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Air pollution accelerates
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Air pollution is an urgent concern linked to numerous health problems in low-

and middle-income countries, where 92% of air pollution-related deaths occur.

Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants,

increasing inflammation and changing gut microbiota, favoring obesity, type 2

diabetes, and Alzheimer’s Disease (AD). PM2.5 contains lipopolysaccharides (LPS),

which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This

pathway can lead to the release of pro-inflammatory markers, including

interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits

leptin action, a hormone that keeps the energy homeostasis. Leptin plays a

role in preventing amyloid plaque deposition and hyperphosphorylation of tau-

protein (p-tau), mechanisms involved in the neurodegeneration in AD.

Approximately 50 million people worldwide are affected by dementia, with a

significant proportion living in low—and middle-income countries. This number

is expected to triple by 2050. This mini-review focuses on the potential impact of

PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin

resistance, and dysbiosis that exacerbates the link between obesity and AD.
KEYWORDS
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1 Introduction

Air pollution is one of the significant environmental risks

associated with morbidity and premature death (1). This concern

is even more urgent in low- and middle-income countries, where

92% of air pollution-related deaths occur (1, 2). One of the most

harmful components of air pollutants is particulate matter,

classified according to its aerodynamic diameter, whose size

determines its distribution and potential health impacts.

The classes of particles based on their aerodynamic diameter

typically include particulate matter 2.5 (PM2.5) - particles with a

diameter of 2.5 micrometers or less (3) - which can remain

suspended in the air for extended periods. Its toxicity relies on its

concentration and composition. Their surface area-to-volume ratio

makes them more effective at absorbing other toxic substances in

the air. Considering the toxicity of PM2.5, The World Health

Organization’s Air Quality Concentration Guideline established in

2005 that the mean concentrations of PM2.5 should not surpass 10

µg/m3 per year. However, data from 2019 indicated that 90% of the

population consistently faced concentrations overcoming the

guidelines, resulting in fatalities and illnesses. Thus, in 2021, the

guideline set a new goal of 5 µg/m3 annually (2).

In urban areas, the primary source of PM2.5 is vehicular

emissions, composed of sulfates, nitrates, ammonia, carbons,

hydrogen, lipopolysaccharides (LPS), metals, and water (4, 5).

PM2.5 primarily enters the body through inhalation via the upper

airways. It reaches the lungs, and the immune system recognizes it,

causing local inflammation to spread to the systemic circulation and

tissues (6–9). In addition, PM2.5 might directly access the central

nervous system (CNS) via the nasal epithelium and the olfactory

bulb, inducing neuroinflammation (10, 11). The inflammation

caused by PM2.5 exposure could be the link between air pollution

exposure (PM2.5) and obesity, which is a disorder that, in turn,

increases an individual’s risk of developing dementia.

This mini-review will focus on the implications of PM2.5

exposure, particularly its potential to activate the immune system

in the brain areas that regulate feeding, cognition, memory, and

behavior. This activation could contribute to the pathology of

obesity and Alzheimer’s disease (AD). Furthermore, we will

explore the possible involvement of leptin in this mechanism.
2 PM2.5 infiltration into the central
nervous system causing inflammation

PM2.5 exposure caused tissue-like damage and pro-

inflammatory responses in the hippocampus, cortex, and

hypothalamus (12–16), potential areas involved in the

pathophysiology of obesity and dementia. In vivo and in vitro

studies have demonstrated that long- and short-term exposure to

PM2.5 increases inflammatory markers such as tumor necrosis

factor-alpha (TNF-a), interleukin 1 beta (IL-1b), interleukin 6

(IL-6), Toll-like receptor 4 (TLR4), and nuclear factor–kappa B

(NFkB) in different brain areas (12, 17, 18).
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Since PM2.5 may contain LPS (19, 20), a component of gram-

negative bacteria membranes, and a primary agonist of TLR4, our

immune cells could recognize it as a pathogen after it crosses the

blood-brain barrier (BBB). TLR4 is a receptor from the innate

immune system. Its activation recruited myeloid differentiation

factor 88 (Myd88). This association leads to the inhibitor kappa B

kinase (ikkB) phosphorylation, releasing NFkB to the cell nucleus

to start the production and secretion of pro-inflammatory

proteins (21, 22).

