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CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a

wide range of tissues and cell types. It is involved in a variety of physiological and

pathological processes, including cell adhesion, migration, differentiation, and

apoptosis. Additionally, CD24 has been studied extensively in the context of

cancer, where it has been found to play a role in tumor growth, invasion, and

metastasis. In recent years, there has been growing interest in CD24 as a

potential therapeutic target for cancer treatment. This review summarizes the

current knowledge of CD24, including its structure, function, and its role in

cancer. Finally, we provide insights into potential clinical application of CD24 and

discuss possible approaches for the development of targeted cancer therapies.
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Introduction

Generally, cancer cells are typically eliminated by the intricate mechanisms within the

human immune system. However, they can develop resistance to the body’s anti-tumor

immune responses, allowing them to evade immune surveillance (1). Cancer

immunotherapy has transformed the field of oncology by harnessing the patient’s

immune system to combat cancer cells. This can be accomplished through two main

approaches: immune checkpoint-targeted therapy and the transfer of modified immune

cells. Both methods involve manipulating the immune system to identify and attack cancer

cells. Immune checkpoint inhibitors, such as antibodies targeting programmed cell death

ligand 1 (PD-L1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), as well as

stimulants of other co-stimulatory molecules that override inhibitory pathways to enhance

immune function, have shown success in several clinical trials (2–4). However, they still

encounter challenges like low response rates, high expenses, and non-specific toxicity (5).

The adoptive transfer of cells primarily involves genetically modified cells, such as chimeric

antigen receptor (CAR)-T cells, and various other cell types (6, 7). Cancer immunotherapy

has seen significant progress with the clinical success of immune checkpoint blockade and

CAR-T-cell therapies in recent years. It has emerged as an innovative and potent clinical
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approach, offering unique advantages over traditional anti-tumor

treatments like surgery, radiotherapy, and chemotherapy.

Most of the immunotherapies developed in the past primarily

aimed at stimulating adaptive immunity, especially by reinvigorating

and enhancing T cell responses. However, recent research has revealed

that innate immune checkpoints expressed on antigen-presenting cells

(APCs) play a pivotal role in immune evasion (8–10). Some

checkpoints are responsible for detecting and eliminating cancer cells

through phagocytosis while also restraining the innate immune

response (11, 12). Cancer cells use various mechanisms to evade

macrophage-mediated clearance. One of these mechanisms involves

the upregulation of specific anti-phagocytic membrane proteins often

referred to as “don’t eat me” signals. These proteins include cluster of

differentiation 47 (CD47) (13), cluster of differentiation 24 (CD24) (14,

15), PD-L1 (16), the beta-2 microglobulin (b2M) subunit of the major

histocompatibility class I complex (MHC-I) (17), stanniocalcin 1 (STC-

1) (18), and GD2 (19). Phagocytosis is typically assisted by inherent

“eat me” signals that serve as ligands for phagocytic receptors. These

signals can initiate significant changes in the cytoskeleton, leading to

the engulfing of the target.

In recent times, the focus on phagocytosis checkpoints, notably

CD24, has increased as potential targets for treating cancer and

non-neoplastic conditions (20, 21) (Figure 1). CD24 has shown

elevated levels in several cancers like breast, prostate, pancreatic,

and ovarian cancers. Due to its diverse post-translational

modifications, CD24 has been implicated in tumor development,

invasion, and metastasis. It is also considered as a potential marker

for cancer prognosis and therapy (34). Moreover, emerging studies

have unveiled the crucial roles of CD24 in various health conditions,

including autoimmune diseases, sepsis metabolic disorders, and

graft vs host diseases (35–39).

CD24 is a glycosylphosphatidylinositol-anchored protein

known as a B-cell differentiation antigen in 1978 (40). It is
Frontiers in Immunology 02
present in various tissues and cell categories, such as

hematopoietic stem cells, B and T lymphocytes, epithelial cells,

and neural cells (34, 41). CD24 has also been found to play a role

in a variety of physiological and pathological processes, including

cell adhesion, migration, differentiation, and apoptosis (42). In

this review, we provide an overview of CD24 biology from

fundamental concepts, paired receptors and relevant signal

pathways, to the possibility of targeting CD24 as a novel

therapeutic target. Then we highlight the ongoing clinical

advancements in the targeting CD24 and identify the challenges

and potential solutions in the context of cancer immunotherapy.

Our aim is that this comprehensive review will not only enhance

our understanding of the current state of research on CD24 but

also explore the potential of CD24-based immunotherapy.
Structure of CD24

CD24 is a small glycosylphosphatidylinositol-anchored protein

that is composed of a short extracellular domain, a single

transmembrane domain, and a cytoplasmic tail (43). The

extracellular domain of CD24 contains a variable number of N-

linked and O-linked glycosylation sites, which are involved in the

regulation of CD24-mediated cell adhesion and signaling (44). The

CD24 protein is encoded by the CD24 gene located on chromosome

6p21.3, which consists of 80 amino acids and has a molecular

weight of approximately 27 kDa (45) It contains a single N-

glycosylation site and several O-glycosylation sites, which

contribute to its glycosylation status. The protein is anchored to

the cell membrane via a glycosylphosphatidylinositol (GPI) anchor

at its C-terminus (44). The crystal structure of CD24 has been

determined by X-ray crystallography. It forms a compact, globular

structure with a b-barrel fold composed of 4 antiparallel b-strands.
FIGURE 1

Tracing the advancements in phagocytosis checkpoints for cancer. The CD47-SIRPa axis emerged as the seminal checkpoint axis in 1999, marking
the entry into phagocytosis checkpoint exploration (22, 23). By 2007, cell surface calreticulin had been recognized as a decisive marker signaling
immunogenic cell death in cancers (24). The upregulation of CD47 on malignancies was noted in 2009, setting a precedent for targeted therapies
aiming to boost phagocytosis (25, 26). Following these discoveries, by 2013, the MHC-I-LIRB1 interaction was pinpointed as another checkpoint
avenue (27). In a significant turn of events in 2015, antibodies against Complement Factor H (CFH) were found to lead to the complement-
dependent destruction of tumor cells (28). This was followed by the identification of PD-L1 as a checkpoint for phagocytosis in tumor-associated
macrophages (TAMs) in 2017 (29). By 2019, the field had recognized CD24 and CD22 as additional modulators of phagocytosis, with CD24 impeding
and CD22 promoting this critical immune process within microglia (30). The latest key findings in 2022 showed the interaction of STC-1 with
calreticulin, attenuating the phagocytic activity of immune cells (18). IGSF8 has been identified as a new target for cancer immunotherapy due to its
role in regulating the innate immune system in 2023 (31). Consequently, a phase 1 clinical trial has started to test the IGSF8 inhibitor GV20-0251 in
individuals with advanced or metastatic solid tumors, under the study number NCT05669430 (32). In the latest advancement by 2024, the TREX1
enzyme has been identified as a limiting factor for the cGAS/STING-mediated antitumor immunity, presenting new therapeutic windows (33). This
historical trajectory underscores the rapid evolution and complex interplay of innate immune mechanisms that are currently shaping novel cancer
immunotherapeutic strategies. Created with BioRender.com.
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The b-barrel is stabilized by a disulfide bond between Cys53 and

Cys73. The N-terminal part of the protein contains a short a-helix
and a flexible loop region (46).

The extracellular domain of CD24 is highly glycosylated and

forms a distinct patch on the surface of the protein (44). The

glycosylation of CD24 has been shown to be important for its

function, as it mediates interactions with other proteins and can

modulate its biological activity (21). This process is integral to the

role of CD24 in cell adhesion and signaling due to its highly

glycosylated extracellular domain (44). This domain contains N-

linked and O-linked glycosylation sites which are crucial for the

interaction with cell surface receptors like P-selectin, Siglecs, and b1
integrin, which are involved in cell adhesion, migration, and

immune response regulation (47, 48).

The activity of CD24 is influenced by interactions with

various proteins across different cellular contexts. Notably,

CD24 binds to P-selectin on platelets and endothelial cells,

facilitating tumor cell migration and metastasis. CD24 also

interacts with Siglec-10 on immune cells, dampening immune

responses and contributing to immune evasion in tumors (49).

Additionally, CD24 activates Src Family Kinases, triggering

signaling pathways that support cell proliferation, survival, and

migration (50). Furthermore, its association with integrins affects

cell adhesion, migration, and invasion, underscoring its role in

cancer dynamics (51). The functional outcomes of CD24

interactions are contingent on the cellular environment and the

intricate balance between its binding partners and the resultant

signaling cascades.
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A brief overview of phagocytosis
checkpoints beyond CD24

Ever since the CD47-Signal-Regulatory Protein a (SIRPa) axis
was identified as the initial checkpoint for tumor phagocytosis in

the late 2000s, several other phagocytosis checkpoints responsible

for enabling tumor cells to evade phagocytic elimination have come

to light (12). These include CD24-Siglec 10 interaction, PD-1-PD-

L1 and LILRB1-b2M interaction (52) (Figure 2).
CD47-SIRPa interaction

The CD47-SIRPa pathway is the most extensively researched

checkpoint for phagocytosis in cancer (9, 60, 61). Treatments aimed

at blocking the interaction between CD47 and SIRPa are the most

advanced in clinical trials and are currently being explored in the

clinic for various human cancers (62–65).

