibility of DC-derived exosome

(DEX) vaccine in phase I clinical trials of melanoma patients and

the safety of exosome administration (270). In this trial, 15 patients

with stage IIIB and IV melanoma were recruited and received 4

doses of exosome vaccine. Two weeks after the fourth vaccination,

MHC class II molecules, peptides, and tumor status were detected,

and mild inflammatory reaction was found at the vaccine site,

without exogenous hypersensitivity, which could activate and

recruit T cells to the tumor area (270), resulting in tumor

reduction. Morse et al. also studied the safety, feasibility and

effectiveness of DEX loaded with MAGE tumor antigen in

NSCLC patients (271), which proved that DEX could be used in

clinical research. With the progress of phase II and phase III studies,

DEX is expected to become a new immunological method for

tumor treatment.
3.1 DC-derived exosomes (DEX)

DCs are antigen-presenting cells (APCs) with the unique ability

to induce primary and secondary immune responses. They also play

an important role in tumor immunotherapy, and are involved in

anti-tumor immunity, activating tumor-specific T cells to eliminate

tumor cells. DCs are often used in the preparation of vaccines (272,

273); however, their use is limited due to the high manufacturing

cost, time constraint, difficult preservation of living cells, and

possible functional and phenotypic changes after injection (274).

DEX have also attracted attention as immune cell-derived

exosomes. They are characterized by the expression of tumor

antigens, MHC class I (MHC-I), class II (MHC-II), and T cell

costimulatory molecules on their surface. After capturing and

internalizing the antigen-MHC complex, these antigen-MHC

complexes are presented to T cells via APC, thereby triggering the

release of antigen-specific CD4+ and CD8+ T cells (156). DEX are

nanovesicles containing functional MHC-peptide complexes that

promote T cell-dependent tumor rejection. There are three

mechanisms through which DEX stimulate T cell production.
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Firstly, DEX directly stimulate T cells to exert their effect; however,

direct T cell stimulation appears to be inefficient in priming naive T

cells. Secondly, the antigenic peptide-MHC complex is transferred

to the APC for more efficient stimulation of T cell responses by

APC presentation. Thirdly, T cells may be indirectly activated

through tumorigenesis (275). Through research on mice, Viaud

et al. also found that DEX could promote the proliferation and

activation of NK cells by promoting IL-15Ra and NKG2D, thereby

producing an anti-metastatic effect mediated by NK1.1 cells (276).

DEX carry numerous molecules related to the immune function of

DCs; these molecules are bound by tumor cells, transforming them

into immunogenic targets. Compared with exosomes from

immature DCs, those derived from mature DCs have less loss

after endocytosis and greater ability to stimulate T cells (277,

278). These observations provide a good basis for targeted

therapy of tumors. DEX can be used to load neoantigens, which

is not susceptible to environmental influences and can retain

function and phenotype as a new nanovaccine, which can more

easily transport antigens to lymph nodes and trigger a strong

immune response (268, 274). Lu et al. studied exosomes derived

from HCC antigen-expressing DCs in three different HCC mouse

models. They demonstrated that a-fetoprotein-rich DEX could

trigger effective antigen-specific anti-tumor immune responses

and reshape the tumor microenvironment (TME) in HCC mice,

thus providing a cell-free vaccine option for HCC immunotherapy

(279). Zhong et al. used microwave ablation combined with DEX to

treat mice with HCC. They found that the number of CD8+T cells at

the tumor site and the plasma IFN-g concentration were increased,

whereas the number of regulatory T cells and the IL-10

concentration were decreased. The results showed that the

combination of microwave ablation with DEX can significantly

inhibit tumor growth and improve the immune microenvironment,

thereby providing a new direction for the development of vaccines

based on DCs and DEX (280). The membrane structure of DEX

avoids high degradation, while ensuring good biocompatibility and

in vivo safety. Compared with DC-based vaccines, DEX have higher

immunogenicity and stronger resistance to immunosuppression,

and have shown better anti-tumor effects in preclinical studies. Hao

et al. reported that intravenous injection of an exosome vaccine is

superior to subcutaneous injection, inducing stronger anti-tumor

immunity. A Phase I study of DEX failed to demonstrate its

immune competence (281). Therefore, Viaud et al. developed

second-generation DEX with enhanced immunostimulatory

properties. The clinical grade process of the IFN-g-DEX vaccine

and its quality control parameters currently used in phase II trials

were studied. IFN-g is a key cytokine that regulates the expression of
CD40, CD80, CD86, and CD54 induced by DCs on DEX, leading to

direct and effective peptide-dependent CD8+T cell weight gain

potential in vitro and in vivo (282).

Zhu et al. developed an anti-tumor vaccine candidate by

coupling mucin 1 (MUC1) glycopeptide antigen to DEX. They

found that MUC1-DEX induced high MUC1-specific

immunoglobulin G antibody titers with strong binding affinity to

MUC1-positive tumor cells in vivo. This treatment enhanced

cytotoxicity of CD8+T cells from immunized mice against

MUC1-positive tumor cells. It also inhibited tumor growth and
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prolonged the survival time of mice in preventive and therapeutic

tumor-bearing mouse models (283).

Silva et al. reported that DEX play a role in tissue regeneration.

DEX are naturally loaded with chemoattractants, which can

promote cell recruitment. Osteopontin and MMP9 have been

confirmed in EVs (284). Triptolide has beneficial effects in the

treatment of cancer (e.g., gastric carcinoma, lung cancer), but causes

multi-organ toxicity. DCs are the main targets of triptolide,

inducing immunosuppression. Rao et al. packaged triptolide in

DEX for targeted delivery to reduce toxicity. They reported that

triptolide with DEX could play a role by reducing CD4+ T cells and

increasing regulatory T cells in vivo to reshape the immune

environment (285).

Barnwal et al. reported that myeloid-derived DEX were

obtained from bone marrow in the presence of tumor antigen.