Studies have shown that six months of PM2.5 exposure

increased the expression of pro-inflammatory genes and activated

the Ikk/NF-kB pathway in the arcuate nucleus of the hypothalamus

(ARC) of control mice (13), an area related to feeding regulation.

Evidence demonstrated that PM2.5 exposure led to microglia

activation by upregulating ionized calcium-binding adaptor

molecule 1 (Iba-1) expression in the hypothalamus, hippocampus,

and cortex (23–25). One of our recent studies revealed that

maternal exposure to PM2.5 induces hypothalamic inflammation

in offspring (16), suggesting that in addition to the direct exposure

damage seen in other studies, prenatal exposure to PM2.5 also

induces inflammation (15, 16, 18, 24). Diesel exhaust (DE) is also

a significant component of PM2.5, and its acute exposure increased

interleukin one alpha (IL-1a), IL-1b, interleukin 3 (IL-3), IL-6, and

TNF-a levels in the olfactory bulb and hippocampus, in addition to

activate microglia in the hippocampus of control mice (26).

Besides obesity (24) and AD (27), PM2.5 led to other

conditions involving neuroinflammation, including Ischemic

Stroke (28), Parkinson’s disease (29), and Type 2 Diabetes

Mellitus (T2DM) (30, 31). Therefore, PM2.5 might trigger

systemic inflammation and elevated levels of pro-inflammatory

cytokines in the CNS, thereby being a risk factor for metabolic

diseases and neurodegenerative disorders.
3 The effects of air pollution in the
development of Alzheimer’s disease

AD is a progressive neurodegenerative disease that primarily

affects memory, cognition, and behavior and gradually worsens over

time. While specific medications can alleviate some symptoms,

there is currently no cure for AD (32). The accumulation of

amyloid beta (Ab) plaques and hyperphosphorylated tau-protein

(p-tau) in the brain are characteristics of AD (33, 34). In 2018,

Alzheimer’s Disease International estimated that approximately 50

million people worldwide were affected by dementia, with a

significant proportion living in low— and middle-income

countries. This number is expected to triple by 2050 (35).

The primary risk factors for developing AD are typically over 65

and carrying at least one apolipoprotein E (APOE) ϵ4 allele. In the

preclinical phase, alterations in neurons, microglia, and astroglia

contribute to the progression of the disease before cognitive

impairments become noticeable. Neuroinflammation, vascular

changes, aging, and non-efficient astroglial cell waste clearance

play crucial roles in this cellular disease landscape (35).
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The presence of Ab aggregates in the brain initiates a response from
microglia, which releases harmful elements like nitric oxide (NO),

reactive oxygen species (ROS), pro-inflammatory cytokines, and

chemokines, causing neuron damage. These microglia triggered by

Ab are often co-localized with amyloid plaques in AD. In this state,

microglia may contribute to the hyperphosphorylation of p-tau (36, 37).

The activation of microglia TLR4 by Ab aggregates facilitates its

clearance and function as a natural protected event. However,

accumulating Ab aggregates due to self-sustaining cycles

generating Ab diminishes TLR4 capacity, overwhelming the

body’s natural mechanisms for resolving Ab aggregates (38, 39).

Therefore, the protective effect of TLR4 is present in the initial

stages of aggregation, but prolonged TLR4 activation may

contribute to Ab deposition (40).

Stewart et al. (41), proposed that Ab interacts with the TLR4

through a CD36-TLR4-TLR6 complex. This mechanism involves

the recognition of Ab by cluster of differentiation 36 (CD36), which

then initiates signaling through TLR4 and toll-like receptor 6

(TLR6), activating downstream inflammatory pathways. The

CD36-TLR4-TLR6 complex increases the IL-1b expression, a

cytokine prominently found in AD plaques (41).

IL-1b is a maker of neuroinflammation and could be triggered

by PM2.5 (42). As discussed, constant exposure to PM2.5, which

contains LPS, might cause prolonged TLR4 activation (19, 20),

ultimately contributing to Ab deposition. Evidence suggests that

PM2.5 exposure could be a risk factor for AD (10, 25, 43).