CD47-SIRPa interaction is a biological process in which the

protein CD47 on the surface of various cells, including cancer cells,

interacts with SIRPa on the surface of macrophages. This interaction

sends a “don’t eat me” signal to macrophages, preventing them from

engulfing and destroying the CD47-presenting cells. This mechanism is

often exploited by cancer cells to evade the immune system and avoid

phagocytosis, allowing them to survive and proliferate. It has been a

focus of cancer immunotherapy research to develop strategies that

disrupt or block this interaction, enabling the immune system to

recognize and eliminate cancer cells more effectively (Figure 2).
FIGURE 2

Regulation of phagocytosis in cancer immunotherapy checkpoints. The complex interplay between signals that regulate the ability of immune
system to recognize and destroy cancer cells. On the left side are molecules labeled “Don’t Eat Me Signals.” These are proteins expressed on the
surface of tumor cells that interact with receptors on immune cells called phagocytes. The interaction inhibits the phagocytes from engulfing and
destroying the tumor cells. Firstly, b2M (Beta-2 microglobulin) is part of the MHC class I complex and can interact with LIRB1 (Leukocyte
immunoglobulin-like receptor B1) on phagocytes (53). Secondly, PDL-1 (Programmed death-ligand 1) binds to PD-1 (Programmed death-1) on
immune cells, delivering an inhibitory signal to the immune cells (54). Thirdly, upon binding to SIRPa (Signal-regulatory protein alpha) on
phagocytes, CD47 transmits a signal to the phagocyte to not ingest the cell (55). Lastly, CD24 binds to Siglec-10 (Sialic acid-binding Ig-like lectin 10)
on immune cells, which can also prevent phagocytosis (56). On the right side of the image, there are several “Eat Me Signals.” Calreticulin, when
exposed on the surface of stressed or dying cells, interacts with the LRP1(low-density lipoprotein receptor-related protein 1) on phagocytes and
prompts the immune cells to engulf those cells (57, 58). SLAM7 (Signaling lymphocytic activation molecule 7) pairs with DAP12FCRg (DNAX activation
protein 12 Fc receptor gamma), which is a signaling adaptor for natural killer cells, enhancing the immune response against the tumor cell (59). The
balance between these signals determines whether the immune system will recognize and attack the tumor cell or not. Targeting these pathways is
a promising strategy for cancer immunotherapy, aiming to tip the balance towards “Eat Me Signals” to promote the removal of cancer cells by the
immune system. Created with BioRender.com.
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The earlier clinical application of the SIRPa-CD47 interaction

in cancer therapy has shown promise, primarily utilizing anti-CD47

monoclonal antibodies to block the CD47 “don’t eat me” signal.

However, in recent developments, Gilead Sciences, Inc. faced

setbacks with its immunotherapy drug, Magrolimab, in clinical

trials. The Phase 3 ENHANCE-3 study, which aimed to treat newly

diagnosed acute myeloid leukemia patients with Magrolimab in

combination with venetoclax and azacitidine, was discontinued due

to futility in improving overall survival and increased risk of death,

primarily from infections and respiratory failure. Consequently,

FDA placed a full clinical hold on all Magrolimab studies in AML

and MDS, including related expanded access programs. These

challenges with Magrolimab have intensified interest in

alternative therapeutic targets such as CD24. More and more

research are now increasingly focusing on the potential of CD24

as a novel target in cancer treatment, spurred by the need to find

more effective and safer treatment options in light of the setbacks

experienced with CD47-targeted therapies. This shift underscores

the ongoing search for better cancer treatments and the importance

of exploring diverse therapeutic targets.
MHC-I–LILRB1 axis

The MHC-I-LILRB1 axis is an immune regulatory pathway

involving Major Histocompatibility Complex Class I (MHC-I) and

Leukocyte Immunoglobulin-Like Receptor 1 (LILRB1) (17, 66).

LILRB1 transmits inhibitory signals that can reduce the activation

and phagocytic activity of these cells. This mechanism is

particularly relevant in the tumor microenvironment where

cancer cells exploit this pathway to escape immune-mediated

destruction (66). By presenting MHC-I molecules that engage

LILRB1, cancer cells can inhibit the phagocytic function of

immune cells, thereby evading immune surveillance. In cancer

immunotherapy, blocking the interaction between MHC-I and

LILRB1 is considered a promising strategy to enhance the

immune system to recognize and destroy cancer cells, thereby

facilitating more effective phagocytosis and elimination of

malignant cells (17).This interaction can send inhibitory signals

that dampen immune responses, preventing the immune system

from attacking cells displaying MHC-I, which can include cancer

cells. In cancer immunotherapy, strategies aim to block this

interaction, allowing the immune system to better recognize and

target cancer cells for destruction (52, 67).
PD-1–PD-L1 axis

The PD-1-PD-L1 axis is a crucial immune checkpoint pathway

that significantly impacts the immune system to respond to

cancerous and pathogenic cells (68). PD-1 is a receptor found on

T cells, while PD-L1 is expressed on various cells, including many

cancer cells (69, 70). The interaction between PD-1 and PD-L1

sends an inhibitory signal that reduces T cell activity and dampens

the overall immune response (71). Crucially, recent studies have

shown that PD-L1 is also involved in regulating the phagocytic
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functions of macrophages and dendritic cells (72, 73). By engaging

with PD-1 on these cells, PD-L1 can decrease their phagocytic

activity, further aiding cancer cells in evading immune detection

and destruction (29, 72, 73). In cancer immunotherapy, targeting

this axis with PD-1 or PD-L1 inhibitors enables a more robust

immune attack by not only enhancing T cell activity but also by

potentially increasing the phagocytic capabilities of macrophages

and dendritic cells, allowing for more effective recognition and

elimination of tumor cells (54, 74).
STC-1

STC-1, or Stanniocalcin-1, is a glycoprotein that plays a

nuanced role in the regulation of cellular calcium and phosphate

homeostasis under physiological conditions (75–77). Beyond its

traditional functions, recent research has highlighted its emerging

role as an immune checkpoint in cancer biology (78–80). STC-1 is

implicated in modulating the tumor microenvironment,

particularly influencing the behavior of immune cells (81). It

contributes to the suppression of immune responses by inhibiting

macrophage activation, which in turn can promote tumor growth

and metastasis by allowing cancer cells to evade immune detection

and destruction (82–84).

In the context of cancer, STC-1 can be viewed as a potential

therapeutic target. Its ability to modulate immune responses

presents an opportunity for novel cancer therapies aimed at

enhancing the ability of immune system to recognize and

eliminate tumor cells (18, 85–87). Targeting STC-1 could

potentially disrupt its immunosuppressive effects, thereby

enhancing the efficacy of existing immunotherapeutic approaches

such as checkpoint inhibitors or CAR-T cell therapies (88).

However, the specific mechanisms through which STC-1 interacts

with other components of the immune system and its broader

implications for cancer therapy are still under investigation. Further

research is required to fully understand its role and to harness its

potential in oncology.
CD22

CD22 is one of Siglec (sialic acid-binding immunoglobulin-type

lectin) that primarily functions as an immune checkpoint on B cells

(89). It is expressed on the surface of mature B cells and to a lesser

extent on some early B cells, playing a critical role in modulating B

cell signaling and activation (90, 91). As an immune checkpoint,

CD22 helps to maintain immune tolerance and prevent

autoimmune responses by regulating the threshold for B cell

receptor (BCR) signaling (92).

In the context of cancer, especially in certain types of B cell

leukemias and lymphomas, CD22 is of particular interest because it

can be overly expressed (93). This overexpression can contribute to

the survival and proliferation of malignant B cells. Targeting CD22,

therefore, presents a promising strategy for cancer immunotherapy

(94). By inhibiting or modifying the function of CD22 through

monoclonal antibodies or other biologic agents, it is possible to
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enhance the ability of immune system to attack cancerous B cells.

Such strategies can potentially disrupt the protective signals that

CD22 provides to tumor cells, thereby enhancing the efficacy of

treatments aimed at eradicating B cell malignancies (95, 96).