Studies have demonstrated that colony-stimulating factor 1

receptor (CSF-1R) inhibitor (PLX-3397) targeting the colony-

stimulating factor 1/CSF1R (CSF1/CSF1R) signaling pathway can

deplete tumor-associated macrophages (TAMs) and myeloid-

derived suppressor cells responsible for an immunosuppressive

TME. In a B16-F10 mouse model of melanoma, DEX combined

with PLX-3397 regulated the TME by transferring Th1/Th2 to

dominant Th1 population and depleting TAMs and myeloid-

derived suppressor cells. These findings also provide a new

strategy for the treatment of melanoma (286). DEX carry many

molecules associated with the immune function of DCs, and their

incorporation into tumor cells can transform them into

immunogenic targets. Romagnoli et al. treated breast cancer cell

line SK-BR-3 with DEX, and subsequently used these DEX to

stimulate SK-BR-3 cells sensitized with CD3+ T cells. The

investigators generated DEX-SK-BR-3-trimer CD3+ T cells, and

revealed that the sensitizing T cells cultured from tumor cells

treated with DEX had a stronger ability to secrete IFN-g
compared with non-DEX-treated cells. These data suggest that

incorporation of DEX into tumor cells enhances the activation of

T cells, thus potentially producing a more effective response.

Collectively, these findings imply that DEX may become an

important tool in cancer immunotherapy (287) (Figure 5).
3.2 Macrophage-derived exosomes

Macrophages develop from hematopoietic stem cells, namely

monocytes in the bone marrow. They play roles in phagocytosis (a

major mechanisms of innate immunity) and antigen presentation.

Five activated macrophage phenotypes have been identified, namely

M1 macrophages, M2 macrophages, CD169+ macrophages, TCR+

macrophages, and TAMs; inactivated macrophages (termed M0)

have also been identified. Among these phenotypes, M1 and M2

have been primarily studied (201, 288). These two phenotypes were

distinguished according to their function and the level of

inflammatory factor secretion. M1 macrophages exhibit an anti-

tumor and pro-inflammatory phenotype, and can release pro-

inflammatory cytokines, such as tumor necrosis factor-a (TNF-

a), C-C motif chemokine ligand 2 (CCL2), IL-6, inducible nitric

oxide synthase (iNOS), IL-1a, IL-1b, IL-12, IL-23, IL-18, type I IFN
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(-a and -b), C-X-C motif chemokine ligand 1–3 (CXCL1–3),

CXCL5, and CXCL8–10. In contrast, M2 macrophages show a

pro-tumor and anti-inflammatory profile (289). Arabpour et al.

reported that MSC-Exo reduced inflammation by promoting M1 to

M2 polarization and increasing anti-inflammatory cytokines and

chemokines (290). Pritchard et al. reported that lung tumor-derived

exosomes can also promote the polarization of M2 macrophages

(290). Inactivated M0 can be induced to M1 under the action of

lipopolysaccharide, TNF-a, and IFN-g, while cytokines (e.g., IL-4

and IL-13) are required to induce M0 to M2 (291, 292). M1

macrophage exosomes have the ability to target lymph nodes and

can be absorbed by local macrophages and DCs. Macrophage-

derived exosomes are involved in immune activation and

regulation, and serve as anti-cancer drug carriers.

Rayamajhi et al. designed hybrid exosomes by hybridizing small

EVs from mouse macrophages with synthetic liposomes. The

hybrid exosomes were loaded with water-soluble doxorubicin.

The toxicity of the exosome-doxorubicin hybrid to cancer cells

and drug release were enhanced under acidic conditions; this

finding indicates the possibility for drug delivery to the acidic

cancer environment (293). Li et al. developed a macrophage-

derived exosome-coated poly lact ic acid-glycol ic acid

nanoplatform for targeted chemotherapy of triple-negative breast

cancer. To further improve tumor targeting, the surface of

exosomes was modified with peptides (253). The results showed

that the engineered exosome-coated nanoparticles significantly

improved the cellular uptake efficiency of doxorubicin and anti-

tumor effect in vivo and in vitro, and induced the apoptosis of

tumor cells.

Despite the availability of many options for the treatment of

pancreatic cancer, chemotherapy is currently the main therapeutic

modality (294). Chemotherapy drugs play a major role in the

treatment of cancer; however, the development of chemotherapy

resistance limits its efficacy. Therefore, it is necessary to develop
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more effective treatments. Zhao et al. have shown that it is possible

to develop a specific M1 macrophage-derived exosome-gemcitabine

delivery system and load it with noracilor (DFX). DFX is designed

to deplete iron, thereby inhibiting the expression of the

ribonucleotide reductase regulatory subunit M2 (RRM2), This

approach improved the efficacy of gemcitabine. This delivery

system can inhibit tumor cell proliferation, attachment, and

migration, reverse the chemoresistance of tumor cells to

gemcitabine, and significantly enhance the efficacy of gemcitabine.

Therefore, this system provides a new strategy for the treatment of

pancreatic cancer (295) (Figure 6).
3.3 Neutrophil-derived exosomes

Neutrophils are the most abundant type of innate immune cells

in the human body with a tendency to inflammation (296).

Neutrophil-derived exosomes have the same effect to achieve

tumor targeting. Surgical resection is commonly used for the

treatment of glioma. However, surgery is often accompanied by

infection and metastasis, while chemotherapy after surgical

resection has a poor effect due to the existence of the BBB. Wang

et al. developed a new pro-inflammatory drug delivery system to

overcome the risk of inflammation and metastasis after surgical

resection of glioma using neutrophil-derived exosomes as a carrier

of doxorubicin. Through in vivo and in vitro experiments, it was

confirmed that neutrophil-derived exosomes had inflammatory

tendency and could target the inflammatory site of tumor to

improve the therapeutic effect and the overall survival of patients

with glioma (297). Neutrophil-derived exosomes can also act as

carriers by delivering cytotoxic proteins and activating caspase

signaling pathways (298). Vargas et al. found that neutrophil-

derived exosomes could be internalized by airway smooth muscle

and alter its proliferative properties. These exosomes play an
FIGURE 5

The related markers of dendritic cell-derived exosomes, the three mechanisms by which Dex functions (direct action, indirect action through
secretion-related factors, and action through T cells), as well as the mechanisms and relevant targets of dendritic cell-derived exosomes on
tumor cells.
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important role in asthma progression, promoting airway

remodeling in patients with severe and corticosteroid-insensitive

asthma (299). Ou et al. found that senescent neutrophil-derived

exosome piRNA-17560 enhanced cellulite and obesity-associated

protein (FTO) expression in breast cancer cells, as well as

chemotherapy resistance. Senescent neutrophils may be a

therapeutic target for breast cancer (300). Tyagi et al. study

examined exosomal miR-4466 from N2 neutrophils in smokers

and non-smokers. They observed that the expression of exosomal

miR-4466 from neutrophils was increased in smokers versus non-

smokers. Therefore, neutrophil-derived exosomal miR-4466 can be

used as a promising predictor of metastatic disease in smokers

(301) (Figure 6).
3.4 T lymphocytes-derived exosomes

T lymphocytes, thymus-dependent lymphocytes, are

pluripotent stem cells derived from bone marrow (302). These

cells are an integral part of adaptive immunity. T cells have different

subsets with varied functions, and can play a role through direct

contact between cells or the transfer of secreted molecules (303).

