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Host-microbe interactions are complex and ever-changing, especially during

infections, which can significantly impact human physiology in both health and

disease by influencing metabolic and immune functions. Infections caused by

pathogens such as bacteria, viruses, fungi, and parasites are the leading cause of

global mortality. Microbes have evolved various immune evasion strategies to

survive within their hosts, which presents a multifaceted challenge for detection.

Intracellular microbes, in particular, target specific cell types for survival and

replication and are influenced by factors such as functional roles, nutrient

availability, immune evasion, and replication opportunities. Identifying

intracellular microbes can be difficult because of the limitations of traditional

culture-based methods. However, advancements in integrated host microbiome

single-cell genomics and transcriptomics provide a promising basis for

personalized treatment strategies. Understanding host-microbiota interactions

at the cellular level may elucidate disease mechanisms and microbial

pathogenesis, leading to targeted therapies. This article focuses on how

intracellular microbes reside in specific cell types, modulating functions

through persistence strategies to evade host immunity and prolong

colonization. An improved understanding of the persistent intracellular

microbe-induced differential disease outcomes can enhance diagnostics,

therapeutics, and preventive measures.
KEYWORDS
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Highlights
Fron
• Genomics technologies like Single-cell RNA sequencing

offer insights into intracellular microbe interactions

within specific cell types, aiding in combating infectious

diseases effectively.

• It provides insights into the potential functional role of yet

unculturable microbes for the wholistic understanding of

the factors towards differential disease severity, although

infected by similar or same pathogen/s.

• The dynamic interplay between hosts and microbes impacts

human health and disease via molecular signals and

microbial communities.

• Microorganisms serve beneficial roles like aiding digestion

or can cause diseases and infections.

• Intracellular pathogens, including bacteria and viruses, pose

significant health risks by evading immune responses and

causing persistent infections.
Introduction

The dynamic interaction between a host and its resident

microbes, including bacteria, fungi, and viruses, is a complex,

dynamic, and multifaceted process that influences various aspects

of host health (1) (2). This interaction is distinguished by molecular

signals, biochemical communication, and a nuanced equilibrium of

microbial communities, all of which have substantial implications

for our well-being (3) (4). While some microorganisms are

beneficial, playing crucial roles in processes such as digestion and

immune system priming, others with pathogenic properties can

lead to diseases and infections (5) (6). Previous studies, such as the

Human Microbiome Project (HMP), have provided insights

into the human microbiome in terms of human health and

diseases. The first phase of this project successfully revealed the

microbial communities of the human body, while the second

phase, Integrative HMP (iHMP), uncovered host–microbiome

interactions using the “omics” approach. The findings from these

studies highlight that microbial composition and diversity vary

among individuals (7).

Post-COVID-19, there has been renewed interest in whether

and to what extent the presence of microbes would impact clinical

severity and disease outcome after infection with a primary

pathogen, like SARS-CoV-2, Dengue or Mycobacterium

tuberculosis. Infectious diseases pose a persistent threat to human

health because pathogens exploit host–microbe interactions to

initiate infections and cause severe diseases. Understanding the

complex interplay between hosts and microbes is crucial for

developing effective countermeasures against these diseases. The

impact of infectious diseases caused by microorganisms extends

beyond posing a global burden on public health systems (8). An

outstanding example is the recent outbreak caused by SARS-CoV-2,

which has caused severe mortality worldwide (9). Infectious

diseases, including COVID-19, dengue, and tuberculosis, are the
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leading causes of death worldwide, especially in low and middle-

income countries (LMICs). To alleviate the burden of infectious

diseases and enhance global public health, it is essential to examine

each type of microbe separately to gain a better understanding of

the problem (10).

Based on their immunopathology, these microbes can be

classified as intracellular or extracellular. Although extracellular

bacterial infections are generally easier to treat, intracellular bacteria

pose significant threats to human health. Certain microbes can

infiltrate host cells to harness cellular resources and conceal

themselves from host defenses (11). Other microorganisms, such

as Salmonella enterica and Listeria monocytogenes, can adapt their

lifestyle to become intracellular for a limited period. These

microorganisms use diverse endocytic mechanisms to enter and

evade phagocytic and non-phagocytic cells, thereby avoiding host

defense mechanisms. Identification of intracellular microbes is

complex because of the limitations of traditional culture-based

methods, which hinder timely and accurate identification and

characterization. Despite these constraints, there is growing

recognition of the significant impact of these microorganisms on

host cells. Therefore, it is essential to understand the intracellular

diversity of these microorganisms and their impact on health and

disease. This article emphasizes the genomics approach in

understanding the interaction between host and intracellular

microorganisms. These microorganisms may preferentially infect

specific cell types for their survival and replication, and this

preference may be influenced by factors such as functional

responsibilities, availability of nutrients, immune evasion

mechanisms, and replication opportunities (12). These elements

collectively contribute to the microorganisms’ capacity to flourish

within the host cell. Various cell types can host or carry

microorganisms, including epithelial cells, immune cells (13),

endothelial cells, and fibroblasts (14). The diverse array of cell

types contributes to differential immune responses and varying

susceptibility to infection by various microorganisms (15). Several

studies have indicated that HIV selectively targets CD4+ T cells,

Mycobacterium tuberculosis and Chlamydia pneumoniae primarily

affect macrophages, Epstein–Barr virus targets B cells (16), and

hepatitis B virus primarily targets hepatocytes (17) (18). Although

the role of immune cells in protecting the body from foreign

invaders is widely acknowledged, certain microorganisms have

evolved to thrive within these cells (19). Once these microbes

infiltrate the host cells, they can manipulate the host’s immune

response by evading phagocytosis, the complement system, and

innate immune receptors (20). In addition, they hinder apoptosis,

exhibit resistance to host effector mechanisms and trigger immune

dysfunction, i.e., immunosuppression.

While previously viewed as potential contamination, microbial

RNA inadvertently captured in host transcriptome datasets is now

recognized in a limited way for its potential to elucidate diverse yet

dynamic host-microbiome interactions. A study by Bost et al.

allowed simultaneous profiling of infected host cells and

taxonomic profiling of the responsible viruses using the Viral-

Track approach (21). This method has successfully differentiated

hepatitis B-infected cells in human clinical samples and identified

specific host factors associated with the viral replication. The study
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was done on bronchoalveolar lavage (BAL) samples from the

COVID-19 patients. Similarly, Lloréns-Rico et al. used an in-

house pipeline for the analysis of single-cell RNA sequencing

(scRNA-seq) datasets derived from the bronchoalveolar lavage

(BAL) samples collected from both COVID-19 patients and

non-COVID-19 pneumonia controls. Their analysis revealed a

specific bacterial subset associated with various host immune

cell populations, such as neutrophils, monocytes, and

macrophages (22).

However, it is of utmost importance to consider whether the

presence of intracellular microbes’ influences disease severity. To

address this, we need a comprehensive understanding of the

dynamics of microorganisms specific to various cell types and

their functional significance. Conventional methodologies are

limited to only known culturable microbes because of their

inherent fastidiousness and the time required to adapt according

to the culture conditions. In a different approach, bulk RNA

sequencing involves studying the combined genetic material of

millions of cells, which provides a profile of the average gene

functioning across a large group of cells. These methods restrict

our ability to understand individual cells and intracellular microbes.