Additionally, the role of CD22 in immune suppression and its

selective expression on B cells makes it an attractive target for

selective therapies that aim to minimize off-target effects and

maximize the immune response against the tumor cells. This

approach is still under investigation, with ongoing research

focusing on how best to leverage CD22 targeting for therapeutic

benefits in hematological cancers (7).
GD2

GD2 was discovered as a neuroblastoma tumor antigen in the

1980s (97). The expression of GD2 in normal tissues is limited,

primarily detected in the brain, spinal cord, and skin melanocytes

(98). It is thought to play a role in neural differentiation and repair,

yet further research is needed to elucidate the specific underlying

mechanisms (98, 99). For example, mice lacking GM2/GD2

synthase (B4GALNT1) show reduced myelination in the central

nervous system, demyelination in peripheral nerves, and axonal

degeneration (100). These mice then develop progressive behavioral

neuropathies, which demonstrates the importance of GM2/GD2 in

maintaining normal neural functions (101). While the precise

function of GD2 in normal cell physiology remains to be fully

understood, it is known to enhance cancer cell proliferation,

adhesion, migration, invasion, and resistance to apoptosis.

As a disialoganglioside, GD2 is notably overexpressed in

neuroblastoma, sarcomas, gliomas, and neuroendocrine tumors (97,

102, 103). The significance of GD2 as a cancer target has been

extensively reviewed (103, 104). GD2 antibodies lies in their ability to

bind selectively to the GD2 antigen on cancer cells, thereby

facilitating the immune system recognition and destruction of these

cells. This targeted approach aims to minimize damage to normal

tissues, given the restricted expression of GD2 in the body. The

clinical application of anti-GD2 antibodies represents a significant

advancement in the treatment of certain types of cancer, particularly

neuroblastoma (105). Clinical trials have demonstrated that anti-

GD2 therapy can significantly prolong the survival of patients with

high-risk neuroblastoma (105). The mechanism of action involves

antibody-dependent cellular cytotoxicity (ADCC), where the binding

of anti-GD2 antibodies to GD2-expressing tumor cells triggers their

elimination by natural killer (NK) cells, macrophages, and other

immune effector cells (106). Moreover, anti-GD2 antibodies have

been explored in combination with other therapeutic modalities, such

as chemotherapy, immunomodulators, and radiotherapy, to enhance

their anti-tumor efficacy (107, 108). In summary, anti-GD2

antibodies represent another promising therapeutic strategy for

targeting GD2-expressing tumors. Ongoing research and clinical

trials continue to refine and expand their application, aiming to

maximize their therapeutic potential while minimizing

adverse effects.
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ENPP1

ENPP1 (Ectonucleotide Pyrophosphatase/Phosphodiesterase)

is increasingly recognized as an important immune checkpoint in

cancer immunobiology, playing a critical role in the modulation of

the tumor microenvironment and immune evasion (109, 110).

ENPP1 is involved in the hydrolysis of ATP and GTP to AMP

and GMP, thereby influencing the levels of these molecules in the

extracellular environment (111–113). In the context of cancer,

ENPP1 overexpression is associated with the development of an

immunosuppressive TME (110, 114). This occurs through the

modulation of adenosine levels, which can suppress immune

responses and facilitate tumor progression.

ENPP1 impacts cancer immunity primarily by shifting the ATP-

adenosine balance towards adenosine, an immunosuppressive agent

that inhibits effector T cells and promotes regulatory T cell activities

(115, 116). This shift is crucial for cancer cells to evade immune

surveillance. Moreover, ENPP1 intersects significantly with the

cGAS-STING pathway (117). By degrading cGAMP, a secondary

messenger in the STING pathway, ENPP1 dampens the immune

response to cancer cells (118, 119).

The inhibition of ENPP1 presents a promising avenue for

cancer therapy. Blocking ENPP1 can potentially restore the

effectiveness of the STING pathway, thereby enhancing immune-

mediated tumor suppression. This can be particularly effective

when used in combination with other therapies such as

checkpoint inhibitors, radiation therapy, or DNA damage

response inhibitors, which could synergize to amplify the anti-

tumor immune response (120, 121).

Various small molecule inhibitors targeting ENPP1 have shown

efficacy in preclinical models, suggesting potential for clinical

applications. These inhibitors not only counteract the

immunosuppressive effects of ENPP1 but also may enhance the

effects of other immunotherapeutic strategies by enabling a more

robust immune response against tumors (121–123).

In conclusion, targeting ENPP1 offers a dual benefit in cancer

therapy by potentially disrupting the immunosuppressive

adenosine pathway and by reactivating important immune

surveillance mechanisms like the STING pathway. This dual

action makes ENPP1 a compelling target in the landscape of

cancer immunotherapy.
IGSF8

IGSF8 (Immunoglobulin superfamily member 8, also known as

CD316 or EWI-2) plays a pivotal role as an innate immune

checkpoint in cancer immunology (31, 124). This molecule is

primarily expressed on cell membranes and exerts its effects

through unique transmembrane interactions (125–127). Recent

studies have unveiled that IGSF8 is highly expressed in several

cancer types, where it significantly modulates the immune

microenvironment by interacting with key immune cells like

natural killer (NK) cells and dendritic cells (DCs) (31, 125, 128).
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IGSF8 mechanism involves suppressing NK cell cytotoxicity

and impeding the antigen presentation capabilities of dendritic

cells, which collectively contribute to immune evasion by tumors

(31). This suppression is crucial in cancers with low antigen

presentation and poor immune cell infiltration, correlating with

advanced disease stages and poorer patient prognoses.

Clinical relevance is underlined by the development of

antibodies targeting IGSF8, such as GV20-0251 (32). This

antibody has shown promising results in preclinical models,

enhancing NK cell-mediated cytotoxicity and improving antigen

presentation (31). The therapeutic potential of IGSF8 targeting is

further highlighted in ongoing clinical trials aimed at evaluating the

efficacy of IGSF8 inhibitors in treating advanced or metastatic solid

tumors. These findings position IGSF8 not only as a marker

of immune evasion but also as a viable target for novel

immunotherapeutic strategies in cancer treatment.
TREX1

TREX1 (Three prime repair exonuclease 1) acts as an innate

immune checkpoint, particularly affecting the cGAS-STING

pathway which is critical in the immune response against cancer

(33). The role of TREX1 is to degrade cytoplasmic DNA, thereby

preventing the activation of the cGAS-STING pathway (129). This

pathway is involved in detecting cytoplasmic DNA and initiating an

immune response through the production of type I interferons,

which are crucial for immune surveillance against tumors (130).

In the absence of TREX1, accumulation of cytoplasmic DNA

would typically lead to increased activation of the cGAS-STING

pathway, enhancing immune responses (131–133). However, in

cancer cells, TREX1 helps tumors evade this immune surveillance

(129, 134). High levels of TREX1 in tumor cells can lead to

decreased activation of the cGAS-STING pathway, allowing

cancer cells to avoid detection and destruction by the immune

system. Understanding the function of TREX1 as an immune

checkpoint has implications for cancer therapy. Targeting TREX1

might enhance the effectiveness of immunotherapies by increasing

the immune system’s ability to recognize and destroy tumor cells

through the activation of the cGAS-STING pathway (135–138).

Research is ongoing to explore the potential of targeting TREX1

in cancer treatment, aiming to counteract its immunosuppressive

effects and improve the efficacy of cancer immunotherapies.
Normal physiological roles and
significance of CD24

In the realm of cellular biology, CD24 emerges as a pivotal GPI-

anchored cell surface protein, manifesting an expansive expression

across diverse tissues and cell types. Recognized initially as a marker of

B-cell differentiation, the scope of CD24 function extends far beyond,

encompassing roles in critical physiological processes such as cell

adhesion, migration, differentiation, and apoptosis. The highly
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glycosylated extracellular domain of CD24 facilitates its interaction

with a multitude of cell surface receptors including P-selectin, Siglecs,

and b1 integrin, thereby playing a vital role in mediating cell-cell

communication, immune response regulation, and tissue homeostasis

(139). The functional modulation of CD24 through its glycosylation

status underscores its capacity to influence biological activity

significantly. For instance, the interaction of CD24 with P-selectin

not only promotes tumor cell migration andmetastasis but also reveals

a mechanism for immune evasion by engaging Siglec-10 on immune

cells, thus dampening immune responses (140, 141). Furthermore, the

activation of Src Family Kinases by CD24 triggers signaling pathways

that are instrumental in supporting cell proliferation, survival, and

migration (142, 143). This overview of CD24 under normal

physiological conditions elucidates the multifaceted roles it plays,

highlighting the importance of understanding these fundamental

processes to grasp the implications of CD24 dysregulation in disease

states, notably in cancer.
CD24 as a novel
phagocytosis checkpoint

CD24 is emerging as a pivotal modulator in the immune

evasion mechanisms of cancer cells, acting as a novel

phagocytosis checkpoint that manipulates the immune system to

recognize and eliminate malignant cells (8, 56, 144). Through its

interaction with the inhibitory receptor Siglec-10 on macrophages,

CD24 effectively sends a “don’t eat me” signal, thereby preventing

the phagocytosis of cancer cells (49). This interaction not only

shields cancer cells from immune-mediated destruction but also

contributes to the complexity of tumor-immune dynamics,

complicating therapeutic interventions aimed at enhancing

immune responses against tumors (56).