According to the phenotype, T cells can be mainly divided into

CD4+ Th cells, CD8+ cytotoxic T cells, follicular helper T cells, and

regulatory T cells. Following maturation in the thymus, T cells

migrate to peripheral tissues (304).

A growing number of studies have shown that immune cells

participate in cell communication by secreting exosomes (305).

Among immune cell-derived exosomes, those derived from T cells

participate in the anti-tumor effect of cancer immunotherapy by

mimicking the effect of parental cells (303). T cells produce

exosomes that reflect their characteristics, such as direct killing of
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target cells, regulating B cells to produce antibodies, and producing

cytokines (e.g., IL-7, IL-10, IL-12, IL-17, INF-g) (306), thus creating
the optimal microenvironment for paracrine and autocrine immune

cells. T cell-derived exosomes can also play an important role in

intercellular signal transduction and activate other immune cells,

thereby participating in the corresponding immune regulation

process (303).

Programmed cell death 1 (PD-1) is widely expressed in tumor-

infiltrating lymphocytes in triple-negative breast cancer, and cell-

surface PD-1 transduces negative signals for effector T cell activity

during cell-cell contact (307). PD-1 is secreted in the form of

exosomes from activated T cells and can remotely interact with

cell-surface or exosomal programmed death ligand 1 (PD-L1). This

interaction restores tumor surveillance by attenuating PD-L1-

induced suppression of tumor-specific cytotoxic T cell activity

and exosome PD-1 anti-PD-L1 function. Overall, it enhances the

activity of cytotoxic T cells (308).

Paclitaxel (PTX) is a chemotherapeutic drug with limited use

due to its systemic toxicity. Chimeric antigen receptor-T (CAR-T)

cell-derived exosomes (CAR-T-Exo) contain tumor-targeted CAR

and cytotoxic particles (granzyme B [GZMB] and perforin [PRF]),

which can be used in the treatment of tumors and are considered

potential carriers of paclitaxel (268). Zheng et al. reported that

CAR-T-derived exosomes can deliver paclitaxel, reprogram the

TME, and reverse immunosuppression to increase the levels of

CD8+T cells, IFN-g, and TNF-a, thereby enabling the treatment of

non-small cell lung cancer (309) (Figure 6).

Huang et al. performed omics analysis of CD4+T cell-derived

exosomes from patients with rheumatoid arthritis (RA) and found

that the expression of dihydropyrimidinase associated protein 3

(DPYSL3) was significantly up-regulated and the expression of

proteasome activating complex subunit 1 (PSME1) was
FIGURE 6

The mechanisms by which extracellular vesicles derived from natural killer cells transport different substances (TNF-a, Cisplatin (DDP), paclitaxel
(PTX), Sorafenib (Sfb), the miRNA) to kill tumors. as well as the mechanisms of extracellular vesicle therapy derived from T cells for BC and NSCLC
treatment, and the related mechanisms of extracellular vesicles derived from B cells, macrophages, and neutrophils in killing tumors.
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significantly down-regulated. These differentially expressed genes

may be involved in the pathogenesis of RA, thus DPYSL3 and

PSME1 are expected to be biomarkers for RA diagnosis (310). Xu

et al. found that miR-186–5p in CD8 T cell-derived exosomes

caused renal inflammation and tissue damage. miR-186–5p directly

activates TLR7/8 signaling axis in renal tubules to cause renal

inflammation, which reveals the specific pathogenic mechanism

and reason of the pathogenic role in T cell-mediated renal

dysfunction and provides new ideas for the treatment of

nephropathy (311). T cell-derived exosomes are still in the

exploratory stage, and continuous efforts are still needed to

achieve clinical transformation. We believe that with the

continuous efforts of scholars, T cell-derived exosomes can

become a powerful tool for disease treatment.
3.5 B lymphocyte-derived exosomes

B lymphocytes are bone marrow-dependent lymphocytes.

Mature B cells migrate out of the peripheral blood, and enter the

spleen and lymph nodes. Following stimulation by antigens, they

proliferate and differentiate into plasma cells, and participate in

humoral immunity. B cells differentiate into effector cells with the

synthesis of exosomes, which is initiated upon stimulation by

activation signals, in particular T cell “help” via CD40 and IL-4

signaling. B cell-derived exosomes induce antigen-specific, MHC-

II-restricted T cell responses, suggesting a role for exosomes in

antigen presentation in vivo (312). B cell-derived exosomes also

contain immunoglobulins that deliver surface B cell receptor-bound

antigens into the endosomal/exosomal pathway (313). Saunderson

et al. demonstrated that primary B cells release high levels of

exosomes in response to CD40 and IL-4 signaling. The absolute

number of splenic immune cell subsets was determined to

investigate the immune cells that respond to Ag of B cell-derived

exosomes. After immunization, the number of NK cells, B cells,

CD4 T cells, and CD8 T cells in the spleen was significantly

increased (314) (Figure 6). Dan Ma et al. characterized B

lymphocyte-derived exosomes in fatal Pneumocystis pneumonia

(PCP) and found significant alterations in histone H1.3, vimentin,

and tyrosine protein phosphatase non-receptor type 6 (PTPN6)

levels. The proinflammatory effects of B-cell-derived exosomes

from PCP on CD4+T cell responses were revealed. This finding

provides a new idea for the study of PCP (315).
3.6 NK cell-derived exosomes (NK-Exo)

NK cells, which constitute a small population of cells, can kill

target cells in a non-specific manner in the human body. This killing

activity is innate, does not require prior antigen sensitization, and is

not restricted by MHC. NK-Exo expressed various NK receptors/

markers, including CD56, CD69, cytotoxic receptors (e.g.,

NKG2D), NKp44, NKp46, NKp30, CD40L, PD-1, and molecules

involved in tumor cell recognition and immune synapse formation

(lymphocyte function-associated antigen 1 [LFA-1], DNAM1).