Nevertheless, scrutiny of intracellular microorganisms that are

specific to certain cell types can be achieved using other evolving

methodologies that can identify intracellular microorganisms and

their genomic constituents. Single-cell RNA sequencing is a classic

example of such a technique (23). Single-cell RNA sequencing

(scRNA-seq) allows the unbiased evaluation of cellular

heterogeneity by providing comprehensive genome-wide

molecular profiles across a diverse range of individual cells (24).

This innovation in genomic research has made it possible to

sequence intracellular microbial genomes, as a by-product of

single cell whole transcriptome sequencing (WTA), thereby

facilitating a deeper understanding of their interactions with

specific host cells, and enabling the development of effective

strategies to combat various infectious diseases (25) (26). In this

perspective article, we discuss the role of intracellular microbes

within specific cell types and their potential influence on the

outcomes of infectious diseases. It also emphasizes emerging

technologies that enhance our understanding while addressing

associated challenges.
The burden of infectious diseases

Bacteria, viruses, and co-infections

According to the World Health Organization (WHO),

infectious diseases rank as the second most prominent cause of

global mortality (27). Despite considerable advancements in the

realm of antibiotics and vaccines, significant challenges persist

globally, where diseases such as COVID-19, dengue, malaria,

tuberculosis, and HIV continue to impose a significant burden.

Pathogens that cause infectious diseases include bacteria, viruses,

fungi, and parasites (28). Within this microbial milieu, some

microbes endure substantially for longer periods inside the host

and can cause persistent infections (29). The outcome of these
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infections can vary, either symptomatic or asymptomatic,

depending on factors such as host immunity, microbial load,

strain variations, genetic predispositions of the host, existing

health conditions, age, gender, pathogen type, and environmental

factors (30) (31). In community outbreaks of infectious diseases,

different disease clinical phenotypes, ranging from mild to severe,

lead to various consequences of recovery from the disease or

mortality (32) (Figure 1). To understand infectious diseases

caused by a specific pathogen, we mainly focus on the interaction

between the host and the pathogen, neglecting the dynamics of

microbial components within the cells (33). The ultimate response

of the host results from complex interactions orchestrated by

various immune components (34). The cells responsible for these

responses contain dynamic microbial components that may

regulate their functional characteristics. The presence of

intracellular microbiota influences the interactions between

various cell types and their subsets. In a study by Derek et. al., it

was elucidated that certain epithelial cells exhibit elevated levels of

gene expression related to host defense against microbes, and

glycosylation, whereas others exhibit a more focused pattern of

gene expression for pattern recognition receptors (35). This shows

that the complex interplay between the host and microbe, which

impacts metabolism and other vital biological pathways,

significantly shape disease outcomes. The involvement of the gut

microbiome in modulating host physiology and compositional

change in bacterial infections such as Salmonellosis, tuberculosis,

and viral infections such as influenza, hepatitis, SARS CoV-2, has

already undergone extensive study (36) (37). This influence extends

to a range of other diseases, including tumorigenesis and infectious

diseases such as malaria and chickenpox. The intricate mechanisms

employed by these microbes to manipulate various host processes

remain unclear. A thorough understanding of the specific cell types

targeted by different microbes is necessary to elucidate host-

microbe dynamics.
Global impact of intracellular
bacterial infections

Recent findings reveal that 7.7 million deaths worldwide have

been attributed to bacterial infections. Only Staphylococcus aureus,

Escherichia coli, Streptococcus pneumoniae, Klebsiella pneumoniae,

and Pseudomonas aeruginosa account for >50% of deaths globally

(38). Depending on their lifecycle, these bacteria can be extracellular

or intracellular. By adopting an intracellular life cycle, these bacteria

easily escape from the phagocytic cells, complement system, and

antibodies. Once internalized, they find a suitable niche either in the

cytosol or in other organelles. Although, unlike viruses, bacteria can

replicate on their own, for protection and nutritional needs, some

choose to thrive inside the host cell niches. However, immune cells

can recognize these microbes via various antigens or pathogen-

associated molecular patterns and destroy infected host cells.

Intracellular bacteria use dynamic mechanisms to survive within

host cells and avoid the host’s external immune defenses (39) (40).

Inside the host, these bacteria infect a range of cell types. The major

reservoirs of these bacteria include immune cells such as
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monocytes/macrophages and dendritic cells (DCs), along with B

and T cells (41) (42). Furthermore, non-professional phagocytes

such as epithelial cells, fibroblasts, and endothelial cells also serve as

reservoirs for these bacteria. It’s important to note that not all

intracellular bacteria cause disease; some simply ensure their

survival within host cells in symbiosis (Table 1).

Host and bacteria co-evolved over a long period, during which

some bacteria modified their ability to survive inside the host cells

and adapt to the host defense systems. If such co-operation does not

develop between the host and microbes, it might result in the

eradication of one of the parties involved (55). In addition, there are

other repercussions, such as partial digestion, inactivation

of bacteria, and inhibition of cell death processes within

infected cells. Throughout this interaction between the host cell

and bacteria, there is an increased frequency of protein and

metabolite transportation, as well as direct gene transfer (54). A

bacterium that has undergone lysis releases its RNA into the

cellular microenvironment (56). Consequently, cells harboring

intracellular microorganisms tend to possess DNA/RNA

originating from the bacterial species. If we envisage the relative

proportion of human host/bacterial RNA from the holo-

transcriptome perspective, the quantity of RNA from bacteria

(non-replicative) may be relatively low compared to the host cells

transcriptome, yet it can be effectively captured by mapping back

the unmapped reads to microbial genomes (57).

Although numerous intracellular bacteria have been

extensively studied from the perspective of microbiology, these

studies have not emphasized the evolving field of immuno-

genomics, which is crucial for gaining a deeper understanding of

the role of microbial entities (especially non-culturable ones)

present within a single cell. It is necessary to understand the

functional roles, pathogenicity, mutations, and other factors (to

be discovered) that can be harmful. While bulk RNA-Seq studies
Frontiers in Immunology 04
provide valuable insights into the host-pathogen interaction of

Mycobacterium tuberculosis (Mtb) with macrophages, they fail to

reveal the cellular heterogeneity within the macrophage cell

population. Gene expression is differentially regulated in various

cells, which possess unique and specific roles. The field of

transcriptomics has witnessed significant advancements in

the application of single-cell sequencing, primarily because of

its enhanced resolution capabilities. A single-cell-based

study by Huang et al., characterized two main macrophage

populations: alveolar and interstitial macrophages, indicating

that alveolar macrophages, with their anti-inflammatory

M2-type characteristics, create an environment favorable for

Mycobacterium tuberculosis (Mtb) replication and dissemination.

In contrast, interstitial macrophages, which are associated with a

more stressful immune milieu, pose challenges to Mtb (58). For

example, the growth characteristics of Mycobacterium tuberculosis

exhibit substantial variation among individual cells, particularly in

terms of growth, cell cycle duration, and cell size (43) Nathan et al.