Recent studies elucidate the molecular pathways underpinning

the CD24-Siglec-10 axis, highlighting its significance in immune

tolerance and exploitation by cancer cells to evade immune

surveillance (145–147). The blockade of this checkpoint has

demonstrated potential therapeutic benefits, revealing a decrease

in tumor growth and an increase in the efficacy of other

immunotherapeutic strategies when the inhibitory effects of CD24

are neutralized (148).

Furthermore, the expression of CD24 and its role as a

phagocytosis checkpoint varies across different tumor types and

stages, suggesting a need for targeted approaches in utilizing this

axis for cancer therapy (149). Investigations into the regulatory

mechanisms governing CD24 expression and its interaction with

Siglec-10 are critical for developing strategies to overcome this

mode of immune evasion (Figure 3).

The exploration of CD24 as a phagocytosis checkpoint opens new

avenues for cancer immunotherapy, offering insights into the

intricate balance between immune activation and suppression

within the tumor microenvironment. Future research focusing on

the detailed mechanisms of CD24-mediated immune evasion and the

development of innovative therapeutic agents targeting this pathway
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promises to enhance our arsenal against cancer, paving the way for

more effective and precise immunotherapeutic interventions.
CD24 and its receptors

CD24 is known to interact with a variety of cell surface

receptors, including P-selectin, Siglecs, and b1 integrin, and is

involved in the regulation of cell adhesion and migration (49). It

has also been found to be involved in the regulation of cell

differentiation and apoptosis through its interaction with the

Notch signaling pathway (152).

CD24 is a cell surface protein that is expressed on a variety of

cell types, including immune cells, neural cells, and cancer cells

(34, 153–156). CD24 lacks intrinsic enzymatic activity but is

significant due to its interactions with receptor proteins such as

Siglec-10, Siglec-15, and the NKG2D receptor (56, 157–160).

These interactions are essential for regulating immune responses

and facilitate the immune system discern between cells of the self

and those that are foreign. Additionally, the interaction with the

NKG2D receptor, which is found on natural killer (NK) cells and

some T cells, suggests a complex role in immune surveillance and

cancer immunology (161). The binding of CD24 to these

receptors can influence immune cell signaling pathways,

potentially leading to immunosuppressive effects that can be

exploited by cancer cells to evade immune detection and

destruction (160, 162).
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CD24 and Siglecs receptor

Siglecs are proteins found on cell surfaces that interact with

sialic acids (163, 164). Structurally, there are two main groups of

Siglecs. The first group, comprising Siglec-1, -2, -4, and -15, has a

similar structure in rodents, humans, and other vertebrates, with

about 25–30% identical amino acids. The second group, related to

CD33, shows a structural variation between humans and other

vertebrates. However, they are highly similar to CD33, with 50–85%

amino acid similarity. In humans, this group includes Siglecs from

-3 to -12, -14, and -16, while in mice, it consists of Siglec-3 and

Siglec-E to -H. Most Siglecs, except for a few in both humans and

mice, contain motifs inside their cells that play a role in inhibitory

signaling (160). The Siglec family of receptors are sialic acid-

binding immunoglobulin-like lectins that are expressed on

immune cells, and they have been shown to interact with CD24

in a sialic acid-dependent manner.

Siglec-10 is a negative regulator of immune responses, and it has

been shown to interact with CD24 on dendritic cells and B cells to

inhibit their activation (158, 165, 166). Interaction between CD24

and Siglec-10 effectively transmits a “don’t eat me” signal, inhibiting

the phagocytic activity of these immune cells against cancer cells

(Figure 4) (145, 172). Siglec-15 is another member of the Siglec

family that has been also shown to interact with CD24. It has

emerged as a novel immune checkpoint molecule that negatively

regulates T cell activation. Its expression on tumor cells and tumor-

infiltrating myeloid cells can lead to the suppression of anti-tumor
FIGURE 3

The potential therapeutic intervention to modulate interaction between macrophages and cancer cells through regulatory proteins. The cancer cell
displays ‘Don’t Eat Me’ signals through proteins such as CD24, which binds to Siglec-10 on the macrophage, and CD47, which interacts with SIRPa.
These interactions result in the phosphorylation of SHP-1/2 (Src homology region 2-containing protein tyrosine phosphatases) within the
macrophage, leading to an inhibitory signal transduction that prevents phagocytosis. Consequently, the cancer cell evades immune destruction and
proliferates (145, 150). The lower half of the figure represents a potential therapeutic strategy to subvert this immune evasion. An anti-CD24 antibody
blocks the CD24- Siglec-10 interaction, thus negating the ‘Don’t Eat Me signal (151). This allows the macrophage to receive ‘Eat Me’ signals, which
may be mediated by other surface molecules or opsonizing antibodies, facilitating the phagocytosis and destruction of the cancer cell. The arrow
between the two sets of images indicates a therapeutic transition from unchecked cancer cell proliferation to effective immune-mediated killing.
This concept represents a significant avenue of research in cancer immunotherapy, aiming to enhance the efficacy of macrophage-mediated
phagocytosis as a treatment strategy. Created with BioRender.com.
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immune responses. By binding to sialic acids on the surface of T

cells, Siglec-15 delivers inhibitory signals that dampen T cell activity

and proliferation, thereby promoting immune tolerance to tumors

(41, 159, 173–176). Siglec-E is predominantly expressed on myeloid

cells, including neutrophils, macrophages, and dendritic cells (177)

(178). It plays a pivotal role in the negative regulation of the innate

immune response (179). The engagement of CD24 with Siglec-E on

immune cells transmits inhibitory signals that modulate the

immune system to respond to tumors (180). This interaction

contributes to the immune evasion by downregulating the activity

of phagocytic cells, thus preventing the effective clearance of tumor

cells. By inhibiting the phagocytic function of immune cells, the

CD24-Siglec-E axis facilitates tumor survival and progression by

allowing cancer cells to escape immune surveillance (181). In

addition, Siglec-E plays a crucial role in managing metabolic

inflammation in obesity, which suggests the interaction between

CD24 and Siglec-E in macrophages could underlie their role in

attenuating metabolic inflammation and associated conditions (37,

38). However, more research is required to confirm this theory.
CD24 and NKG2D receptor

The NKG2D receptor is an activating receptor that is expressed

on natural killer cells and other immune cells (182, 183). NKG2D

recognizes stress-induced ligands that are upregulated on tumor
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cells and infected cells (184). CD24 has been identified as a ligand

for NKG2D, and this interaction has been shown to promote tumor

immune evasion by suppressing NKG2D-mediated immune

responses (20). The relationship between CD24 and NKG2D in

the context of cancer involves a complex modulation of immune

responses. While CD24 does not directly interact with NKG2D,

its expression on cancer cells can influence the tumor

microenvironment and the expression of NKG2D ligands on

tumor cells, thereby affecting the efficacy of NKG2D-mediated

immune surveillance (185).

Understanding the interplay between CD24 and NKG2D opens

new avenues for cancer immunotherapy. Strategies that target

CD24 expression or function in cancer cells could enhance

NKG2D-mediated immune responses, potentially overcoming

immune evasion mechanisms and improving the efficacy of

treatments designed to activate NK and T cells against cancer (15,

167). This highlights the importance of exploring the roles of CD24

and NKG2D in cancer immunity and the potential for therapeutic

interventions that modulate their activity.