They also carry cytotoxic proteins (e.g., PRF, GZMA, GZMB, and
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Fas ligand [FasL]) and cytokines (e.g., IFN-g and TNF-a) (316).
NK-Exo recognize and kill cancer cells through various

mechanisms in vitro and in vivo. They exert an anti-tumor effect

due to the presence of PRF and FasL, which trigger the intrinsic

pathway and promote the release of cytochrome-c. FasL triggers the

extrinsic apoptotic pathway by activating caspase 8 (CASP8),

CASP3, and poly(ADP-ribose) polymerase (PARP) (317). NK-

Exo contain potent cytotoxic proteins that induce apoptosis in

targeted cancer cells. Furthermore, EVs derived from cancer cells

carrying NK ligands may evade immune surveillance and responses

(318). Zhu et al. found that NK-Exo expressed two typical exosomal

proteins (CD63 and ALG-2 interacting protein X [ALIX]) and two

functional NK proteins (PRF and FasL) (317). Moreover, NK-Exo

can secrete TNF-a, thereby affecting signaling pathways that

control cell proliferation. NK-Exo exert a cytotoxic effect on

melanoma cells in vitro, without significant side effects on normal

NK-Exo cells (317).

Luo et al. found that NK-Exo could activate NK cells from the

immunosuppressed TME. They also showed that cisplatin-loaded

NK-Exo could enhance the sensitivity of drug-resistant ovarian

cancer cells to cisplatin, thus playing an anti-proliferation role

(319). Han et al. also reported that paclitaxel embedded in NK-

Exo effectively inhibited the proliferation and induced apoptosis of

breast cancer cells. Hashemi et al. constructed a drug delivery

system combining NK-Exo and the anti-cancer drug sorafenib

(NK-Exo-SFB), which exerted an inhibitory effect on breast

cancer cells (320). Di Pace et al. analyzed miRNAs in NK-Exo,

revealing that let-7b-5p was enriched in exosomes. The let-7b-5p

belongs to the let-7 family of miRNAs with key tumor suppressor

functions. It has an anti-proliferation effect on pancreatic cancer

cells (321). Sun et al. also reported that miR-3607–3p of NK-Exo

can inhibit the progression of pancreatic cancer (322). Notably, NK-

Exo eliminated leukemia cells isolated from patients with acute and

chronic leukemia and inhibited the growth of hematopoietic

colonies; these findings led to the development of a cell-free

therapy for leukemia (323). Wang et al. demonstrated that

treatment with NK-Exo significantly inhibited TGF-b1-induced
proliferation and activation of hepatic stellate cells, as well as liver

fibrosis, thus providing a new means for the treatment of liver

fibrosis (290). Neviani et al. reported that NK exosomes carry the

tumor suppressor gene miR-186–5p, which impairs the growth of

neuroblastoma cells in vitro and in vivo (318). They demonstrated

that NK-Exo carrying tumor suppressor gene miR-186p exhibited

cytotoxicity against neuroblastoma cell lines (Figure 6).
4 Tumor cell-derived exosomes (TEX)
in cancer therapy

Tumor-generated EVs, also known as TEX, contain tumor

antigens and have been used as a specific stimulator of immune

responses against tumors. TEX, as a means of “liquid tumor

biopsy,” are considered a promising biomarker for the early

detection of malignancies in humans. Moreover, they provide a

promising method for monitoring cancer progression or response

to treatment (324). TEX carry many molecules and factors derived
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from tumor cells. These exosomes are recognized and taken up by

immune cells, playing an important role in communication between

cancer cells and immune cells (325). TEX can inhibit the function of

immune cells and help tumors escape immune surveillance in the

TME (326). Li et al. conducted a study on engineered tumor-

derived exosomes. They discovered that these exosomes could

inhibit the cytotoxicity of NK cells by inhibiting the expression of

activated receptors on NK cells, leading to immune escape (326).

Zhu et al. studied exosomes derived from oral cancer and found

enrichment of TGF-b1. The cytotoxicity of NK cells was weakened

at 7 days after co-culture of exosomes derived from oral cancer and

NK cells, and TGF-b1 inhibited the function of NK cells (327).

Tumor-derived exosomes can transform an anti-tumor

environment into a pro-tumor environment by inducing the

differentiation of stromal cells into tumor-associated cells.

Exosomes derived from tumor-associated stromal cells mutually

trigger EMT of tumor cells, resulting in treatment resistance and

metastasis (328).

TEX play an important role in tumor growth, metastasis, and

immune regulation (329). Furthermore, they monitor the

development of diseases and serve as a diagnostic marker. Wu

et al. found that overexpression of calcyphosine 1 (CAPS1) by CRC

cell-derived exosomes enhanced the migration of normal colonic

epithelial FHC cells. Therefore, inhibition of tumor exosome

secretion is a therapeutic option for patients with metastatic CRC.