(59) employed scRNA-seq to focus on memory T cells isolated

from peripheral blood mononuclear cells (PBMC) of TB-

progressing patients. The differentiation of memory T cell states

revealed distinct clusters, with the TH17 subset showing

differential abundance and function between progressors and

non-progressors. Another single-cell study by Reuter et al.

provided valuable information on the functionality of SPI2-T3SS,

the formation of Salmonella-induced filaments (SIF), and the

intracellular proliferation of different serovars in diverse host cell

types. In addition, a genomic approach can help identify microbes

that are in an inactive state as these microbes can become active in

future favorable environments. Such insights can be effectively

utilized to formulate groundbreaking and specific methodologies

for the management and prevention of infectious diseases that arise

due to intracellular microorganisms.
FIGURE 1

Dynamics of intracellular microbes and differential disease outcomes among healthy individuals. Healthy individuals carry diverse and heterogeneous
microbial species. Exposure to any harmful pathogen can lead to microbial dysbiosis. Disruptions in existing microbial communities can either
exacerbate the severity of certain diseases in some individuals or augment their ability to combat the infection, resulting in a milder or
asymptomatic outcome.
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Intracellular viral dynamics:
understanding the impact on the host

Decoding viral intracellular mechanisms
during the SARS-CoV-2 pandemic

Viruses, on the other hand, are obligatory parasites much

smaller than bacteria that can exploit and use host cells for

replication and proliferation. The identification and quantification

of viral genomes is important for understanding viral diversity and

evolution. Viruses predominate microbial infections because they

rapidly evolve to new variants. The challenge in the identification

and characterization of these viruses which can often lead to a new
Frontiers in Immunology 05
disease (21). The recent global outbreak caused by SARS-CoV-2

highlighted the intricate interplay between viruses and host cells at

the genomic level. The physiological consequences of SARS-CoV-2

involve a dual mechanism: direct invasion of host cells and

modulation of intercellular signaling (60). This dual mechanism

contributes to the complexity of the virus’s impact on the host,

encompassing both the direct damage caused by infection and the

broader systemic response triggered by the immune system. The

pandemic was associated with an increasing risk of viral mutations

that were particularly advantageous and resulted in new variants of

concern (VOC). Numerous studies have shown that multiple SARS-

CoV-2 VOCs (Alpha, Beta, Delta, and Omicron) elicit diverse

cellular responses in heterogeneous tissues and cell types.
TABLE 1 Intracellular bacteria and their mechanisms of evading the host's defense mechanisms.

S.
No

Microbe(s) Cell type(s) Evasion mechanisms Disease(s) Ref.

1. Mycobacterium
tuberculosis

Macrophages, epithelial cells, endothelial
cells, dendritic cells, and neutrophils

• Inhibition of phagolysosome formation,
via tryptophan-aspartate containing coat
protein
• Hiding in lipid droplets
• Autophagy inhibition
• Increase the production of
proinflammatory cytokines, TNF-a, IFN-
g, IL-8, and IL-1b

Tuberculosis, pulmonary complications,
autoimmune diseases, and
metabolic syndromes

(43–
45)

2. Salmonella typhi Macrophages, dendritic cells, neutrophils,
and B cells

• Inhibition of NF-kB signalling
• Inhibits dendritic cell migration
• Inhibition of autophagy

Typhoid fever (20,
46)

3. Listeria
monocytogenes

Macrophage, epithelial cells, endothelial
cells, hepatocytes, and dendritic cells

• Escape into the cytosol (listeriolysin O
mediates)
• Immunomodulation by various
virulence factors

Listeriosis and meningeal or
systemic infections

(47,
48)

4. Brucella abortus Macrophages, dendritic cells (DC),
trophoblastic cells (TE), neutrophils,
B cells

• Prevents the fusion of
autophagolysosomes
• Inhibits activation of NK cells and
maturation of DCs
• Inhibits complement system and
antigen presentation

High fever and, brucellosis (48–
50)

5. Shigella flexneri Epithelial cells and macrophages, • Manipulate host innate immune
responses (T3SS effector mechanism)
• Induces apoptosis
prevention of NF-kB activation

Bacillary dysentery(shigellosis) (48,
51,
52)

6. Staphylococcus
aureus

Neutrophils, macrophages, and B cells • Resist phagocytic oxidative and
nitrosative killing.
• Trigger apoptosis/necroptosis

Bloodstream infections, pneumonia,
and endocarditis

(38,
48)

7. Anaplasma
phagocytophilum

Neutrophils, eosinophils
Macrophage, DCs, endothelial cells

• Remodelling of the cytoskeleton.
• Inhibition of cell apoptosis, and
• Manipulation of the immune response

Granulocytic anaplasmosis (51,
52)

8. Legionella
pneumophila

Macrophages, monocytes, and
epithelial cells

• Abrogation of phagosome-lysosome
fusion
• Antigenic variation
• Induces apoptosis by activating
caspase-3

Legionellosis (11,
53)

9. Chlamydophila
pneumoniae

Epithelial cells, monocytes, macrophages,
dendritic cells (DCs), lymphocytes,
and neutrophils.

• Suppresses the production of reactive
oxygen species and nitric oxide
• Inhibits apoptosis for longer persistence

Bronchitis, pharyngitis,
sinusitis, pneumonia

(11,
41)

10. Rickettsia
rickettsii

Endothelial cells, monocytes, macrophages,
and hepatocytes

• Induce apoptosis
• Inhibition of infection-induced
activation of NF-kB

Rocky Mountain spotted fever (11,
54)
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Chattopadhyay et al. reported the downregulation of CD22-CD45

interactions, which is responsible for B cell maturation and aberrant

T cell activation via the dysregulation of CD40-CD40LG signaling

in the COVID-19 positive individuals (61). Another study by

Wendao et al. showed the downregulation of MHC class II

molecules in B cell types (62). Robinson et al. showed the

existence of SARS-CoV-2 in macrophages, neutrophils, and,

lymphocytes using single-cell transcriptomic data, and they also

showed the change in immune response genes in cells containing

viral reads as compared with bystander cell types (63).
Patterns of dengue outbreaks

Dengue virus (DENV) constitutes a significant menace to public

health in tropical countries, with approximately 40% of the global

population facing the risk of dengue infection (64). At present,

dengue fever has affected over 100 nations situated in the tropical

and subtropical regions (65) (66). Dengue virus has four serotypes

with envelope and spherical particles. The genome of each serotype

encodes ten proteins, including structural (M, E, C) and non-

structural (NS1-NS5) components. Internalization relies on

membrane fusion, endocytosis, and pH-dependent fusion,

facilitated by M and E proteins. Dengue can be severe, with or

without any warning signs (decreased platelet count, liver

enlargement, vomiting, mucosal bleeding and so on). Some

studies have indicated that the presence of other microorganisms,

particularly those capable of inducing co-infection, in conjunction

with dengue virus is associated with complications such as

pneumonia and extended fever, along with an increased

probability of mortality (65). This research evidence highlights

the need for further investigation into the possible relationship

between the pathogenesis of dengue virus and pre-existing

intracellular microorganisms or secondary infections. The

research question may focus on uncovering changes in the

composition of intracellular microorganisms during dengue

infection and whether any specific species had an impact on

influencing the disease phenotype toward recovery or mortality.