In a study by Lee et al. (10), AD-model mice exposed to PM2.5

for 3 months (11.38 mg/m3 mean concentration) showed an

increase in p-tau levels at olfactory bulb, as well as MDA, an

oxidative stress biomarker, in the hippocampus and olfactory

bulb. These effects indicate the meaningful pathway through

which PM2.5 enters and propagates oxidative damage. The

olfactory bulb could be the starting point for the damage caused

by PM2.5, and the lack of damage to other brain regions or

biomarkers could be due to low-level exposure (10). A study with

an AD mouse model (APP/PS1) found that exposure to PM2.5 at

25.8 mg/m3 for 3 months significantly increased Ab plaque density

in the hippocampus. This result suggests that chronic exposure to

PM2.5 could worsen AD pathology (25).

Furthermore, Ning et al. (44) found that 1 month of exposure to

PM2.5 (3 mg/kg) led to impaired learning and memory in young

mice (4 weeks) after performing the Morris water maze test (44).

Another study revealed that exposure to PM2.5 (3 mg/kg) for one

month was enough to raise tau hyper-phosphorylation levels in the

cortex of middle-aged mice. Remarkably, these elevated levels

returned to baseline after the cessation of PM2.5 exposure (43).

Collectively, these observations suggest that chronic PM2.5 exposure

could be a crucial AD risk factor.

4 PM2.5-induced leptin resistance:
implications for Alzheimer’s disease
and obesity

Leptin is an anorexigenic hormone secreted by adipocytes in

proportion to their mass that regulates satiety and energy
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expenditure through a molecular signaling cascade. This cascade

involves binding to its receptor and subsequently activates the

phosphorylation of signal transducer and activator of

transcription 3 (STAT3). STAT3 translocates to the nucleus cell

and stimulates the transcription of Pomc neurons while reducing

Agrp/Npy secretion from neurons on the ARC, increasing satiety

and energy expenditure (45–47). Besides the neurons of the

hypothalamus, leptin receptor long isoform (LepRb) is present in

the hippocampus, cortex, cerebellum, brainstem, and thalamus (48,

49). In these areas, leptin is involved in motivation, reproduction,

growth, learning, and memory (50–52).

A suppressor of cytokine signaling-3 (SOCS3) is a physiologic

leptin signaling inhibitor typically expressed with leptin signaling.

However, in the context of obesity and leptin resistance with the

activation of the TLR4/Myd88/NFkB axis, an enhanced SOCS3

expression occurs, causing a pathologic leptin signaling inhibition

(45, 53). PM2.5’s LPS content might activate the TLR4 signaling

pathway in the various brain regions, including the hypothalamus,

hippocampus, and cortex (40, 45, 54). This effect increases several

pro-inflammatory cytokines and SOCS3 production, consequently

causing leptin resistance (Figure 1) (21, 22, 45, 53). Therefore,

unhealthy obesity is considered a state of low-grade systemic and

hypothalamic inflammation, which could impair neuronal function

(55, 56). Leptin resistance contributes to an obese state and

promotes the formation of Ab plaques and hyperphosphorylation

of p-tau, which ultimately leads to the onset and progression of AD

(Figure 1) (57–60).

Rodents with obesity displayed elevated circulating leptin

concentrations. Despite higher leptin levels, the anorexigenic

effect is lacking, suggesting leptin resistance (61, 62). Although

age and genetics are well-established risk factors in AD

pathogenesis, the link between leptin resistance, obesity, and the

development of AD has been the subject of several studies (63–65).

Interestingly, individuals with AD had lower plasma leptin

levels. Over 50% of subjects with mild cognitive impairment

showed lower leptin levels than the control group (66). The APP/

PS1 mouse model of AD had similar lower leptin levels (67).

Together, these studies suggest that circulating leptin levels may

play a role in cognitive impairment.

Not only are lower leptin levels associated with AD, but patients

with AD exhibit increased leptin levels in the cerebrospinal fluid

(CSF) and hippocampus while concurrently showing a decrease in

its receptor, suggesting leptin resistance. Furthermore, a reduction

in leptin receptor expression is evident even in cases where leptin

levels are the same between groups (68, 69). The hippocampus is a

complex brain structure that plays an essential role in learning,

memory, cognition, and synaptic plasticity (70). It is AD’s first and

primary affected area (69). In addition to the reduction of the leptin

receptor expression in the hippocampus of AD rodent experimental

models, such as old Tg2576, apoE4, and APP/PS1 mice, the STAT3

phosphorylation is also impaired in this area, as reviewed by

McGregor et al. (48).