Wu et al. reported that exosomes derived from tumor cells can

transfer specific lncRNAs to receptor cells that regulate the TME

and promote angiogenesis. Invasive and migratory TEX lncRNAs

have become new non-invasive tumor biomarkers for early

diagnosis and evaluation of prognosis (330). Below, research

progress on exosomes derived from different tumor cells is

introduced, and the potential of TEX as a promising marker for

cancer diagnosis is explained.
4.1 TEX of the digestive system

Liver cancer cell-derived exosomes, i.e., HCC-derived exosomes

(HCC-Exo), have been shown to attenuate the cytotoxicity of T and

NK cells and promote immunosuppressed M2 macrophages, N2

neutrophils, and regulatory B cells (329). Yu et al. reported that

miR-21–5p from HCC-Exo directly targeted the UTR of Ras

homolog family member B (RhoB) in human monocyte-derived

leukemia (THP-1) cells and promoted TAM polarization. The

evidence indicates that tumor-derived miR-21–5p promotes the

malignant progression of HCC, thereby mediating intercellular

crosstalk between tumor cells and macrophages. Targeting M2-

like TAMs and blocking their associated signaling pathways may

provide specific and novel therapeutic approaches to HCC

treatment (331). Zhang et al. reported that HCC cells can secrete

exosome circular ubiquitin-like PHD and ring finger domain 1

RNA (circUHRF1). The circRNA mainly acts as a miRNA sponge

by binding to miRNA and subsequently promoting the expression

of miRNA targeted genes. The circUHRF1 degrades miR-449c-5p,

thereby upregulating T-cell immunoglobulin mucin family member

3 (TIM-3) expression, inhibiting NK cell-derived IFN-g and TNF-a,
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and promoting immunosuppression. These findings provide a

potential treatment strategy for patients with HCC (253).

Shen et al. tested the immunoregulatory effect of gastric cancer

cell-derived exosomes (AGS-Exo) on MSCs. MSCs were stimulated

with AGS-Exo, which led to abnormal activation of the nuclear

factor-kB (NF-kB) signaling pathway. The effects of AGS-Exo-

stimulated MSCs significantly attenuated the function of T cells

and macrophage s . The r e fo r e , AGS-Exo a ff e c t s the

immunomodulatory function of MSCs through the NF-kB
signaling pathway, thus enhancing the ability of MSCs to activate

immune cells, maintain an inflammatory environment, and support

tumor growth (332). High mobility group box 1 (HMGB1) is a non-

histone chromatin-related protein widely distributed in eukaryotic

cells. It is involved in DNA damage repair and maintenance of

genome stability. HMGB1 can promote tumorigenesis, while it can

also mediate immunogenic cell death during chemoradiotherapy

and enhance anti-tumor immunity (333). Liu et al. studied the

regulatory effect and potential mechanism of HMGB-1 in AGS-Exo

on the polarization of M2-like macrophages. They revealed that

HMGB-1 interacts with the transcription factor POU2F1 to inhibit

the transcriptional activity of p50 and inactivate the NF-kB
signaling pathway, thereby inducing the polarization of M2

macrophages (334).

Vg9Vd2 T cells, as a subtype of T cells, express T cell receptors

composed of g and d chains and play an important role in innate

and adaptive immune surveillance (335). AGS-Exo are effectively

taken up by Vg9Vd2 T cells to induce cell apoptosis. This uptake

also reduced the production of cytotoxic cytokines IFN-g and TNF-

a. Li et al. demonstrated that exosomal miR-135b-5p was

successfully delivered to Vg9Vd2 T cells. Exosomal miR-135b-5p

impairs the function of Vg9Vd2 T cells by targeting specific protein

1 (SP1) (336). SP1 inhibitor plicamycin was also administered to

prevent SP1 function. These results suggested that AGS-Exo

impaired the function of Vg9Vd2 T cells through the miR-135b-

5p/SP1 pathway (336). Targeting the exosomal miR-135b-56/SP1

axis may improve the efficiency of immunotherapy for gastric

cancer based on Vg9Vd2 T lymphocytes (Figure 7).
4.2 Pancreatic cancer cell-derived
exosomes (PEX)

PEX is involved in drug resistance, immune evasion, metabolic

reprogramming, and distant metastasis of pancreatic cancer, and

plays a key role in the occurrence and development of this disease.

Their extensive differential expression and functional content

render PEX a promising screening tool and therapeutic target (337).

Exosomes secreted by cancer-associated fibroblasts in the TME

promote tumor proliferation and chemotherapy resistance by

inhibiting a tumor suppressor (PTEN) during the treatment of

PDAC with gemcitabine. Therefore, exosome inhibitor GW4869

should be used to block the inhibition of PTEN in vivo and improve

the anti-tumor effect of chemotherapy drugs (338). Exosomes

secreted by PDAC can be used as diagnostic markers. The

function of PDAC exosomes is mainly reflected in mediating

immune escape, enhancing resistance to gemcitabine therapy, and
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promoting the progression of PDAC through the release of proteins

and miRNAs. Exosomes produced by PDAC cells highly express

cytoskeleton-associated protein 4 (CKAP4), a novel dickkopf WNT

signaling pathway inhibitor 1 (DKK1) receptor. CKAP4 is highly

expressed in patients with pancreatic cancer. Inhibitors of this

molecule can prevent binding to DKK1, thereby inhibiting the

proliferation and migration of PDAC cells. Hence, CKAP4 is a

potential new target for the treatment of PDAC (339) (Figure 7).
4.3 Head and neck cancer cell-
derived exosomes

Exosomes play a key role in brain tumors. Exosomes produced

by glioblastoma enable cell-to-cell communication and promote

glioblastoma progression. This occurs by inducing M2

macrophages around the glioblastoma to achieve immune escape.

The expression of miRNAs was detected in the cerebrospinal fluid

and plasma of patients with glioblastoma. Regardless of the role and

activity of these miRNAs, they can be used as diagnostic markers.

Specifically, miR-221 and miR-21 have been evaluated in the

cerebrospinal fluid of patients with glioblastoma. Similarly, miR-

320 and miR-574–3p in plasma can also be used as diagnostic

biomarkers (340).