In summary, CD24 is a cell surface protein that interacts with

several receptor proteins, including Siglec-10, Siglec-15, and the

NKG2D receptor. These interactions play important roles in

immune regulation, bone homeostasis, and tumor immune

evasion. Understanding the functions of CD24 and its receptors is

important for the development of CD24-targeted therapies for

various diseases.
FIGURE 4

Cancer Stem Cell Markers and Signaling Pathways. The left lists surface proteins commonly expressed by CSCs, including CD24, CD44, CD133,
EpCAM (Epithelial Cell Adhesion Molecule), and mucins. These markers are essential for the identification and isolation of CSCs. The right indicates
intracellular signaling cascades that are activated or modulated by CSCs, such as Notch, Wnt/b-catenin, PI3/Akt, Hedgehog, and EMT (Epithelial-
Mesenchymal Transition) pathway. These pathways are critical for maintaining the stemness properties of the CSCs, such as self-renewal and
differentiation. There are a range of detrimental functions associated with the CSC cluster, including therapy resistance, metastasis, and tumor
recurrence. The expression of CD24 has been associated with the ability of CSCs to invade and migrate, which are key steps in the metastasis of
cancer cells from the primary tumor to distant organs (167). Moreover, CD24 may mediate interactions between CSCs and the extracellular matrix or
other cells within the tumor microenvironment, facilitating the detachment and dissemination of CSCs (168). CD44 plays a crucial role in the
resistance of CSCs to conventional therapies since it interacts with various components of the cell microenvironment, affecting cell adhesion,
migration, and signaling pathways (167, 169). Recent research has discovered that CD44v3 could be used as a marker of invasive cancer stem cells
driving metastasis in gastric carcinoma (170). CD133 plays a pivotal role in the self-renewal capability of CSCs which maintaining their population
within the tumor (171). Created with BioRender.com.
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CD24-related signaling pathway

CD24 is a glycosylphosphatidylinositol-anchored protein that

plays a crucial role in various physiological and pathological

processes, including cancer progression. CD24-related signaling

pathways are critical for mediating the functional effects of CD24

in cells (186). Here, we discuss some of the key CD24-related

signaling pathways that have been identified.
CD24-activated SRC activates cell Integrins

Integrins, a type of cell adhesion receptor, play a pivotal role in

initiating intracellular signaling pathways. As a result, they are closely

linked to facilitating cell attachment, invasion, and metastasis by

interacting with components of the extracellular matrix (187).

Baumann et al. demonstrated that CD24 has the ability to activate

existing a3b1 and a4b1 integrins in rat carcinoma cell lines, such as

1AS. The activation of these a3b1 and a4b1 integrins through CD24

expression enhances tumor invasion and metastasis by encouraging cell

adhesion to various extracellular components, including fibronectin,

collagens I and IV, and laminin (142). Furthermore,Runz and colleagues

characterized CD24 as a regulator of lipid rafts, serving as a control point

for the activity of integrins and other proteins located within these

specialized membrane microdomains (188). In specific cancer cells like

A125 and MDA-MB-435S, CD24 was observed to recruit b1 integrin

into lipid rafts (189). This repositioning of b1 integrin within lipid rafts

influences the adhesion and migration of tumor cells (190).

CD24 enhances the mobility of tumor cells through the

activation of integrin subunits (notably a3b1 and a4b1), which
support tumor cell adhesion to fibronectin and various extracellular

matrix elements, including collagen types I and IV, as well as

laminin. This increase in tumor cell migration was evidenced in

an animal tumor model by Petra.

The activation of integrins by CD24 can occur through two

distinct mechanisms. First, it may involve a direct interaction

between CD24 and integrins (191). However, it is important to

note that co-immunoprecipitation studies did not reveal a

significant association between CD24 and integrins in this context.

Second, integrins may be activated by CD24-induced Src kinase.

Activated Src, in turn, promotes integrin adhesion to extracellular

components like fibronectin. Additionally, Src phosphorylates and

stabilizes focal adhesion kinase (FAK) and paxillin, which are key

players in integrin-mediated processes such as cell adhesion,

migration, and metastasis (142). Consequently, CD24 appears to

have a significant impact on the invasion and metastasis of tumor

cells by facilitating the translocation and activation of integrins,

primarily through the activation of Src kinase and potential focal

interactions between CD24 and integrins.
MAPK kinase mediated mechanisms

TheMAPK (mitogen-activated protein kinase) pathway consists of

three protein kinases activated in sequence (ERK, JNK, and p38

MAPK) that play vital roles in various cellular processes such as cell
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proliferation, differentiation, and apoptosis (192). Wang et al.

demonstrated the interplay between CD24 and the MAPK pathway

in colorectal cancer (CRC) (193). Their immunohistochemical analysis

of human CRC tissue samples revealed that CD24 expression increases

with tumor progression and is strongly associated with the expression

of p-ERK1/2 and p-p38 MAPK in the tissue (193). They also showed

that overexpressing CD24 in SW480 cells (human colon cancer cells)

leads to their proliferation both in vitro and in vivo. This proliferation

was accompanied by increased activity of Raf-1, an upstream activator

of ERK1/2, and p38 MAPK. Notably, CD24 overexpression had no

impact on JNK1/2 (193). The positive correlation between CD24 and

MAPK expression was further confirmed through microarray analysis

(194). Su et al. demonstrated that Lyn, a significant member of the Src

family kinases (SFKs), plays a role in the CD24-induced activation of

ERK1/2 (195). Consequently, similar to other signaling pathways,

CD24-triggered Src plays a pivotal role in the activation of the

MAPK pathway.

In the context of CSCs, the activation of MAPK pathways

contributes to the promotion of cancer stem cell-like

characteristics and the maintenance of tumorigenicity (196).

Therefore, CD24 indirectly facilitates the maintenance of these

cells by activating the MAPK pathways.
HER2 mediated mechanisms

HER2, or human epidermal growth factor receptor 2, is a proto-

oncogene protein that stimulates the proliferation of cancer cells.

Analysis of patient specimens with breast cancer using

immunohistochemistry has revealed that the expression of CD24

is more frequent (34.2%) in HER2-positive specimens compared to

HER2-negative specimens (26.4%) (197). The relationship between

HER2 and CD24 is intricate, and it is unclear which one influences

the other upstream. Nonetheless, it appears that the link between

them might involve NF-kB signaling, a pathway associated with the

expression of both CD24 and HER2 (197). CD24 and HER2

contribute to the phosphorylation and activation of Akt (197). It

seems that CD24’s activation of Akt is dependent on Src kinase

activity, as studies have shown that lipid raft-associated Src kinases

play a vital role in the activation of the PI3K-Akt signaling

pathway (198).

Interestingly, it is worth noting that the Akt pathway plays a

role in the regulation of NFkB (199). Consequently, CD24 and

HER2, which are influenced by NFkB, seem to create a positive

feedback loop in the activation of NFkB. However, further research

is required to unravel the specific mechanisms underlying the

association between HER2, CD24, Akt, and NFkB.
CD24 also contributes to the development of resistance to

trastuzumab in HER2-expressing breast tumors through the

excessive activation of Src (200). Additionally, the activation of

the HER2-Akt pathway by CD24 leads to resistance to lapatinib

(201). As mentioned earlier, Src may be involved in Akt activation.

Thus, it appears that CD24-dependent activation of Src is

associated with resistance to chemotherapy. In the context of

CSCs, it is known that HER2 is connected to various signaling

pathways related to stemness, including Hedgehog, Wnt, NF-kB,
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and JAK-STAT [as reviewed in (202)]. Although CD24 can

potentially modify these pathways, the precise interplay between

CD24 and HER2 must be explored within the cells to determine

the role of CD24 in the activation of HER2-related signaling

pathways in CSCs.
CD24-activated SRC activates STAT3

STAT3, also known as Signal transducer and activator of

transcription 3, is a cytoplasmic transcription factor responsible

for regulating the transcription of genes associated with cellular

responses to cytokines and growth factors. A growing body of

evidence suggests that the continuous activation of STAT3 is linked

to the invasion and spread of tumors. In a study by Bretz et al., it

was found that CD24 has an impact on STAT3 phosphorylation

and can modify the expression of genes dependent on STAT3

through the activation of Src (50). The activation of Src, in turn,

enhances the STAT3 signaling pathway by phosphorylating it at

tyrosine 705. Activated STAT3 forms dimers and targets genes like

Cyclin D1, survivin, MMP-7, OPG, and STC-1 in cancer cells.

Consequently, the role of CD24-mediated activation of STAT3

appears to be especially significant in CSCs due to its influence

on genes associated with the regulation of CSCs.

Another study by Burgos-Ojeda et al. revealed that CD24-

positive ovarian cancer cells notably increase STAT3

phosphorylation and express genes related to stemness, such as

Nanog and c-myc, which are targets of STAT3 (203). Furthermore,

STAT3 promotes the transcription of Nanog in the tumor-initiating

cells of CD24-positive hepatocellular carcinoma (HCC) (204).

Nanog is a transcription factor crucial for the self-renewal of stem

cells. Therefore, it is evident that CD24 plays a critical role in

maintaining CSCs by activating STAT3 and Nanog.
CD24 and autophagy

Autophagy is a cellular process that involves the degradation of

malfunctioning organelles and cellular components within

lysosomes. Autophagy plays a significant role in maintaining

cellular homeostasis and promoting cell survival (205). In the

context of cancer, the role of autophagy is intricate and

contentious. It can act as a tumor suppressor during cancer

development or as a promoter of tumorigenesis in later stages.

Numerous studies have suggested that autophagy may have a

crucial role in the maintenance and invasiveness of CSCs, as

reviewed in (206). However, the precise involvement of CD24 in

autophagy remains unclear. Cuf et al. demonstrated that an

increased expression of the CD24 gene leads to the suppression of

autophagy in CD44+CD24-/low breast cancer stem-like cells (203).