In control mice, leptin increases glutamate receptors long-term

potentiation (LTP), improving excitatory synaptic transmission and

decreasing long-term depression (LTD). This modification suggests

that leptin influences the brain’s fundamental process underlying
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learning and memory. In APP/PS1 mice with lower leptin levels,

supplementation with leptin improves the harmful effects of Ab on

hippocampal LTP and LTD, restoring normal synaptic function,

increasing synaptic density, and ameliorating memory deficits (68).

In vivo and in vitro studies showed leptin injection attenuates

Ab toxic levels in hippocampus neuronal cells (57, 71). Other

studies showed that activating the leptin signaling pathway in the

AD mouse model decreases tau phosphorylation in the

hippocampus, indicating that leptin has a possible protective

effect (72, 73). Leptin protects against AD by reducing the

expression of the b and g-secretase enzymes. The b and

g-secretase enzymes made the amyloid precursor protein (APP)

cleavage, assembling Ab toxic structures. Therefore, they promote

the init iat ion of amyloid plaque deposit ion and tau

hyperphosphorylation, leading to neurodegeneration (57, 58).

Together, the studies suggest that normal leptin signaling and

action are beneficial to avoid AD progression. Human and mouse

models of AD displayed lower leptin levels or leptin resistance, in

which leptin has an incomplete effect.

In summary, elevated leptin levels contribute to reduced

signaling response in obesity, leading to leptin resistance. In

contrast, a lack of leptin alters essential brain functions currently

under investigation for their potential impact on AD development,

particularly obesity. In both obesity and AD scenarios, insufficient

leptin action is a marked risk factor for neurodegenerative

progression. Scientific research seeks to understand how leptin
Frontiers in Immunology 04
influences AD pathology and whether it holds promise as a

therapeutic target.
5 The overlapping aspects of
Alzheimer’s disease and obesity

AD and obesity share several environmental risk factors, such

as a sedentary lifestyle, consuming a high-fat and high-sugar diet,

and increased stress due to lack of sleep (74–76). Obesity in

midlife is associated with cognitive reduction and memory and

verbal and spatial ability impairments afterward (77–79).

Exposure to lower education, poor nutrition, and family

stressors during early years increases the risk of cognitive

impairment and dementia in later life (80, 81).

Age and genetics are independent risk factors contributing to

AD pathogenesis development (82). Individuals who develop

obesity in midlife have a 33% higher incidence of AD (83).

Neurodegenerative diseases often display obesity as a comorbidity

in neurodegenerative diseases, as they share biomolecular

mechanisms that can lead to brain damage. Both conditions show

increased levels of pro-inflammatory cytokines, including IL-1b,
IL-6, TNF-a, and leptin resistance. These conditions trigger

neurodegeneration through neuroinflammation (12, 80, 84–86).

In addition to inflammation, obese individuals with elevated

oxidative stress and mitochondrial dysfunction have an increased
FIGURE 1

Emphasizes the role of PM2.5 exposure on the gut-brain axis, culminating in leptin resistance, obesity, and Alzheimer’s disease. PM2.5-derived
Lipopolysaccharide (LPS) can engage Toll-like receptor 4 (TLR4) signaling, thereby triggering neuroinflammation via the production of pro-
inflammatory cytokines and suppressor of cytokine signaling-3 (SOCS3), a physiological inhibitor of signal transducer and activator of transcription 3
(STAT3) phosphorylation leading to leptin resistance. Obesity and the lack of leptin action heightened tau-protein phosphorylation and amyloid-beta
deposition. Simultaneously, PM2.5 exposure causes dysbiosis, changing the composition of gut microbiota. Combined with a poor diet, LPS, and
Saturated Fatty Acids could provoke systemic inflammation, thereby increasing intestinal permeability. This scenario could activate microglia and
worsen leptin resistance. Significantly, PM2.5 induces neuroinflammation and changes the gut microbiota, two phenomena crucial in Alzheimer’s
disease pathogenesis. Figure created using BioRender.com.
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risk of developing AD (87, 88). Notably, elevated levels of APP in

adipose tissue and of Ab in the bloodstream have also been

identified as significant contributors to this heightened (87, 89, 90).

In the review by Flores-Cordero et al. (33), they highlight that

obesity resulting from high-fat diets (HFD) increases the risk of

dementia, affecting cognitive abilities such as memory, attention,

and executive functions, with neuroinflammation playing a crucial

role. Studies on male Wistar rats fed with HFD displayed impaired

memory. In contrast, assessments of rats fed with a high-fructose-

high-coconut oil diet using the Morris water maze task revealed

hippocampal-dependent learning and memory problems. These

impairments were followed by molecular changes related to

inflammation, stress, and central insulin resistance (33).

