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Immune-related skin diseases represent a collective of dermatological disorders

intricately linked to dysfunctional immune system processes. These conditions are

primarily characterized by an immoderate activation of the immune system or

deviant immune responses, involving diverse immune components including

immune cells, antibodies, and inflammatory mediators. However, the precise

molecular dysregulation underlying numerous individual cases of these diseases

and unique subsets respond under disease conditions remains elusive.

Comprehending the mechanisms and determinants governing the homeostasis

and functionality of diseases could offer potential therapeutic opportunities for

intervention. Mass cytometry enables precise and high-throughput quantitative

measurement of proteins within individual cells by utilizing antibodies labeled with

rare heavy metal isotopes. Imaging mass cytometry employs mass spectrometry to

obtain spatial information on cell-to-cell interactions within tissue sections,

simultaneously utilizing more than 40 markers. The application of single-cell mass

cytometry presents a unique opportunity to conduct highly multiplexed analysis at

the single-cell level, thereby revolutionizing our understanding of cell population

heterogeneity and hierarchy, cellular states, multiplexed signaling pathways,

proteolysis products, and mRNA transcripts specifically in the context of many

autoimmune diseases. This information holds the potential to offer novel approaches

for the diagnosis, prognostic assessment, and monitoring responses to treatment,

thereby enriching our strategies in managing the respective conditions. This review

summarizes the present-day utilization of single-cell mass cytometry in studying

immune-related skin diseases, highlighting its advantages and limitations. This

technique will become increasingly prevalent in conducting extensive

investigations into these disorders, ultimately yielding significant contributions to

their accurate diagnosis and efficacious therapeutic interventions.
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1 Introduction

Single-cell analysis is pivotal for revealing structural and functional

differences among individual cells. These techniques highlight significant

cell-to-cell diversity, identify rare but functionally important

subpopulations, and unveil unique characteristics of individual cells

(1). Flow cytometry has been a powerful tool for single-cell analysis for

an extended period (2). In recent years, with the advancement of high-

throughput single-cell analysis methods, cellular subpopulation analysis

has entered a new era of high dimensionality, surpassing the constraints

of traditional methods for defining, characterizing, and quantifying

immune cell subpopulations (3, 4). A variation of flow cytometry,

known as cytometry by time-of-flight (CyTOF) or mass cytometry,

was developed in 2009. Bandura et al. introduced the first purpose-

designed prototype mass cytometer, showcasing its application in the

simultaneous detection of 20 surface antigens within single cells of

leukemia cell lines and leukemia patient samples (5). CyTOF is a

single-cell proteomic analysis technique that assesses targeted

intracellular and cell surface markers. It overcomes the limitations of

traditional flow cytometry, which is often hindered by spectral overlap

from fluorescent tags and less detected protein numbers. Instead, CyTOF

employs antibodies conjugated to heavy metal isotopes, allowing

simultaneous profiling of more than 50 markers. This allows detailed

phenotypic and functional characterization of individual cells within a

sample (6). Advances in CyTOF have led to the advent of imaging mass

cytometry (IMC), a technique that combines metal-labeled antibody-

based immunohistochemistry (IHC) with laser ablation and mass-

spectrometry detection to produce multiplexed images, thus adding

the tissue architectural information to CyTOF-based data (7). IMC has

the capability to assess up to 40 protein markers on each cell in a single

scan, utilizing 135 available detection channels. This surpasses the

limitations of conventional IHC and immunofluorescence (IF)

techniques, greatly enhancing the ability to explore intricate cellular

systems and processes (8). IMC not only analyzes cells within their tissue

context but also provides high resolution to precisely locate proteins

within nuclear, cytoplasmic, and membranous cell compartments. In

2011, IMC technology was commercialized, leading to its gradual

dissemination and extensive application (9). Presently, CyTOF/IMC

has evolved into an indispensable method for investigating cellular

heterogeneity in many autoimmune diseases, such as tumors, systemic

lupus erythematosus (SLE), rheumatoid arthritis (RA) etc.

This paper presents an extensive review of the current applications

of single-cell mass cytometry in immune-related skin diseases,

including an overview of its working principles and primary

functionalities. We emphasize the significance of this technique as a

powerful tool for investigating skin immunology, with the potential to

advance targeted therapies for various skin conditions.

2 Overview of working principles in
single-cell mass cytometry

2.1 Mass cytometry

CyTOF is essentially an inductively coupled plasma mass

spectrometry (ICP-MS) with a time-of-flight (TOF) detector, created
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for precise single-cell measurements or bead-based immune detection

assays. It provides a wide mass detection range, including nearly 100

mass detection channels (10, 11). In CyTOF, antibodies are labeled

with stable heavymetal isotopes and bind specifically to cell surface and

intracellular markers, functioning similarly to traditional flow

cytometry’s fluorescent labels. After cell staining, cells are introduced

into the CyTOF analyzer, where they are nebulized into droplets.