Exploring these aspects would offer valuable insights into the

mechanisms of viral infections and the various phenotypes that

they can result in.
Dynamic transitions: viral life cycles and
their consequences

Other viruses such as herpesvirus, papillomavirus, adenovirus,

and polyomavirus are considered commensal viruses in the human

body (67). When a virus successfully enters a host cell and starts

making multiple copies of its genetic material, it causes lytic

infection. Successful execution of the viral lytic cycle requires the

viral genome to integrate into host cell chromosomes. In the latent

phase, viral genomes remain in a stable (quiescent) state within the

host cell, not actively replicating but poised for future activity (68).

The ability of latent infections to transition back into a lytic state

plays a crucial role in the spread of viruses from infected to
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uninfected individuals. In their inactive or slowly growing state,

these viruses remain a significant concern because they can still

make healthy individuals sick (69). Even in healthy individuals, we

carry viral components within our cells (70) (71). Certain viruses,

such as retroviruses, possess the capability to invade cells and

incorporate their genetic material into the host genome.

Consequently, these viral genetic elements become a permanent

component of the host cell and can be passed down to subsequent

generations of cells (72). For instance, HIV infiltrates the nucleus

and forms a complex for integration, allowing its DNA to merge

with the genetic material of the host cell (73). This indicates how the

virus genome significantly impacts its host in different ways, apart

from causing typical viral diseases. The investigation of the viral

component present within our cells concerning health and diseases

necessitates further scrutiny to fully comprehend its implications.

Adenovirus, dengue virus, Ebstein–Barr virus, human

cytomegalovirus, human papillomavirus, poliovirus, hepatitis C

virus, human immunodeficiency virus, and Vaccinia virus are

known to activate various metabolic processes (glycolysis, pentose

phosphate pathway etc.) that are required for intracellular

replication and proliferation (74). Because we often inherit

systemic viruses from our parents early in life, the virome also

plays a role in our genetic identity (75). These viral elements that

reside in our chromosomes can govern gene activation, influence

genetic changes, and transcribe specific genes for crucial protein

production. Endogenous retroviral-derived regulatory elements

have been implicated in the regulation of immune cell

development, activation, and response to pathogens (76).

However, the immune system is continually engaged, interacting

with the body’s microbiome, including the virome, even in the

absence of immediate threats (77). This interaction shapes the

host’s unique immune profile, which can differ among individuals

and change over time (78). Traditional techniques for viral studies

have many limitations, including the fact that not all viruses can be

cultured in the laboratory. Using conventional sequencing and

molecular approaches, viral genomes can now be rapidly captured

and tracked for their evolution. These techniques are required for

the rapid detection of new or re-emerging viruses that impact

human health and development (79).
Intracellular fungal infections

Globally, fungal infections are exceedingly common and can

result in severe infections, varying from asymptomatic or mild

cases to potentially life-threatening systemic infections. The

epidemiology of fungal diseases has witnessed significant changes

in recent decades. Notably, Aspergillus, Candida, and Cryptococcus

species are the major fungal pathogens responsible for most serious

fungal diseases. Some fungi, including Candida albicans, are

naturally present in our microflora and help protect us from

harmful pathogens (80) (81). However, these normally harmless

species can become harmful, particularly in immunocompromised

individuals. In addition, certain fungi can survive inside cells and

manipulate the host’s cellular functions to ensure their survival.

However, some pathogenic fungal species can cause severe
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infections, which are often associated with high rates of illness and

death. The understanding of diverse intracellular fungal species in

infections and diseases is still incomplete, urging further research to

dissect these essential temporal sequences.
Co-Infection chronicles- the leading
cause of worse disease outcomes

Because of our constant exposure to various pathogens, a

substantial portion of the population unknowingly harbors chronic

or latent infections, including those caused by viruses, bacteria, or

parasites. The microbiota comprises many potential pathogenic

species. Therefore, it is highly probable that any new infection will

manifest as a co-infection (82). The traditional view of a single host

and single pathogen interacting with one another has been challenged

by numerous studies, that have introduced the concept of co-

infections. Co-infection can occur either due to the reactivation of

pre-existing pathogenic microorganisms in the presence of a new

pathogen or because of the co-colonization of the host by new

pathogenic species. Co-infection modulating the outcome of

infections is now emerging as an important area in understanding

multiple co-existing pathogens and the host response (83). Some

examples of fungal co-infections with primary viral and bacterial

infections includes-
Fron
i. Influenza viruses and Aspergillus infections can cause

severe pneumonia by damaging the lungs and impairing

their function. Immune response to these infections can

also contribute to lung injury, leading to ARDS and

respiratory failure (84).

ii. COVID-19-associated pulmonary aspergillosis was reported

to reduce the number of CD4+ and CD8+ T cells leading to

immune disruption in COVID-19 patients. High

inflammation and direct damage to the airway epithelium

during COVID-19 enabled Aspergillus pathogenesis.

iii.

Mucormycosis has been reported to occur in COVID-19

patients who receive systemic corticosteroid treatment or

have diabetes. The increased presence of glucose-regulated

proteins, which act as receptors for fungal attachment and

invasion, increases the likelihood of co-infection (85).

iv.

Aspergillus and Pseudomonas aeruginosa: Patients with cystic

fibrosis (CF) may be affected by both Aspergillus fumigatus and

Pseudomonas aeruginosa, and their interaction can lead to

worsening of lung function and clinical outcomes.

v. Mycobacterium tuberculosis, and cryptococcosis are

opportunistic pathogens that can cause morbidity and

mortality by evading the host immune system and

residing in phagocytes.
The co-presence of microbes in a particular habitat leads to

various interactions between them and the infecting primary

pathogen. This co-presence results in reciprocal interactions

between host-pathogen, host-microbes, and microbes-pathogen,
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which may result in co-infection (44). However, many of these

microbes remain dormant for a long time, but possibly upon

infection with any harmful pathogen changes the cellular

homeostasis (dysbiosis), which may result in their reactivation.

Because of the difficulties in the identification of dormant microbes,

co-infection at the cellular level and its consequences in human

health and infectious diseases require needs more attention.
The implications of co-infection
modulation on therapeutic strategies
and patient management

Effective management of co-infections requires a comprehensive

approach that includes early screening to identify and select specific

antimicrobial treatments. Co-infections often resemble other

common infections, which can complicate diagnosis and create

uncertainty regarding the necessity of antibiotics. Crucial measures

included ensuring environmental cleanliness, practicing thorough

hand hygiene, and implementing screening and isolation protocols.