Similarly, a recent study by da Cruz Rodrigues et al. (91) revealed

that obese mice aged 32 weeks lacking Low density lipoprotein

receptor-related protein 1 (LRP1) in GABAergic neurons

demonstrated impaired performance in learning and memory tasks,

including the Water-T Maze and Spatial Novelty Y Maze compared

to mice at 16 weeks of age. The aging mice exhibited diminished

locomotor activity compared to their control counterparts. Also,

these mice showed higher leptin levels and neurodegeneration

indicators. These findings suggest that obesity may significantly

influence cognitive function age-dependently (91).

In summary, the studies point to increased inflammation, Ab
and APP elevated levels, and leptin resistance as the sharing

characteristics between obesity and AD. These elements

contribute to neuroinflammation and neurodegeneration, which

are associated with the development of AD.

6 PM2.5 exposure and gut microbiota
dynamics: insights into obesity and
Alzheimer’s disease

The gut microbiota is another aspect influencing obesity and

AD pathology, potentially affected by environmental factors like

PM2.5 and dietary choices.

A healthy gut microbiota shows significant diversity and

variability in microorganisms (92, 93), a crucial regulator of

energy balance. The alteration, known as dysbiosis, is associated

with obesity, T2DM, colorectal cancer, and AD (94, 95).

Animal studies reveal that environmental pollutants notably

disrupt the composition of the gut microbiota (96–98). Microbes

ingested with PM2.5 induce inflammatory responses in local

immune cells, increase intestinal permeability, and alter the gut

environment, promoting the growth of specific microbial strains

adapted to an inflammatory milieu (99).

Transplanting the gut microbiota from obese mice into germ-

free animals increases fat mass, indicating that obese animals have a

specific gut microbiota that promotes excess body weight

accumulation (100, 101). Several diet factors might also change

the gut microbiota, contributing to obesity induction. High-fat and

high-sucrose diets are often deficient in essential vitamins and

minerals and can induce adverse metabolic effects (102). A high-

fat diet and a cafeteria diet led to leptin resistance and dysbiosis,

which, in turn, altered the gut microbiota composition, increasing
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the intestinal permeability to LPS uptake. As a result, LPS and

saturated fatty acids from the diet can activate TLR4, initiating

systemic inflammation (Figure 1) (102, 103).

Studies on germ-free (GF) mice emphasize the role of gut

microbiota in modulating immune responses and gene expression

patterns associated with inflammation, including the microglia

activation in the brain (95, 104, 105). Microglia from GF mice

showed immature profiles and impaired immune responses

compared to conventionally raised mice. In particular,

transcription and survival factors usually suppressed in mature

microglia were increased in GF mice. Recolonization of GF mice

with fecal samples from AD patients activates microglia more

significantly than samples from healthy donors (95, 106).

Evidence suggests that the development of ADmay originate in the

gut and then spread to the brain, reinforcing the idea of the gut-brain

axis (107–110). Ab1–42 oligomers injected into the gastric wall of mice

migrate from the intestine to the brain. Additionally, bacterial strains

such as Escherichia coli and Salmonella enterica produce extracellular

amyloid fibers, which can initiate immune responses and enhance the

formation of neuronal amyloid in the brain (95, 111, 112).

In summary, PM2.5 impacts obesity and AD by influencing the

gut microbiota. Dysbiosis and nutrient-deficient diets lead to leptin

resistance and exacerbated intestinal permeability (Figure 1),

thereby triggering systemic inflammation. Additionally, the gut

microbiota influences immune responses, including microglia

function. Given the importance of the connection between the gut

and AD, interventions targeting the gut microbiome are crucial in

managing both obesity and AD.
7 Major conclusions

Our mini-review discusses the increasing prevalence of AD and

obesity as global health challenges, exploring the impact of PM2.5

exposure on these illnesses. We examine evidence suggesting that

immune system activation leads to leptin resistance, a critical facet in

these conditions. Additionally, we discuss the need for further research

on PM2.5-induced inflammation, neurodegeneration, and the

protective role of leptin on AD pathogenesis. Finally, we highlight

the urgent action to reduce air pollution and its associated health risks.
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