Subsequently, droplets enter the inductively coupled argon plasma

(ICP), where they undergo evaporation, atomization, and ionization

(12, 13). The ion cloud is filtered through a quadrupole to eliminate

common biological elements and then analyzed using a TOF mass

spectrometer. The signal intensity for each isotope correlates with

specific antibodies, enabling the measurement of analyte levels within

the cell (14). (Figure 1A) For mass cytometry data analysis, the t-

distributed stochastic neighbor embedding (t-SNE) algorithm (15),

Spanning-tree Progression Analysis of Density-normalized Events

(SPADE) (16, 17), FlowCore (18) and CATALYST can be used to

visualize high-dimensional data (19). FlowSOM (20), X-Shift (21) and

PhenoGraph (22) are employed to identify cell populations. Cellular

development and lineage decisions can be tracked using trajectory

algorithms, which order cells based on gradual phenotypic changes.
2.2 Imaging mass cytometry

IMC extends the multiplexed analysis capabilities of CyTOF-based

mass cytometry to enable spatially resolved measurements (16, 23).

The IMC workflow integrates mass cytometry, ICC, and IHC analyses

with a high-resolution laser ablation system, enabling the examination

of adherent cells and tissue sections at a remarkable cellular resolution

of 1µm. IMC processing follows the same pre-treatment protocol as

IHC/IF, involving specimen preparation, antibody incubation, and

subsequent washing before analyzing antibody signals in cell/tissue

specimens (7). The next step is passing the stained histology slide

through an ICP ion source equipped with a high-energy UV laser for

tissue ablation. The pixels are ablated to create ion clouds with heavy

metals, then sorted by mass-to-charge ratio (m/z) and quantified using

a TOF mass spectrometer. (Figure 1A).

3 Unraveling the complexity of
immune landscape with single−cell
mass cytometry

The intricate makeup of human immune cell populations, their

diverse functional statuses, and their various locations necessitates

the use of appropriate methods for a thorough evaluation (24).

Single-cell RNA sequencing (scRNA-seq) allows for the

comprehensive analysis of the entire transcriptome in thousands

of individual cells (25). Cellular indexing of transcriptomes and

epitopes by sequencing (CITE-seq) uses oligonucleotide-conjugated

antibodies to enable the simultaneous measurement of RNA and

surface proteins (26). The evolution of these technologies has made

it feasible to dissect individual cells at multiple omics levels,

contributing to a comprehensive exploration of the composition,

activation, and their relevance to diseases of immune cells.
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While mRNA sequence dictates the amino acid sequence of the

produced polypeptide, its abundance does not precisely reflect

protein translation levels (27). As pivotal biomolecules governing

fundamental biological processes, proteins undergo post-

translational modifications that regulate their stability and

functionality, thereby influencing cellular phenotypes and

biological activities (28). The investigation into proteins has been

facilitated by the development of single-cell proteomic technologies,
Frontiers in Immunology 03
such as mass cytometry. This novel platform enhances signal

resolution, increasing the number of parameters that can be

simultaneously measured by at least tenfold. It is particularly

well-suited for multi-parameter analyses of diverse biological

samples, such as tumors (29). Mass cytometry can be employed

to analyze the phenotypic characteristics of various cells of interest

(30), including rare functional immune cell subpopulations (31). It

enables the exploration of how different cell subpopulations interact
frontiersin.or
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FIGURE 1

Overview of working principles and functions for single-cell mass cytometry. (A) Workflow for CyTOF and IMC. In CyTOF experiments, employ
metal-conjugated antibodies to label cells and factors of interest in single-cell suspensions. After staining, cells are introduced into the nebulizer,
where upon exit, they transform into fine droplets of spray, which are then carried to the ICP. There, they undergo ionization, forming an ion cloud.
Low m/z ions are filtered using a quadrupole and concentrate heavy metal reporter ions to be quantified by time-of-flight mass spectrometer. In
IMC analysis, Frozen or FFPE tissue sections are stained with metal-conjugated antibodies and then placed into the slide chamber. Tissue is ablated
using UV laser, releasing metal isotopes bound to antibodies as ions. These ions are then carried to ICP using an inert gas flow. Subsequently, the
isotopic content of each pixel is detected using a TOF mass spectrometer. (B) Single-cell mass cytometry measurement breadth. More than 40
metal-conjugated antibodies are formulated into antibody cocktails, which can be utilized for cell phenotyping and the quantification of intracellular
cytokines; adding antibodies targeting phosphorylated proteins to the panel allows for the assessment of cell signaling; the panel can also
incorporate markers for histone modifications or probes for detecting mRNA transcripts. (C) The robust functionalities of IMC. After image
acqusition, the data can be employed for immune phenotyping to ascertain the proportions of cell populations, spatial interactions among cells, and
spatial anatomical locations. In addition to pairwise interactions, spatial cellular neighborhoods (CNs) can aid in assessing multicellular structural
interactions within tissues. The count of interacting cells within a neighborhood (N) and the total number of cellular neighborhoods vary across
different samples.
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and identifies those that are functionally dysregulated, providing

crucial insights into understanding the pathogenic mechanisms of

many autoimmune diseases (32, 33). CyTOF has been successfully

integrated with analyses of histone modification patterns and

epigenetic codes, allowing for a deeper understanding of the

complex biology of target cells (34). Additionally, utilizing metal-

conjugated antibodies for phosphorylated proteins, CyTOF enables

probing intracellular signal transduction in individual cells (23),

covering apoptosis, metabolism, proliferation, and activation states

of signaling pathways (35–38) (Figure 1B). This aids in the

discovery of novel pathways for drug development.