Yang et al. reported that nasopharyngeal carcinoma-derived

exosomes (NPC-Exo) highly express PD-L1, which can bind to PD-

1 on CD8+T cells. This leads to inhibition of CD8+T cell activity,

promotion of nasopharyngeal carcinoma tumor growth in mice,

and evasion of T cell immunity by nasopharyngeal carcinoma cells

(341). Yu et al. found that NPC-Exo can help RNF126 (an E3

ubiquitylation ligase that acts as an oncogene) to enter TAMs and

bind to and ubiquitate PTEN (a tumor suppressor termed tension
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homolog) (78). PTEN regulates tumor radiotherapy and

chemotherapy resistance and pathogenesis by regulating the

PI3K/AKT signaling pathway. PTEN degradation activates the

PI3K/AKT pathway and inhibits autophagy. These effects

enhance macrophage migration and M2 polarization, thereby

promoting tumor growth (78). NPC-Exo associated PD-1 and

PTEN provide a basis for early biomarker screening and targeted

therapy of nasopharyngeal carcinoma (Figure 7).
4.4 Melanoma cell-derived
exosomes (MTEX)

MTEX contain the same antigens as the parental cells. Sharma

et al. reported that exosomes isolated from the plasma of patients

with melanoma contained melanoma-associated antigens

compared with those isolated from normal cells. This evidence

illustrates that plasma-derived exosomes from patients with

melanoma may be a useful biomarker of melanoma in tumor

liquid biopsy (259). Whiteside demonstrated that incubation of

MTEX with immune-receptor cells resulted in inhibition of the

anti-tumor function of these cells. MTEX are involved in

immunosuppression in melanoma; therefore, they may play a role

in promoting melanoma progression (342). Marton et al. purified

and characterized B16F1 melanoma cell-derived exosomes. They

found that MTEX affected the proliferation of CD4+T cells induced

by bone marrow-derived DCs. MTEX also activated macrophages

as measured by NF-kB activation. This finding suggests that

exosomes play a role in tumor progression and metastasis

formation by supporting tumor immune escape mechanisms

(343). Gerloff et al. found that exposure to MTEX induced a

tumor-promoting TAM phenotype. Sequencing showed that miR-
FIGURE 7

Exosomes derived from various tumor cells, including hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), gastric cancer
(AGS), bladder cancer (BLCa), prostate cancer (PCa), glioblastoma (GBM), nasopharyngeal carcinoma (NPC), melanoma (MM), breast cancer (BC) and
leukemia are utilized for tumor diagnosis and targeting mechanisms in treatment.
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125b-5p was enriched in MTEX. The miR-125b-5p could be

delivered to macrophages through MTEX, targeted lysosomal acid

lipase A (LIPA) in macrophages, and induced a tumor-promoting

TAM phenotype (344).
4.5 Urologic tumor-derived exosomes

Xu et al. reported that exosomes derived from prostate cancer

cells can transport IL-8 and bind to peroxisome proliferator

activated receptor a (PPARa) in CD8+T cells (345). Through this

process, they activate the uncoupling protein 1 (UCP1),

decomcause fatty acids for thermogenesis, interfere with energy

metabolism, hinder the function of CD8+T cells, and promote

immune escape (345). Ding et al. studied exosomes derived from

bladder cancer cell line T24; the exosomes blocked the function of

NK cells by inhibiting the expression of NKG2D, NKP30, CD226,

PRF, and GZMB receptors on NK cells, The miR-221–5p and miR-

186–5p in exosomes derived from T24 cells interfere with the stable

expression of DNAX-activation protein 10 (DAP10), CD96, and

PRF mRNA in NK cells (346). Therefore, they may be targets for the

treatment of bladder cancer (Figure 7).
4.6 Breast cancer cell-derived exosomes

Exosomal miR-20a-5p is released by breast cancer cells and

transferred to CD8+ T cells, where it inhibits their function by

targeting the nuclear protein coactivator of histone transcription

(NPAT) (347). NPAT is a cell cycle gene highly expressed in

immature CD8 T cells, The miR-20a-5p binds to the 3’-UTR of

NPAT, inducing the development of resistance to anti-PD-1

therapy. These findings suggest that exosomal miR-20a-5p

derived from triple-negative breast cancer plays an important role

in promoting immune escape and immunotherapy resistance by

inducing CD8+T cell dysfunction (347). Breast cancer-derived

exosomes containing tumor cell-derived PD-L1 interact with PD-

1-producing T cells to significantly reduce responses to immune

checkpoint blockade agents. The drug macitane acts as a powerful

helper of CD8+T cell anti-tumor response by inhibiting tumor cell-

derived EV-PD-L1. Lee et al. reported that macitane inhibits the

secretion of tumor-derived EV-PD-L1 in breast cancer cells by

targeting endothelin receptor A (ETA) and can reduce the binding

of PD-1 to EV-PD-L1, thereby synergizing the effect of anti-PD-L1

antibodies. Enhanced CD8+T cell-mediated tumor killing. These

findings strongly support that macitane, which has been approved

for clinical use, can be used to improve and/or overcome the

inadequate response to PD-1/PD-L1 blockade therapy

(348) (Figure 7).
4.7 Leukemia cell-derived exosomes (LEX)

CD4+T cells play a great role in tumor immunity, and can bind

to DC-Exo generated by tumor cells to induce tumor immunity. Li

et al. reported that LEX did not exert the expected effect when
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binding to CD4+T cells due to insufficient costimulatory ability,

CD4+T-LEX-CD8086 was constructed, which could stimulate

antigen-specific CD8+ cytotoxic T cell responses to leukemia cells.

These data indicated that CD4+T cell vaccines using leukemia cell-

derived exosomes modified by costimulatory molecules may be

effective in immunotherapy for leukemia (200). Huang et al.

reported that TGF-b1-silenced leukemia cell-derived exosomes

(LEX-TGF-b1si) targeted DCs. The treatment effectively

promoted the proliferation of CD4+T cells and the secretion of

Th1 cytokines in vitro, and induced tumor-specific cytotoxic T cell

responses to achieve an anti-leukemia effect. This evidence suggests

that LEX-TGF-b1si targeting DCs are a promising immunotherapy

option for leukemia (349) (Figure 7).