Their study revealed that autophagy is linked to the maintenance of

these cells. It appears that the negative impact of CD24 on

autophagy may be related to the activation of Akt and,

subsequently, the activation of mTOR, a well-known negative

regulator of autophagy (205). It is worth noting that the available

data in this area are quite limited, and further research is necessary
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to gain a better understanding of the role of autophagy in cancer

and the involvement of CD24 in this process.
CD24-activated SRC down-regulates
TFPI-2

TFPI-2, short for Tissue Factor Pathway Inhibitor 2, is a serine

proteinase inhibitor of the Kunitz type. It has been identified as a

gene that suppresses tumor development in various cancer types

(207). TFPI-2 is secreted into the extracellular matrix and has the

ability to hinder the activity of multiple matrix metalloproteases. In

a study conducted by Bretz et al., an immunohistochemical analysis

of primary breast cancers revealed an inverse relationship between

the levels of CD24 and TFPI-2. Subsequent investigations, involving

the knockdown of CD24 and Src in A125 cells, indicated that the

activation of c-Src by CD24 is implicated in the reduction of TFPI-

2. However, the specific signaling pathway responsible for this effect

has yet to be determined (208).

Studies have demonstrated that TFPI-2 can reduce the

expression of stemness markers in hepatocellular CSCs and

promote the differentiation of hepatocellular carcinoma cells

(209). Consequently, the downregulation of TFPI-2 due to CD24-

activated Src may be a critical factor in the survival of CSCs. Hence,

given the findings of these investigations and the known roles of Src

kinase in cancer cells, it is suggested that Src kinase plays a pivotal

role in the CD24-associated pathways in cancer and in the markers

of CSCs.
EGFR mediated mechanisms

EGFR, or Epidermal Growth Factor Receptor, is a cell surface

signaling protein that plays a significant role in many types of

human carcinomas. The relationship between CD24 expression and

EGFR has been investigated through immunohistochemical

analysis of gastric cancer specimens, and a positive correlation

has been observed (210). Deng and colleagues further examined this

correlation in gastric cancer cell lines (SGC-7901, BGC-823, and

AGS-1) (210). Their research revealed that CD24 influences the

expression and function of EGFR by activating RhoA, a member of

the Rho family of GTPase proteins (210). Activated RhoA helps

maintain EGFR expression and reduces its internalization (210).

Consequently, CD24 indirectly elevates EGFR levels by limiting its

movement within lipid rafts and decreasing its internalization and

degradation. This reduced endocytosis of EGFR by CD24 prolongs

the activation of ERK, a critical component of a signaling pathway

that regulates cell proliferation, survival, and mobility (Figure 5).

Moreover, CD24’s positive impact on the activation of ERK1/2

and Akt (another downstream effector of EGFR) has been observed

in CRC and HER2-positive breast cancer cells. ERK1/2 and Akt play

roles in downregulating E-cadherin, a transmembrane glycoprotein

associated with cell-cell adherens junctions. The downregulation of

E-cadherin contributes to the metastasis of cancer cells (210). In this

way, CD24 indirectly facilitates cancer cell metastasis by triggering

the EGFR, ERK1/2, and Akt signaling pathways. Consequently,
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some of the unique characteristics of CSCs are partially mediated

through EGFR and its downstream effectors. For instance, it has

been demonstrated that the EGFR/AKT/b-catenin signaling

pathway is involved in regulating CSCs in nasopharyngeal

carcinoma (211). It is assumed that CD24 acts upstream in this

signaling pathway because CD24 is prominently expressed in

nasopharyngeal CSCs. Therefore, despite its lack of a cytoplasmic

signaling domain, CD24 has the capacity to recruit crucial signaling

molecules, such as EGFR, ERK, and AKT, and promote

tumorigenicity in both cancer cells and CSCs.
Wnt/b-catenin mediated mechanisms

TheWnt family consists of secreted glycolipoproteins that regulate

a wide range of cellular processes by means of the transcription co-

activator b-catenin. Activation of b-catenin leads to the expression of

genes like Jun, Myc, and cyclin D, which are crucial for cell growth and
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the cell cycle (212). A study conducted by Ahmad et al. established a

connection between CD24 and Wnt signaling. Their research

demonstrated that CD24 engages with the Wnt pathway by

activating b-catenin (213). Their immunoprecipitation experiments

indicated that CD24 might have a direct interaction with b-catenin,
prompting its translocation into the cell nucleus. Additionally, it has

been shown that Notch and Wnt/b-catenin signaling pathways play

significant roles in activating liver cancer stem cells that express CD24

(214). Consequently, CD24 can confer tumorigenic characteristics to

these cells by triggering the Wnt signaling pathway.

Overall, the CD24-related signaling pathway is a complex

network of molecular interactions that play important roles in

regulating cell behavior in both normal and pathological

conditions. CD24 is involved in the regulation of several signaling

pathways that are important for cancer progression. Understanding

the mechanisms by which CD24 interacts with these pathways is

critical for developing effective therapies that target CD24 and its

downstream signaling.
FIGURE 5

How Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of cancer patients. YAP acts a transcriptional coactivator and a
core effector of the Hippo pathway, which directly activates the transcription of CD24. Elevated CD24 expression engages with the Siglec-10
receptor on a macrophage, delivering an anti-phagocytic “don’t eat me” signal, which leads to decreased phagocytosis of the cancer cell. The
presence of a YAP inhibitor such as verteporfin, reduces the activity of the YAP-TEAD complex, thereby diminishing CD24 expression on the cancer
cell’s surface. The decreased CD24 fails to engage the Siglec-10 receptor on the macrophage adequately, resulting in an increased phagocytic
response. This underscores the potential therapeutic value of targeting the Hippo-YAP-CD24 axis to modulate immune evasion tactics employed by
cancer cells (144). Created with BioRender.com.
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Role of CD24 in cancer

CD24 is increasingly recognized for its multifaceted role in

cancer pathogenesis, serving as a critical biomarker, prognostic

indicator, and therapeutic target.
CD24 as a cancer biomarker

CD24 has been found to be overexpressed in a variety of cancers,

including B-cell lymphomas, cholangiocarcinoma, pancreatic

adenocarcinoma, urothelial carcinoma, erythroleukemia, gliomas,

breast cancer, small cell lung cancer, esophageal squamous cell

carcinoma, hepatocellular carcinoma, ovarian cancer, primary

neuroendocrine carcinomas and prostate carcinomas (8, 148, 215–

229). Its overexpression has been shown to increase the adhesion of

cancer cells to extracellular matrix proteins, such as laminin and

collagen, and to promote cell migration and invasion.

CD24 serves as a crucial marker for both the diagnosis and

prognosis of cancer. For example, the expression of CD24 on breast

cancer is notably higher in invasive carcinoma compared to

precancerous lesions. Moreover, the presence of CD24 on the cell

surface and in the cytoplasm is associated with poor prognosis,

histology grades, tumor size, and lymph node positivity (230). In

non-small cell lung cancer, CD24 expression serves as an

independent marker for the overall survival of cancer patients

(231). Additionally, in esophageal squamous cell carcinoma,

CD24 expression is also demonstrated to be linked to tumor

lymph node metastasis, tumor grade, and survival time (232).

Similar patterns have been observed in various other cancer types,

including cholangiocarcinoma, urothelial carcinoma, ovarian

cancer, and prostate carcinomas (233). Consequently, the role of

CD24 as a tumor marker offers potential in diagnostic, prognostic,

and therapeutic strategies, highlighting the importance of further

research to exploit the role of CD24 multifaceted functions in

cancer biology.
CD24 and tumor progression

CD24 has also been shown to play a role in tumor initiation, as

CD24-positive cells have been shown to have increased

tumorigenic potential in animal models (234). CD24 has been

implicated in tumor growth, invasion, and metastasis, and has

been suggested as a potential therapeutic target for cancer

treatment (235). These observations suggest a potential

causative role for CD24 in cancer development, as demonstrated

by experiments using small-interfering RNA to silence CD24

expression in tumor cells, leading to a direct impact on cell

proliferation and survival in tissue culture (236). Antibody-

blocking experiments also reveal that anti-CD24 monoclonal

antibodies can inhibit the growth of human pancreatic cell lines

in vitro (225). Significantly, targeted mutation of CD24 has been

shown to reduce the size of hepatocellular carcinomas induced by

the transgenic expression of hepatitis virus B genes (237).