Antimicrobial stewardship is vital to reduce the occurrence of drug-

resistant infections. Prolonged hospital stay, illness, inadequate

surveillance, and excessive antibiotic use can contribute to the

development of co-infections. Following patient safety guidelines,

bundles can reduce the risk of coinfection. Overall, an integrated

multimodal strategy is necessary to manage co-infections (86).
Application of genomics to
understanding cell-type-specific
intracellular microbes

Genomics involves the identification of genes and functional

components in the genome of an organism. It is an invaluable tool

for understanding the impact of intracellular microbes within specific

cell types, including their involvement in cellular dysfunction,

immune response, and disease development. Recently, Yadav et al.

reported the presence of dynamic intracellular microbial species

within peripheral blood mononuclear cells (PBMCs) in healthy,

infected and recovered individuals from SARS-CoV-2 using scRNA-

seq (12). Furthermore, unique tools such as PathogenTrack and Yeskit

have been developed to identify intracellular pathogens from scRNA-

seq datasets, allowing for the assessment of transcriptomic

characteristics at the individual cell level. In addition, a genomics-

driven approach has indicated that most of major human cancer types

possess an intra-tumoral microbiota. Direct interactions between these

microbial communities and immune cells were investigated using co-

culture techniques.

The presence of a microbial genome can be a consequence of

the following, i) the intracellular presence of dormant or inactive

forms of microbes, which may remain within host cells without

actively replicating or causing harm, ii) microbial remnants persist

even after successful elimination by the host’s defense mechanisms,

including their genetic material (DNA or RNA), which then

undergoes lysis within the cells (87), iii) uptake of microbial
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products, (RNA, proteins, and metabolites) from the microbes

residing in the extracellular environment by certain cell types, iv)

uptake of apoptotic bodies generated from infected cells, and v)

transport of exosomes or vesicles containing microbial RNA, from

infected cells to neighboring cells, which may unhouse microbes.
Challenges and pitfalls in intracellular
microbe research

Recent research has greatly enhanced our understanding of the

human microbiota including, skin, oral, gut and organ-specific

microbes. Nevertheless, many unknowns and challenges remain

in disentangling intracellular microbes and differential

infection outcomes.
Cellular hibernation: insights
into dormancy

Most microorganisms in the natural world live in frequently

unpredictable environments that subject them to stress and

challenges that are not optimal for their growth and reproduction

(88). Despite difficult conditions, such as extreme temperatures or

limited resources, microbes have the remarkable ability to

temporarily slow down various biological processes. This

reduction in metabolic activity and increased resistance to heat,

antibiotics, and various stressors enables them to conserve energy

and resources by effectively halting their vital life processes until

conditions improve (89). They can save energy and resources

because of the decrease in metabolic activity, which effectively

suspends their essential life processes until the situation improves.

The ability of these organisms to tolerate stressful conditions and

resume normal activities when the environment stabilizes through

dormancy eventually increases their chances of survival and

reproduction. During any acute infection or disease, a given

treatment with antibiotics may negatively affect active microbes,

in which the subpopulation of dormant microbes remains

unaffected, persists for longer, and may become active in the

future. Microbiology mainly focuses on studying microbes that

grow quickly because of methodological constraints. Emerging

technologies can provide a better granular and genomic-based

understanding of dormant and resuscitated intracellular microbes

and their components (45).
Transcriptionally active microbes

Once the microbes have favorable conditions, they become

active in transcribe the genes required for their proliferation and

pathogenicity. Numerous host genes, especially immune genes, are

activated as the cells encounter any microbe. The human genome

comprises of approximately 20,000 genes, that are regulated in a

tissue-specific manner. The expression of these genes can be altered
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by both internal and external signals. However, the microbial

genome can be considered our “second genome”. The interaction

between the host and pathogenic microbes can induce cellular and

immune dysfunction and cause infectious diseases. With the advent

of advanced technology, we can now meticulously assess the

genome sequences of various microbes with increased accuracy.

Hence, for microorganisms to effectively establish a specialized

environment within the cellular structure and for the host cells to

eliminate the microbe, a conflict arises between the two entities. The

essential element in this process is the dynamic interplay between

the genetic material of the host cell and the microbial genes.

Transcriptionally active microbes, possess the capability to modify

the functional properties of host cells, and engage in intricate

interactions with the cellular machinery of the host organism.

Identification of transcriptionally active microbes requires the

capture of RNA profiles representing active life processes and

interactions between host and microbes.
Conflict, compromise, and
cooperation between microbes and
host immunity

The innate immune system comprises a range of defense

mechanisms within the host, including physical and chemical

barriers. It uses a wide array of mechanisms to combat a broad

spectrum of microbial threats and remove harmful substances,

including toxins and allergens. Although the innate and adaptive

immune systems are often depicted as separate, they typically work

in tandem. The innate immune system relies on several

components, including complement proteins, phagocytic cells

(such as monocytes, macrophages, and neutrophils), and natural

killer (NK) cells, to provide immediate defense against various

threats. These host defense mechanisms are inaccessible to

intracellular microbes. The components of the innate immune

system, such as antigen-presenting cells, further activate the

adaptive immune system, which employs a more powerful

immune response to eliminate infectious agents. In addition,

certain microbes have developed the capability to persist within

the host despite the presence of both innate and adaptive immune

responses. For example, pathogens such as M. tuberculosis, S.

enterica, and Neisseria can evade clearance by the immune system

even after continuous immune surveillance (90) (Figure 2).
Innate immunity against
intracellular microbes

The interaction between intracellular microbes and the host

follows a cascade of immune reactions in which the host activates

various microbicidal mechanisms at different stages of infection,

while the microbes employ different evasion strategies. In particular,

for intracellular microbes, both phagocytic and non-phagocytic

cells are involved in microbial uptake and target intracellular
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destruction. Understanding the immune response involved in

intracellular killing can deepen our understanding of cell-type-

specific mechanisms and the pathogenesis of infection. The first

counteraction against intracellular microbes is provided by the

components of the innate immune system. The products released

by intracellular bacteria are recognized by Toll-like receptors

(TLRs) and Nod-like receptors (NLRs), and activates the effector

phagocytic cells (46). Phagocytic cells generally recognize microbes

based on unique molecular patterns (PAMPs) in the

microorganisms, irrespective of their pathogenicity (11). TLRs are

responsible for initiating a response that prompts macrophages to

produce proteins and peptides with antimicrobial properties. They

also activate the transcription of genes involved in the production of

reactive oxygen species (ROS), which permits lysosome fusion (91).

Some pathogenic microbes, such as Leishmania, Staphylococci,

Coxiella and Salmonella, are well organized to survive even the

acidic environment and continue to replicate. For example, PhoP/

PhoQ regulation in Salmonella helps its intracellular survival (34).