Due to the dual role of TEX in promoting tumor growth and as

a therapeutic carrier, to overcome the tumor-promoting risk of TEX

during treatment (324), immunotherapy combining immune

system activation with immune escape inhibitors has been shown

to be a new effective tumor suppression strategy, Fan et al. modified

two antibodies (anti-PD-L1 and anti-CD40) on the surface of

exosomes by co-culture. First, anti-PD-1 blocks immune

checkpoint molecules by binding to the PD-L1 receptor on tumor

cells. Second, anti-CD40 will direct exosomes to target the CD40

receptor on the membrane of dendritic cells (DC). After DC

receives a positive costimulatory signal, exosomes will be taken up

by DC and release cGAMP through lysosome-mediated exosome

permeability to produce type I interferon (IFN-I) and pro-

inflammatory cytokines. The two activation of dendritic cells

(DCs) and the blocking of PD-L1 in tumor cells have improved

the efficacy of combined cancer immunotherapy for tumor

suppression (350). In addition to the use of dual agents, chimeric

peptide exosomes are also a novel strategy for therapy, Cheng et al.

engineered with chimeric peptides for dual plasma membrane and

nuclear targeting photosensitizer delivery and synergistic

photodynamic therapy (PDT), engineered chimeric peptide

exosomes (ChiP-Exo) can achieve membrane targeting and, to

some extent, lead to cell death, as the presence of nuclear

localization signal (NLS) peptides can also enhance nuclear

delivery. Nuclear ChiP-Exo activates reactive oxygen species

(ROS) in situ to disrupt the nucleus, resulting in stable and

synergistic PDT. This exosome-based dual-stage light-guided

subcellular dual-target PDT strategy has shown greatly enhanced

therapeutic effects in inhibiting tumor growth, providing new ideas

for the development of individualized biomedicine for precise

tumor treatment (351). Similarly, Trivedi et al. used dual-targeted

hyaluronic acid nanoparticles to manipulate exosome contents by

gene transfection into tumor cells. Studies have found that changes

in miRNA levels in exosomes can mediate the repolarization of

macrophages to a more pro-inflammatory/anti-tumor M1

phenotype, indicating that gene transfer of exosomes can support

an anti-tumor environment, thereby reducing tumorigenesis (352).

Liquid biopsy is of great significance in the early diagnosis,

treatment staging and prognosis of cancer (50). In recent years,

tumor-derived exosomes (TEX) have become a popular biomarker

and potential candidate for non-invasive liquid biopsy and

diagnosis of a variety of cancers due to their tumor-specific

antigen (TSA) (353). Blood is a commonly used specimen for
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testing, and future studies may focus on fluids other than blood

(e.g., ascites, urine and cerebrospinal fluid, etc.) (354). Early

biomarkers of ovarian cancer are limited, and it is difficult to

detect ovarian cancer at an early stage due to the deep anatomical

position of the ovary (355). Therefore, the study of exosomes

provides a new method for the diagnosis of ovarian cancer (356).

Cheng et al. reported the proteomic and lipidomic analysis of

exosomes derived from ovarian cancer cells (SKOV-3) and

ovarian surface epithelial cells (HOSEPiC) and found that

Cholesterol Ester (ChE), Zymosterol (ZyE), V collagen alpha 2

chain (COL5A2) and lipoprotein lipase (LPL) than from HOSEPiC

usually secrete body content is richer, therefore, outside the body

protein and lipid secretion has certain application value in the early

diagnosis of ovarian cancer (355). In addition, the popularization of

liquid biopsy also provides a new idea for the diagnosis of thyroid

cancer (PTC) (357). The diagnosis of PTC is generally performed by

fine needle aspiration biopsy, but this method is limited in use, with

low accuracy and tissue trauma (358). The circular RNA (circRNA)

in exosomes has shown great value in cancer diagnosis (359). Dai

et al. detected hsa_circ_0082002 and hsa_circ_0003863 in serum

exosomes from healthy people, benign thyroid tumors and PTC

without Hashimoto’s thyroiditis. It was found that the levels of

exosomal hsa_circ_0082002 and hsa_circ_0003863 were positively

correlated with lymph node metastasis and vascular invasion of

PTC, Therefore, exosomal circRNA has the potential to be used as a

tumor marker for the diagnosis of PTC (360). In summary, cancer

cell-derived exosomes (glioma, nasopharyngeal carcinoma, liver,

gastric, bladder, prostate, breast, and leukemia) provide new

diagnostic methods and targets for the treatment of cancer,

thereby potentially improving medical care.
5 Exosomes derived from other
sources in cancer therapy

Munagala et al. reported that milk can be a source of exosomes

(361). Milk fat globulus membrane (MFGM) proteins (i.e.,

butyrophilin, xanthan oxidase, adipophilin, and lactadherin) are the

most abundant proteins found in milk-derived exosomes (362).

These exosomes play various physiological and therapeutic roles in

cell proliferation, inflammation, immune regulation, and cancer

function, largely due to their cargo molecules (e.g., proteins,

miRNAs) (363). Milk-derived exosomes are characterized by cross-

species tolerance without adverse immune and inflammatory

responses (361). Milk-derived exosomes demonstrate versatility in

the cargo they carry, and have the ability to target tumors. Drug-

loaded exosomes showed significantly higher efficacy against tumors

in vivo compared with free drugs (361). Tumor-targeting ligands

(e.g., folic acid) enhance the targeting of cancer cells by exosomes,

resulting in better tumor killing. Milk derived exosomes are natural

exosomes, their membranes contain hydrophilic and hydrophobic

components, can load water-soluble and lipid-soluble drugs, have

affinity with epithelial cells, and can be digested by cells through

endocytosis mechanism. Therefore, it can be used for oral delivery

(364). Cui et al. summarized the specific role of milk derived

exosomes in the prevention and treatment of intestinal diseases.
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Milk derived exosomes can regulate intestinal immune homeostasis

and restore the composition of intestinal flora, and play a role in

intestinal diseases such as inflammatory bowel disease, necrotizing

enterocolitis, and colorectal cancer (365). In addition, Yan et al. with

milk source outside secrete body as miR-31–5p delivery tool, the

study found that secrete outside body carrying miR-31–5p achieved

higher cellular uptake, resistance to degradation, promote

angiogenesis and diabetic wound healing in the body (366).

However, to use it in the treatment of clinical diseases, higher

concentration and purity are required, so a lot of in vivo clinical

studies are still needed.

Exosome therapy, as an emerging therapeutic approach, plays a

significant role in liquid biopsy (367, 368), cardiovascular and

cerebrovascular diseases, wound healing (369), skin regeneration

(370), neurodegenerative diseases, ocular diseases, skeletal diseases,

and targeted therapy and diagnosis of tumors (371). Increasingly

more research is gradually progressing towards clinical trials. Dang

et al. reported that exosomes carrying LncRNA TUG1 were utilized

for the treatment of myocardial infarction subsequently

downregulating angiogenesis through the HIF-1a/VEGF-a axis.