Nonetheless, further studies are necessary to fully elucidate the
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precise functions of CD24 in cancer pathogenesis and the

underlying mechanisms at play.
CD24 and cancer stem cells

Cancer stem cells (CSCs), also referred to as tumor-initiating

cells, represent a minor fraction of tumor cells that exhibit

characteristics akin to normal stem cells. This concept has gained

empirical support through clinical trials, which have confirmed the

link between CSCs and critical oncogenic processes such as tumor

formation, metastasis, recurrence, and resistance to treatment

(238). Consequently, the therapeutic targeting of CSCs has

emerged as a promising strategy for the intervention and

prevention of tumor progression (239–245). Currently, several

potential stem cell markers are predominantly utilized for the

detection and separation of CSCs from various solid tumors (239,

246–249). Among these, CD24 has been identified as a potential

marker for CSCs (250). Human cancer stem cells, a subpopulation

of cells within tumors that have self-renewal capacity and the ability

to differentiate into various cell types, appear to have decreased

expression of CD24 compared to their offspring (251). CD24-

positive CSCs have been shown to be more resistant to

chemotherapy and radiation therapy compared to CD24-negative

cells (252). CD24 has been identified as a potential therapeutic

target for CSCs, as targeting CD24 expression has been shown to

reduce CSC self-renewal and sensitize cells to chemotherapy (253,

254) (Figure 3).
CD24 in immune evasion

Avoidance of immune system destruction represents a

fundamental characteristic of cancerous growths (255). Cancer

cells are known to exploit immune checkpoint signaling pathways

to transmit inhibitory signals to anti-tumor immune cells, thereby

evading immune detection. There is an increasing body of evidence

supporting the notion that the strategic targeting of tumor-

associated macrophages to stimulate their phagocytic activity

against cancer cells offers a viable therapeutic approach (256).

CD47 interacts with signal regulatory protein alpha (SIRPa) to

modulate the phagocytic process of macrophages (55). Crucially,

recent investigations into CD47 have encountered a substantial

impasse, signifying a pivotal moment in the advancement of cancer

immunotherapy. The prevalent expression of CD47 on human

erythrocytes and platelets presents a significant challenge, as its

inhibition can lead to adverse effects including severe anemia and

thrombocytopenia (150, 257). These challenges have considerably

dimmed the prospects of CD47 as a viable therapeutic target,

highlighting the imperative need for alternative mechanisms

capable of efficiently activating the anticancer capabilities of the

immune system.

CD24 has been shown to suppress the activity of natural killer

cells and dendritic cells, which are important components of the

immune system that play a critical role in tumor surveillance and

elimination (34). CD24 has also been shown to promote the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1401528
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1401528
recruitment of immunosuppressive cells, such as regulatory T

cells and myeloid-derived suppressor cells, to the tumor

microenvironment, further contributing to immune evasion (258,

259) In addition, research led by Suzuki et al. has delineated that

CD24 initiates apoptotic processes within human B cells via

mechanisms associated with glycolipid-rich membrane domain

(260). Further studies have extended these findings, illustrating

that CD24 also facilitates apoptotic pathways in human precursor B

acute lymphoblastic leukemia cells during both pro-B and pre-B

phases, a process marked by the sequential activation of multiple

caspases (261) (Table 1 and Figure 6).

Recent scholarly investigations have increasingly focused on the

intricate relationship between the Hippo-YAP (Yes-associated

protein) signaling pathway and CD24-mediated immune evasion

mechanisms (144, 276). The Hippo-YAP axis, a critical regulator of

cellular proliferation, apoptosis, and organ size, has been identified

as a key player in the modulation of tumor microenvironments and

the facilitation of cancer cell immune escape (277–279). Specifically,

the interaction between the transcriptional co-activator YAP and

the CD24 surface molecule delineates a novel mechanism through

which cancer cells circumvent immunological destruction (144).

The activation of YAP, and its subsequent effect on CD24

expression, further enhances this evasion by effectively

modulating the immune system’s ability to recognize and

eliminate cancer cells. The latest research by Xiumin Li et al.
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shows the first time how the Hippo signaling pathway modulates

the phagocytic activity of macrophages through the regulation of

CD24. Their findings unveil a previously unrecognized signaling

continuum extending from the components of the Hippo pathway

to the transcriptional activation of CD24, facilitated through

the regulation of the CD24 promoter (144). This synergy between

the Hippo-YAP pathway and CD24 not only underscores the

complexity of tumor-immune interactions but also opens new

avenues for therapeutic interventions aimed at disrupting these

oncogenic signaling cascades to restore immune system

competency in targeting malignancies.
CD24 in cancer resistance

CD24 has been shown to play a role in drug resistance in cancer.

Moreover, CD24 expression has also been associated with resistance

to chemotherapy and targeted therapies in several cancer types,

including breast, ovarian, and pancreatic cancer (280, 281).

CD24 plays a crucial role in cancer resistance through

mechanisms that enhance cancer cell survival, enable immune

evasion, and promote therapy resistance. It activates signaling

pathways to prevent programmed cell death, allowing cancer cells

to withstand chemotherapeutic and targeted therapies (281, 282).

Additionally, CD24 acts as a “don’t eat me” signal, blocking the

ability of immune system to recognize and destroy cancer cells,

thereby facilitating tumor growth and spread (283). This protein

also supports the maintenance and proliferation of cancer stem

cells, contributing to tumor heterogeneity and resilience against

treatments (284). Targeting CD24 aims to dismantle these

protective mechanisms, potentially making cancer cells more

vulnerable to treatment by enhancing immun2e response,

reducing cancer stem cell renewal, and increasing the effectiveness

of chemotherapy and targeted drugs.
Clinical application of targeting CD24

CD24 has emerged as a lynchpin of tumor progression and a

promising therapeutic target for anti-cancer therapy. Several

clinical trials have been conducted to evaluate the safety and

efficacy of CD24-targeted therapies. Here, we discuss the main

progress of clinical trials of CD24 (Figure 6).
Antibodies targeting CD24

There are ongoing preclinical studies and clinical trials

evaluating the effectiveness of monoclonal antibodies that target

CD24 in cancer therapy. For instance, CD24 has been demonstrated

to be necessary for the subsequent development of lung metastases

(285). Preclinical studies and clinical trials have shown that

targeting CD24 can significantly reduce lung metastases in

bladder cancer and target liver cancer stem cells, highlighting its

role in the development of metastases and its necessity for the

proliferation of certain cancer cells (286). Novel antibodies like G7
TABLE 1 Preclinical studies in vivo with agents that target CD24.

Tumor Agent Result Reference

Breast carcinoma scFvs
Tumor growth

inhibition, increased
efficacy of epirubicin

(262)

Small cell
lung cancer

SWA11-SPDB-
dg.ricin
A chain

Tumor growth inhibition

(263–265)Burkitt’s
lymphoma

SWA11.dgA
Durable

complete remissions

Colorectal
adenocarcinoma

SWA11-
ZZ-PE38

Tumor growth inhibition

Lung
adenocarcinoma

SWA11
Tumor growth

inhibition, increased
efficacy of gemcitabine (266)

Ovarian
carcinoma

SWA11 Tumor growth inhibition

Hepatocellular
carcinoma

hG7-
BM3-VcMM

Tumor growth inhibition (267)

Hepatocellular
carcinoma

G7mAb-DOX
Tumor growth
inhibition,

improved survival
(268)

Hepatocellular
carcinoma

HN-01
Tumor growth
inhibition,

improved survival
(269)

Pancreatic
adenocarcinoma

CAR-
redirected
anti-CD24
T-cells

Tumor growth
inhibition,

improved survival
(270)
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mAb have been developed to target liver cancer stem cells

specifically, demonstrating the potential of CD24-targeting

strategies (268, 287). Furthermore, integrating CD24 targeting

with chemotherapy drugs like doxorubicin and gemcitabine has

yielded encouraging outcomes in boosting the efficacy of these

therapeutic approaches (8, 288).

The synergy between CD24 monoclonal antibodies and

chemotherapy drugs or cytotoxic agents presents a potent strategy

for combating aggressive cancers. Moreover, the development of

bispecific antibodies against CD24 and other targets like CD47 and

VEGF receptors introduces an additive effect on phagocytosis-

mediated cancer killing, indicating a potential for improved

outcomes in treatments against malignancies like glioblastoma

and hepatocellular carcinoma (148, 289).