Together, these pathogen recognition receptors (PRRs) result in the

production of antimicrobial peptides and induction of the

inflammatory response mediated by interferons and pro-

inflammatory cytokines (TNF-a). Macrophages can also be

activated via natural killer cells through interferon (IFN-g)
production, which plays a major role in the killing of intracellular

pathogens (92).
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Cytokines and chemokines as a host
defense against intracellular microbes

The activation of the host innate immune response results in the

production of diverse effector molecules, such as cytokines,

chemokines, and other microbicidal proteins. These molecules are

released by certain cell types in response to damage or recognition

of any foreign invader inside the body. Pro-inflammatory cytokines

are produced predominantly by the NK cells, activated or infected

macrophages, and monocytes. IFN-g is one of the most important

cytokines against intracellular infections, along with TNF-a, it
activates macrophages to kill intracellular microbes. Certain

studies have also suggested the function of cytokines including

IFN-g, type I IFNs, IL-1, IL-6, IL-15, and IL-18, in the activation of

other immune cells responsible for microbial infections (47).

Importantly, the microbial nature and stimulated cell type define

the cytokine pattern released by cells (34). These cytokines act on

their receptor molecules to generate effector functions in specific

cell types. However, intracellular microbes can inhibit the

production of these molecules by releasing proteins that mimic

their receptors, such as IL-2 in S. typhimurium, TNF-a release in

Yersinia enterocolitica, and Legionella pneumophila, which inhibit

IL-2 (53).

Chemotactic cytokines, which activate and provide a source for

the migration of various immune cells, predominantly leukocytes,
FIGURE 2

Pathogenesis of intracellular microbes. During infection, certain microbes bypass physical barriers such as the skin and mucous epithelia. This initial
breach triggers the activation of the innate immune response. Successful execution of innate immunity can lead to either the elimination of the
microbe or the initiation of the adaptive immune system for further processing. However, microbial survival strategies may hinder killing
mechanisms, allowing evasion of the immune system. These evasion tactics include inhibiting autophagolysosome fusion, residing in specialized
vacuoles, escaping into the cytosol, and impeding various immune components such as inflammatory responses, complement pathways, cytokines,
and chemokines.
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are known as chemokines. Chemokines are critically induced by

early detection of intracellular microbes, to recruit diverse array of

immune cells that are specialized for microbial killing, such as

professional antigen-presenting cells (APC). Chemokines are

further categorized into different families, in which CC

chemokines target macrophages, monocytes, dendritic cells, T

cells, and NK cells. The CXC group is mainly involved in

neutrophil chemotaxis.
Humoral and cell-mediated immunity to
different intracellular microbes

The adaptive immune response is typically activated by the

innate immune response in the defense of the host. Unlike the

body’s inherent defenses, adaptive immunity, is remarkably capable

of recognizing certain antigens and initiating a focused defense

against infections. Humoral immunity against intracellular

microbes is mediated by B-cell activation. Some bacteria can

infect and replicate inside B cells, including Salmonella

thyphimurium, Brucella, Mycobacterium tuberculosis, Listeria

monocytogenes, Francisella tularensis, and Helicobater spp.

Antigens presented by the major histocompatibility complex are

further recognized by T cells, which differentiate into their subset

cells for effector functioning. CD4+ mediates the adaptive immune

response against intracellular microbes. The subsets of T cells

respond to antigen presentation, and downstream, they activate

killer cells to eradicate the pathogen. In contrast to innate

immunity, which is species-specific, adaptive immunity differs

among individuals within a species in response to specific

antigenic challenges. Its diversity leads to an extremely adaptable

spectrum of functions, which allows it to identify millions of

different antigenic compounds. A critical characteristic of the

adaptive response is the generation of long-lived memory cells

that remain in a quiescent state but can rapidly regain their

defensive functions upon encountering the specific antigen again.

This immunological memory empowers the adaptive response to

significantly enhance host defenses when facing the same pathogens

or toxins on subsequent encounters, even after an extended period,

providing an efficient and robust protective response. The adaptive

immune response ultimately results in antigen-specific activation of

the effector mechanisms of the innate immune system.
Subversion of host defense by
intracellular microbes

“It requires maximum exertion to maintain
a stationary position” - Lewis Carroll

Certain microbes have evolved in tandem with their host in

response to each other, effectively neutralizing any cellular defense

mechanisms. Intracellular microbes are capable of thriving within

immune and non-immune cells. This evolutionary arms race

between hosts and pathogens is driven by genetic differences that
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determine how well the host can recognize and respond to

microbial components, and how the pathogen can evade or

overcome the host’s defenses. Entry inside cells provides

additional benefits to the bacteria. Immune cells provide a

nutritious and safe niche for these microorganisms (48). While

entering a host, numerous microbes evolved multiple anti-immune

mechanisms to evade and modulate the host immune response

to ensure its survival. Microbes thwart host defenses by using

various tactics such as modulation of microbial surfaces,

secretion of immune-modulators, antigenic variation, inhibiting

lysosomal fusion (93), altering lysosomal pH for cytosolic escape

(94), using protease-like activating factors for host protein

degradation and neutrophil deactivation, hindering humoral

immunity and inflammatory responses, blocking antigen

processing and presentation (61), inducing immunosuppression

via the complement regulatory pathway, suppressing reactive

oxygen species and nitric oxide production, and inhibiting

apoptosis, ensuring prolonged persistence within the host.

Collectively, these strategies allow microbes to navigate and evade

different components of the host immune system, ensuring their

sustained survival and persistence.
Technology’s frontiers: recognizing
and addressing limitations

Despite decades of research, we still have limited insights into

the factors that regulate the severity of infection between

individuals. Studying intracellular microbes, especially through

culture-based methods, fails to detect scrupulous or metabolically

active but unculturable bacteria. One of the challenges in accurately

describing the current state of microbial diversity is the difficulties

associated with environmental circumstances (pH, osmotic

pressure, nutritional components) (95). The major limitations of

traditional techniques include the following: i) these methods are

time-consuming, as they require the isolation and cultivation of

microorganisms in the laboratory; ii) the diversity and complexity

of microbial communities may not be accurately known, and iii) not

all microorganisms can be cultured, and challenges such as

environmental conditions, stress, or acclimatization can hinder

their recovery (Figure 3).

Microscopy allows the direct visualization of intracellular

microbes, providing valuable morphological information. It is

limited by the resolution and size of the microbes that can be

visualized, whereas NGS can detect and identify microbes at the

molecular level, even if they are too small to be seen under a

microscope. Microscopy allows studying a small number of

microbes at a time, making it difficult to capture the full diversity

and complexity of microbial communities. Conventional

microscopy-based methods for identifying intracellular bacteria also

have drawbacks, such as resolution limitations that make

distinguishing between different species difficult. Precisely localizing

internal microorganisms may require additional labelling techniques.

Culture-independent methods, such as metagenomics,

metatranscriptomics, metaproteomics, and metabolomics, provide
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insights into the functional potential and activities of microbial

communities in their natural environment (96). Metagenomics

involves studying the genomes of host and microbial organisms.