This effect could be counteracted by remote ischemic

preconditioning (RIC), thereby demonstrating the potential

therapeutic target of LncRNA TUG1 for myocardial infarction

PCI reperfusion or non-reperfusion afterward (143). Additionally,

Liang et al. discovered that LncRNA has a predictive role in

coronary artery disease (CAD) with plasma exosomes

encapsulated SOCS2-AS1 serving as an independent protective

factor against CAD (372). Sun et al. developed a targeted

treatment method for adhesive capsulitis by identifying

differentially expressed miRNAs between patients with and

without adhesive capsulitis, They found that miR-142 was

significantly upregulated in the exosomes of adhesive capsulitis

(Exo-S), both Exo-S and miR-142 inhibit fibrosis. The mechanism

behind this action is that miR-142 can bind to transforming growth

factor beta receptor 1 (Tgfbr1), By mimicking this biological

function, liposomes loaded with si-Tgfbr1 can alleviate shoulder

stiffness in a preclinical setting (373). Lenka et al. also investigated

the lncRNA expression profile of serum exosomes in peripheral

blood of healthy people, monoclonal gammopathy (MGUS)

patients and multiple myeloma (MM) patients, and found that

only one exosomal lncRNA PRINS was dysregulated in MM and

healthy people. Show that secrete body outside the lncRNA PRINS

in monoclonal ivig disease diagnosis (374).

At present, the research of exosomes mainly focuses on basic

research, and only a small number of exosomes have been used in

clinical trials. As the role of exosomes in the disease process

becomes clearer, exosomes are increasingly being developed for

disease treatment and diagnosis. Although there are no approved

clinical exosome products, the number of ongoing clinical trials

involving exosome-based therapies and diagnostics is increasing.

When experimental research is transformed into clinical research,

more attention should be paid to the convenience, stability and

accuracy of isolation technology, as well as the requirements of

exosome production, and to ensure high-quality large-scale

production of exosomes. Although significant progress has been

made in exosome isolation technology, none of the existing
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technologies is perfect, and sufficient clinical samples are needed to

test the stability, safety, accuracy and convenience of each

technology before being translated into clinical application. This

process needs to be explored constantly. With the increasing

improvement and maturity of technology, we believe that with

the continuous efforts of researchers and scientific researchers,

Better methods can be found for clinical application.
6 Conclusions

In this review, we introduce the functions and applications of

exosomes obtained from different sources in cancer. The aim was to

better understand the great potential of exosomes as drug carriers and

diagnostic markers. Insight has been gained into the properties of

exosomes derived from MSCs, DCs, macrophages, etc., providing

more strategies for the treatment of tumors. The application of

nanocarriers helps us overcome the limitations of traditional tumor

treatment (e.g., chemotherapy resistance, inability to cross the BBB,

damage to other healthy organs). The discovery of more effective

methods for the treatment of tumors based on the available evidence is

necessary to safeguard human health. However, the source,

purification and characterization of evs are still limited for large-

scale application. The sources and preparation methods of

extracellular vesicles vary according to their sources. Before selecting

a separation strategy, it is necessary to carefully consider the nature of

the samples and research objectives in order to choose appropriate

technical combinations. To ensure reproducibility and comparability

of results, it is important to have consistent sample sources as a

prerequisite. Furthermore, consistency in the methods used for

extracellular vesicle isolation and characterization should be ensured.

Different extraction methods such as centrifugation, precipitation,

immunoprecipitation, and particle-based separation yield different

results. For example, immunoprecipitation is preferred for plasma-

derived samples due to their high viscosity which makes it difficult to

obtain highly pure extracellular vesicles through other methods (375).

Methods used for characterizing extracellular vesicles include

transmission electron microscopy, nanoparticle tracking analysis,

dynamic light scattering, flow cytometry, and immunohistochemical

analysis which can be combined to characterize the morphology,

biochemical composition, and receptors of extracellular vesicles.

Only when there is consistency in the source selection method and

acquisition conditions can a set of experiments be comparable. It is

crucial to comprehensively study extracellular vesicle isolation

protocols and standardize their characterization in order to ensure

reproducibility and comparability. In order to guarantee the quality of

secrete body source outside supervision, needmore perfect preclinical

studies, such as: different generation time of the stability of the outside

source of MSC secrete body, tumor suppression, and need enough

preclinical animal experiments and clinical I II, III period of study.

There are increasing preclinical studies on extracellular vesicles,

including their role in neuro-related diseases (e.g., epilepsy, Parkinson’s

disease, stroke), autoimmune diseases (e.g., rheumatoid arthritis,

multiple sclerosis), skin regeneration, and wound healing. The

emergence of extracellular vesicles in these areas undoubtedly
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provides a glimmer of hope for patients suffering from such

conditions. However, there are still significant limitations to the

direct clinical application of extracellular vesicles, such as individual

variability, immune rejection reactions, and a lack of specific clinical

efficacy studies. Therefore, the transition from preclinical research to

clinical trials remains a challenging task that needs to be addressed.

Nevertheless, with further advancements in extracellular vesicle

research, these issues can be resolved and it is evident that

extracellular vesicles hold great potential as a powerful therapeutic

tool in various fields including tumor treatment, immune system

disorders and neuro-related diseases. If we can solve the problems of

production efficiency, limitation, and dosage of exosomes, the

translation of exosomes from preclinical to clinical research is expected.
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ovarian cancer. Chin Clin Oncol. (2020) 9:47. doi: 10.21037/cco-20–34

163. Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, et al.
Ovarian cancer: current status and strategies for improving therapeutic outcomes.
Cancer Med. (2019) 8:7018–31. doi: 10.1002/cam4.2560

164. O'Shea AS. Clinical staging of ovarian cancer. Methods Mol Biol (Clifton NJ).
(2022) 2424:3–10. doi: 10.1007/978–1-0716–1956-8_1

165. Qu Q, Liu L, Cui Y, Liu H, Yi J, Bing W, et al. Mir-126–3p containing exosomes
derived from human umbilical cord mesenchymal stem cells promote angiogenesis and
attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature
ovarian failure. Stem Cell Res Ther. (2022) 13:352. doi: 10.1186/s13287-022-03056-y
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