Studies indicate that blocking CD24 can boost the effectiveness

of cancer treatments like sorafenib. The strategy combing CD24

inhibitors with immune checkpoint inhibitors offers a promising

approach for treating aggressive cancers. For instance, elevated

CD24 expression has been associated with poorer outcomes in

patients, pointing to the potential of CD24 monoclonal antibodies

to improve prognosis and extend life. The concept of employing

bispecific antibodies (BsAbs) targeting both CD24 and PD-L1 could

activate both innate and adaptive T cells immune responses,

offering a more potent anti-cancer effect (290). This integrated

approach underscores the need for comprehensive studies to

confirm the benefits and safety of these combination treatments,

including the assessment of potential drug toxicities and side effects,

as well as the exploration of combining radiotherapy with CD24
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targeting to stimulate a more effective tumor immune

environment response.
CAR-T cell therapy targeting CD24

Chimeric antigen receptor (CAR) T cell therapy is a promising

approach for the treatment of cancer. SWA11 is a third-generation

codon-optimized CAR with a highly active scFv that specifically

targets the CD24 protein core. Clinical trials of SWA11 are

currently ongoing, and early results have shown promising anti-

tumor activity with manageable side effects (291). It has been

investigated as a potential therapeutic agent for several types of

cancer, including lung cancer, ovarian cancer, pancreatic cancer,

triple-negative breast cancer and human colorectal cancer xenograft

models (266). Moreover, SWA11 can specifically increase the

antitumor efficacy in synergy with multiple chemotherapy agents,

including oxaliplatin, 5-fluorouracil, irinotecan, paclitaxel, and

doxorubicin (292). Another specific CAR T-cell BCMA (B cell

maturation antigen)-CD24 CAR-T, a novel multiple myeloma

immunotherapy, was developed by Fumou Sun et al. They have

demonstrated strong cytotoxic activity and selectivity for multiple

myeloma cells in vitro and in vivo (293).

In addition to T cells, NK cells have also exhibited the ability to

kill ovarian cancer cells in laboratory studies and samples taken

directly from ovarian cancer patients (294). Another approach

involves the use of dendritic cells loaded with cancer cells coated

with antibodies that target a variety of surface antigens, such as
FIGURE 6

A multifaceted therapeutic approach targeting CD24 in cancer treatment. There are four distinct strategies exploiting CD24 to mediate antitumor
effects: i. mAb alone: Represented by ATG-031, IMM47, ONC-781 and BCG002, CD24 mAb induces phagocytosis of tumor cells by macrophages,
leading to growth inhibition of the tumor (271). ii. anti-CD24-CAR Therapy: Known as ONC-782, this therapy utilizes a CD24 mAb within a chimeric
antigen receptor (CAR) on T cells to direct their cytotoxic activity towards CD24-positive tumor cells, thereby curbing tumor progression (271–273).
iii. Bi-specific Antibodies (BsAb): Denoted as IMM4701, IMM-2547 and ONC-783, these antibodies are designed to bind two different antigens
simultaneously. One arm of the BsAb binds to CD24 on tumor cells, while the other arm is engineered to recruit and activate NK cells, resulting in
tumor cell cytolysis and subsequent growth inhibition (146, 185, 274, 275). iv. Antibody-Drug Conjugated Compounds (ADC): Labeled as “HN-01”
and “ONC-784”, this therapeutic approach involves a CD24 mAb conjugated to a cytotoxic drug. The antibody targets CD24-expressing tumor cells
and delivers the cytotoxic agent directly to them, inducing apoptosis and inhibiting both proliferation and tumor growth (268, 269).
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CD24. This technique facilitates the presentation of tumor antigens

to CD8+ T cells and has been shown to increase T cell-mediated

cytotoxicity in melanoma and ovarian cancer cell lines (295).
RNA-based therapies targeting CD24

RNA interference has been proposed as a potential treatment

strategy for cancer (296, 297). The use of a liposomal system to

deliver CD24 shRNA (short hairpin RNA) has shown to be very

promising in decreasing the expression of CD24 both in vitro and in

vivo (194). Additionally, administration of shRNACD24 resulted in

a significant reduction in tumor growth through inhibiting the

formation of new blood vessels and promoting cell death. This

indicates that gene therapy using shRNACD24 could be a new and

appealing strategy for treating ovarian cancer in clinical settings

(298). Data above has demonstrated that knockdown of CD24 by

shRNA therapies might be a potential therapeutic approach against

human ovarian cancer. However, more research is needed to fully

understand the safety and efficacy of shRNACD24 therapies and to

identify the optimal patient populations for these treatments.
The progress of clinical trials for
cancer therapies targeting CD24

Globally, multiple oncology clinical trials are being conducted to

assess anti-CD24 therapies in preclinical settings. Herein we will

review the latest studies involving anti-CD24 antibody treatments in

cancer patients, comprising seven distinct investigations. In the United

States, a phase 1b/II trial (NCT04060407) was designed to appraise the

combined use of CD24Fc with ipilimumab and nivolumab, aiming to

mitigate the toxicity associated with immunotherapy in metastatic

melanoma patients who have not previously received anti-PD1/L1

inhibitors. However, this trial was discontinued for business-related

reasons (145). Another American phase I/II trial (NCT04552704)

sought to understand the adverse effects of CD24Fc in advanced

malignant solid neoplasm and evaluate its potential to expedite

recovery and lessen the severity of immunotherapy side effects. This

study was also prematurely closed due to sponsor changes (151). A

phase III trial (NCT04095858) intended to investigate the efficacy of

CD24Fc in preventing acute graft versus host disease following

myeloablative hematopoietic stem cell transplantation was halted

(299). The fourth clinical trial involved 44 individuals with acute

GvHD or leukemia post-Hematopoietic Stem Cell Transplantation,

grouped into four cohorts for varying doses of CD24Fc. Designed as a

multicenter phase IIa study, its purpose was to assess the safety and

effectiveness of CD24Fc in GvHD prevention. The study was

completed on May 18, 2021, with details registered under

ClinicalTrials.gov Identifier NCT02663622 (39). In Israel, a study

(NCT01214512) was conducted to evaluate the ability of one CD24

assay to detect colorectal adenoma via blood tests (167). Another

Israeli study (NCT01265225) planned to investigate stem cell markers

prognostic value for breast cancer recurrence was withdrawn due to

lack of funding (145). In Egypt, a completed observational trial

(NCT04907422) employed CD24-AuNC as a diagnostic marker for
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Carcinoma Ex Pleomorphic Adenoma of Salivary Glands, proposing

CD24-AuNC as a sensitive and specific diagnostic tool (271).

These clinical efforts underscore the ongoing investigations into

CD24 as a therapeutic target in various cancers, highlighting the

complexities and challenges encountered in translating preclinical

findings to clinical therapies.
Conclusions

Exploring CD24 as a therapeutic target in oncology presents a

unique set of advantages and challenges, reflecting its complex role

in tumor biology and immune interactions. The targeting of CD24

offers significant benefits in cancer therapy due to its selective

expression on tumor cells and its role in modulating immune

escape mechanisms. Firstly, CD24 is often overexpressed in

cancer cells, particularly in CSCs, making it a specific target for

therapies that aim to reduce tumor recurrence and metastasis. This

overexpression is less common in normal tissues, potentially

reducing the risk of off-target effects compared to more

ubiquitously expressed checkpoints. Secondly, targeting CD24 can

disrupt the “don’t eat me” signal that tumor cells emit to avoid

phagocytosis by macrophages. This can potentially enhance the

effectiveness of the immune system in recognizing and destroying

these cells. Thirdly, CD24 targeting can be combined with other

forms of cancer therapy, including traditional chemotherapy,

radiation, or other immunotherapies that target different

pathways or mechanisms, potentially leading to synergistic effects.

Other well-known checkpoints such as CD47/SIRPa and PD-1/

PD-L1 have their own sets of advantages and disadvantages. CD47

is also widely expressed on normal cells, raising concerns about

potential anemia and other side effects due to the removal of healthy

cells. PD-1/PD-L1 inhibitors are among the most successful

immune checkpoint inhibitors used today, but they often require

the presence of an existing immune response to be effective, which

may not be present in all cancer patients. Activation of the CD24/

Siglec-10 pathway facilitates tumor immune evasion by suppressing

the activity of cytotoxic T cells and macrophages. To inhibit CD24

signaling, monoclonal antibodies, CAR T cell therapy and other

methods of treatment have been exploited in preclinical studies.

Despite its potential, targeting CD24 also presents certain

drawbacks, including its complex involvement in immune regulation

and the potential for adverse effects due to its expression on normal

tissues. Firstly, CD24 also plays roles in immune cell signaling and

regulation, which are not yet fully understood. Targeting CD24 might

disrupt these processes and lead to unintended immune responses or

decrease immune system modulation which could be beneficial in

certain contexts. Secondly, the pathways and mechanisms involving

CD24 are less well-characterized compared to more studied targets like

PD-1/PD-L1. This can make it harder to predict and manage potential

side effects or to design effective therapies. Thirdly, expression of CD24

can vary significantly between different types of cancer and between

patients. This variability can affect the efficacy of CD24-targeted

therapies and may require personalized treatment approaches.

Targeting CD24 could offer a more specific approach to enhancing

phagocytosis of cancer cells compared to some other checkpoints, but
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it also faces challenges related to its complex biology and variability in

expression. Further research and clinical trials are needed to fully

understand its potential and limitations. This exploration of CD24 and

other immune checkpoints continues to evolve as more is learned

about their roles in cancer and the immune system.
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