Metatranscriptomics provides information on total gene expression

in a specific environment. Metaproteomics and metabolomics are

other omics branches based on protein expression and metabolite

identification and quantification, which help us to understand the

active microbial pathways (97) (98).
Single-cell transcriptomics:
revolutionizing the exploration of
microbial diversity

One might wonder what motivates the in-depth investigation of

these microorganisms at the single-cell level. It is important to

determine the functional role of intracellular microbes inside

specific cells and whether they can modulate the severity of

diseases. The answer lies in the fact that various tissues, each

responsible for unique physiological functions, exhibit diversity

and specialized functions attributed to variations in gene

expression and unique characteristics among their constituent

cells. Individual cells within tissues show heterogeneity in gene

expression and function. A high-throughput cutting-edge

alternative emerged, single-cell technology, which can address

these limitations, as it enables the sequencing of individual cells

and provides different information, including proteomic,
Frontiers in Immunology 11
epigenomic, transcriptomic, and metagenomic, thereby offering a

more comprehensive view of cellular diversity and function.

Bulk RNA sequencing revealed microbes in different samples,

including blood (99). However, various cell types, make it

challenging to study the specific interactions between microbes

and individual cell types such as neutrophils (100). Because of their

limited lifespan and inability to be cryopreserved, they are difficult

to study. Our understanding of distinct cell and tissue types is

compromised because heterogeneity among these cells remains

masked. Furthermore, there is still a significant gap in our

understanding of which microbes are associated with specific

immune cells. This knowledge is particularly vital in the context

of immune cells, which play a pivotal role in combating infections

and pathogens. It is essential to understand the composition of pre-

existing microbes and how they evolve throughout the progression

of diseases (101). The key to our knowledge of human infection

biology is how the immune system combines signals and

coordinated responses from many cell types and how inter-

individual diversity in these cell types translates to variations in

infection outcomes.

Single-cell RNA-seq (scRNA-seq) technology has made recent

advancements that enable the disintegration of complex tissues and

host compartments into cell types and their importance in health

and diseases. A scRNA-seq study by Hoffman et al. revealed the

diverse outcomes of bacterial infection by macrophage subsets.

Some cells may allow the replication of microbes, some may

inhibit the growth and eliminate the microbe, while some may

probably not respond to either side (49). The primary steps involved
FIGURE 3

Traditional and advanced techniques for studying intracellular microbes. The exploration of intracellular microbes encompasses both conventional
and cutting-edge methodologies. Conventional approaches, such as culture-based and microscopy-based techniques, have inherent limitations,
particularly concerning the diversity and comprehension of non-cultivable microorganisms. In contrast, advanced techniques, notably next-
generation sequencing technology, transcend the constraints of traditional methods. The most sophisticated among them is single-cell analysis,
which offers unparalleled resolution down to the individual cell and strain levels.
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in scRNA-seq techniques are isolation and capture of single cells,

cell lysis, reverse transcription, cDNA amplification, and library

preparation. However, these processes vary in procedure depending

on the sequencing platform. Among these steps, the isolation and

sorting of individual cells are critical yet labor-intensive processes

within the single-cell RNA-seq (Figure 4). Cell separation

techniques encompass various methods, such as fluorescence-

activated cell sorting (FACS), magnetic-activated cell sorting

(MACS), microfluidics (10x Genomics), and microwell-based

systems (BD Rhapsody), which are geared toward high-

throughput applications. The design of the microwell system is

particularly noteworthy because it allows the accommodation of

individual cells coupled with a single bead. Subsequently, the

process involves cell lysis and mRNA hybridization to the beads,

followed by reverse transcription and amplification for sequencing,

which serves as a universal PCR priming site. It is equipped with a
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combination of elements, including a distinctive cell label, a unique

molecular index, and an mRNA capture sequence composed of

deoxythymidine/oligo (dT). To date, single cell RNA-seq data have

mainly been used to investigate host response by analyzing mRNA

expression. Accordingly, analyzing either host or microbe alone

may limit the understanding of host-microbe interactions.

Although, simultaneous study of host and microbe genomes

increases the complexity, scRNA-seq can elucidate the influence

of diverse intracellular microbial species on the composition and

host transcriptional profiles of diverse cells. The “dual RNA-seq”

studies allow us to investigate both host and pathogen genomes in

parallel (11) (102). New state-of-the-art tools have been developed

to analyze the single cell transcriptomic datasets to identify

intracellular pathogens at the single-cell level (50, 51). Hence, it

can capture all transcripts, including microbial/bacterial transcripts

having poly A (not necessarily more than 50 A) (103).
FIGURE 4

Schematic representation of the experimental and analytical workflow for single-cell RNA sequencing (scRNA-seq). Peripheral blood mononuclear
cells (PBMCs) are isolated from whole blood using density gradient centrifugation. Single-cell suspensions are then used for library preparation,
which can be achieved using microwell or droplet-based methods to capture single cells and barcoded beads. Following cDNA synthesis and
amplification, the libraries are sequenced using high-throughput sequencing platforms. In the analytical phase, non-human reads are extracted and
analyzed to identify microbial sequences, allowing for the comprehensive characterization of both host and microbial transcriptomes in a single-
cell resolution.
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Undoubtedly, not all microbes exhibit poly-A tails in their

transcripts; nevertheless, a significant majority of microbes

manifest this trait, thereby accentuating the value of this

approach in elucidating bacterial diversity.

Single-cell transcriptomics has ushered in formidable

methodologies for determining microbial diversity. Pioneering-

modified techniques, such as Fluidigm C1, Prokaryotic single-cell

RNA sequencing (PETRI-seq), microbial split-pool ligation

transcriptomics (microSPLiT), multiple annealing and dC-tailing-

based quantitative single-cell RNA-seq (MATQ-seq), and Bacterial

droplet-based single-cell RNA-seq (BacDrop), have been developed

to effectively circumvent the limitations of 16S rDNA-based

microbiota profiling (104). Techniques such as Smart‐seq, Smart‐

seq2, MATQ‐seq (multiple annealing and dC‐tailing‐based

quantitative single‐cell RNA‐seq), MARS‐seq (massively parallel

single‐cell RNA‐sequencing), and CEL‐seq (Cell Expression by

Linear amplification and sequencing) use fluorescence-activated

cell sorting (FACS) for single-cell isolation (105–107). MARS‐seq

and CEL‐seq amplify cDNA using an in vitro transcription method

wherein the 5′ end of cDNA is connected to poly(A)/poly(C) to

build common adaptors in the PCR reaction. Fluidigm C1, Smart‐

seq2, MATQ‐seq, Drop-seq, and 10x Genomics use Moloney

Murine Leukemia Virus (MMLV) reverse transcriptase to

incorporate template‐switching oligos as adaptors for further PCR

amplification. These methods also use unique molecular identifiers

(UMI) to eliminate PCR amplification bias. Fluidigm C1 has two

configurations: Fluidigm C1 96 scRNA-seq and Fluidigm C1 HT

scRNA-seq, each tailored for different throughput requirements.

This method captures and processes cells on an integrated

microfluidic chip (IFC) with multiple capture sites, each capable

of capturing a single cell. For library preparation, cDNAs were

fragmented, barcoded, and amplified using the protocols

recommended by Fluidigm. The libraries were then quantified

and sequenced using high-throughput sequencing platforms such

as Illumina HiSeq, NovaSeq and recently Nanopore has been used

for the same (52, 108, 109). Despite encountering obstacles such as

the diversity of cell walls, which are difficult to lyse, high abundance

of rRNA, which makes it difficult to isolate non-polyadenylated

mRNA (limited mRNA abundance), and mRNA instability, recent

discoveries illustrate that single-cell techniques can capture

bacterial sequences to a certain extent.

Well, understood and characterized intracellular survival

strategies are limited to bacteria and a few parasites (at the

moment) and are almost devoid for the fungal species. To

understand how fungi manipulate their intracellular environment

to ensure their persistence in mammalian hosts, it is necessary to

investigate the specific mechanisms employed by these organisms.

Fungi possess a rigid cell wall, which makes them less likely to be

captured compared to bacteria and viruses (110). Additionally, they

contain only 1-3 pg of total RNA per cell, which is 10 times less than

that in mammalian cells, necessitating a specific RNA extraction

procedure. Some methods are designed for single-cell sequencing of

yeast organisms, such as Smart-seq, which uses zymolyase for

efficient lysis of yeast cells within the droplets during single-cell

droplet formation in the 10x Genomics Chromium Single Cell 3’

protocol (111). The authors validated these results using single-cell
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time-lapse microscopy. Yeast single-cell RNA sequencing

(YscRNA-seq) is capable of detecting the expression of low-

abundance noncoding RNAs and nearly half of the protein-

coding genome in each cell. The cells were sorted using

fluorescence-activated flow cytometry (FACS) in the 96-well

plates, and full-length cDNA libraries were generated from

biotinylated oligo(dT) and tagged libraries that were captured

using streptavidin beads. In contrast, single-cell RNA barcoding

and sequencing (SCRB-seq) specifically enriched 3’-end transcripts

at the tagmentation stage after FACS sorting (112). However, these

techniques have not yet been applied to human host cells; therefore,

their diversity remains unknown. Several studies have

demonstrated the diverse nature of the host response to

antifungal infections through RNA-seq analysis of peripheral

blood mononuclear cells (PBMCs) infected with various fungal

species. For example, pathogens such as Yersinia pestis and Candida

albicans invade and survive within macrophages as part of their life

cycle (113, 114). These microorganisms cause a shift from pro-

inflammatory to anti-inflammatory states and upregulate genes

involved in the inflammasome activation, resulting in bimodality,

and influencing infection outcomes in the healthy individuals.

Moreover, fungal pathogens like Cryptococcus neoformans,

Histoplasma capsulatum, Candida glabrata, Candida albicans, and

Aspergillus fumigatus inhibit lysosomal fusion by altering intra-

phagosomal pH, manipulating cytokine secretion, and inducing

programmed cell death pathways such as pyroptosis and apoptosis.

For instance, Candida albicans has been shown to trigger increased

arginase activity upon sensing chitin, which leaves nitric oxide

synthase (NOS) without a substrate and impairs macrophages’

ability to eliminate the fungus (115). This revelation not

only broadens our understanding of microbial interactions

within host-associated tissues but also presents a promising

prospect for future therapeutic and disease applications. The

advancement of integrated host-microbiome single-cell genomics

and transcriptomics techniques has established a technological basis

that may pave the way for personalized treatment strategies. By

understanding complex host-microbiota interactions at the cellular

level, these methods may provide insights into disease mechanisms

and microbial pathogenesis, potentially resulting in targeted

therapies and interventions.
Knowledge gaps and future directions

The mechanisms underlying diverse infection outcomes due to

host-microbe interactions in the presence of pathogens remain

poorly understood. Infection outcomes are not solely defined by

the primary pathogen infection abilities. Rather, pre-existing

microbiota and host cellular factors play an important role.

However, the existing tools for the identification of these

intracellular microbes are still limited to obtain a better

understanding of their existence and role inside definitive cell

types. Hence, the development of new tools and computational

pipelines is already forthcoming Several noteworthy research gaps

have been identified. These lacunae serve as valuable points for

future scientific inquiries. Foremost among these gaps is the
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pressing need to advance our holistic understanding of the

intracellular microbiome. Presently, microbiome research

predominantly focuses on the bacteriome, with an emphasis on

anatomical regions such as the skin, oral cavity, nasal passages, and

gastrointestinal tract. In stark contrast, there is a conspicuous

dearth of attention paid to the intracellular diversity of

microbiota. Profiling intracellular microbes, which encompass a

diverse array of entities including bacteria, archaea, fungi, and

viruses, presents serious challenges. These challenges stem from

the scarcity of requisite technical and analytical resources,

encompassing methodological approaches and computational

pipelines. Moreover, genomic-based approaches and novel

molecular-based technologies, including single-cell genomics, are

becoming accessible, enabling the characterization of the

transcriptome at the granular level. This greatly enhances our

capacity to capture microbiome diversity and heterogeneity in a

seemingly uniform cell population. However, thorough attempts to

advance technologies used to analyze pathogens (such as bacteria,

fungi, and viruses) accurately and efficiently at the single-cell level

are critical. These limitations represent formidable barriers to

researchers seeking to delve into the intricacies of the intracellular

microbiome. scRNA-seq is an emerging technique to profile host

and microbial transcriptomes. Unlike traditional approaches,

scRNA-seq can simultaneously capture host and microbial

transcriptomes, providing direct insight into host–microbe

interactions. However, this part of scRNA-seq is still in its

infancy, and it is only used to understand the transcript of either

host or microbe. In light of these considerations, addressing these

knowledge gaps and developing cutting-edge tools with respect to

both experimental facets and computational pipelines to facilitate a

comprehensive evaluation of the intracellular microbiome should

assume a central position in future scientific investigations.
Conclusion

The interactions between the intracellular microbiota and the

host immune system are significant, as they play a critical role in

shaping immune development and function. Additionally, they help

maintain the symbiosis and integrity of the immune system. While

techniques like microscopy, culturing, and DNA sequencing have

been successful in environmental and human-associated

microbiomes, identifying intracellular microbiomes remains

challenging due to diverse cell wall structures and low mRNA

abundances. However, single-cell genomics shows promise in

capturing microbial sequences along with the host transcriptome,

paving the way for joint host-microbiome transcriptome analysis.

These advancements have revealed individual variability within the

cell-type specific microbial communities, addressing their role in

persistent infections and determining differential disease severity.

Harnessing genomics strategies enables one to investigate the

specific prevalence and function of microbes within the intricate

environment of the host immune system. Intracellular microbes
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significantly impact disease outcomes by modulating cellular

functions, yet our understanding of their role in disease severity is

limited due to their unculturable nature. The implications of cell-to-

cell variability (specifically immune cell types) towards internalizing

specific microbes are unclear, yet significant in the background of

the COVID-19 pandemic. Our recent lab work (DOI: 10.1016/

j.isci.2023.108357) highlighted the non-canonical usage of Single

Cell Transcriptomics to understand the microbial dynamics with

immune cell types. This review highlights the intricate interactions

of the intracellular microbiome, offering insights into predicting

disease severity. This approach provides insight into the

interactions, defense evasion mechanisms, and possible impact on

varying disease outcomes. More innovations in the non-canonical

genomic applications needs greater participation, integration,

sharing and dissemination for public health benefits.
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