Many single-cell studies, including CyTOF, lack spatial context

and rely on isolated tissues, potentially leading to the loss of some

cell types and proteins, while overlooking the importance of the

extracellular matrix (39). Multiplexed Ion Beam Imaging (MIBI)

(40) and IMC rely on mass spectrometry to detect metal isotopes

coupled to antibodies, differing by their use of an ion beam or laser,

respectively, for tag ionization. Additionally, tissue-based cyclic

immunofluorescence (t-CyCIF) (41) and oligonucleotide-tagged

antibody technology CODEX (42) have also been employed to

provide multi-parameter epitope quantification with an imaging

context. These emerging technologies have significantly advanced

the exploration of detailed spatial and functional maps of complex

tissues. Spatial analysis can offer a glimpse into the

microenvironment of cells, unveiling intricate cell-cell interactions

(Figure 1C). This is crucial for assessing cellular characteristics and

functional states within the biological environment (43). The

effectiveness of anti-tumor immunity hinges upon cellular

interactions within the tumor microenvironment (TME) (44, 45).

Researchers utilized IMC for protein imaging in human Formalin-

Fixed, Paraffin-Embedded (FFPE) breast cancer samples. They

observed heightened phosphorylation of the S6 protein in stromal

cells, often situated near the tumor periphery, suggesting that

signaling activity in stromal cells might be induced by tumor cells

(7). IMC has also been employed to explore the TME of melanoma.

Interestingly, in pre-treatment melanoma, the abundance of

proliferating antigen-experienced cytotoxic T cells (CD8+

CD45RO+ Ki67+) and the proximity of antigen-experienced

cytotoxic T cells to melanoma cells correlated with positive

responses to immune checkpoint inhibitors (ICIs) (46)

(Figure 1C). Beyond proteins, IMC offers the capability for spatial

visualization of mRNA. This technique, called RNAscope, facilitates

the identification of biomarkers with low expression levels or

localized concentration, such as secreted factors including

cytokines and chemokines (47) (Figure 1B). A recent

investigation employed IMC-based concurrent detection of

mRNA and proteins to spatially profile the chemokine landscape

in FFPE samples from metastatic cutaneous melanoma (48).

Prior studies highlight the substantial potential of IMC in

revealing cellular spatial organization, pinpointing rare cellular

subpopulations, characterizing cell morphology, elucidating cell

proliferation, and unraveling gene expression dynamics (49). By

employing IMC to investigate the heterogeneity and functionality of

autoimmune diseases, we anticipate that this will propel medicine

toward personalized molecular-targeted diagnostics and treatments.
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4 Application of single-cell mass
cytometry in immunological
skin diseases

Numerous skin diseases are intricately associated with immune

system dysregulation, such as systemic lupus erythematosus,

scleroderma, dermatomyositis, vitiligo, psoriasis, pemphigus, and

others. The precise etiology and pathogenic mechanisms of many

autoimmune skin disorders remain unclear. This presents a significant

impediment to the development of targeted therapeutic agents and the

effective treatment of affected individuals (50). Unraveling the

immunological mechanisms underlying these conditions has become

a focal and formidable challenge in contemporary scientific research.

The complexity of immune infiltrates and the unique functions of

specific subgroups in both normal and pathological states have

proven inscrutable with conventional methodologies. This

challenge is particularly pronounced when different subpopulations

express similar markers (51). Commencing in 2014, several

collaborative initiatives have been launched, such as the

Accelerating Medicines Partnership (AMP) for Rheumatoid

Arthritis and Systemic Lupus Erythematosus networks, with the

aim of identifying novel therapeutic targets for autoimmune

diseases RA and SLE. Leading-edge technologies such as CyTOF,

scRNA-Seq and ATAC-Seq are currently employed in the

exploration of many autoimmune diseases’ underlying mechanisms.

These single-cell investigations have represented a pivotal milestone,

offering fresh perspectives on the diversity of immune cells in the

context of diseases. CyTOF has the potential to facilitate a deeper

understanding of the heterogeneity, development, hierarchy, and

interplay of cutaneous cellular phenotypes with other tissues (52,

53). Additionally, CyTOF can be employed for investigating post

translational protein modifications, such as protein phosphorylation

involved in cellular signaling, thereby effectively addressing a

limitation of scRNA-seq (34, 54). IMC extends the capabilities of

CyTOF technology, it presents an additional and substantial

advantage by enabling the resolution of cellular spatial orientation

within tissues. For many autoimmune skin diseases, the utilization of

tissue-based imaging methods holds significant relevance in

investigating immune cells and stromal cells within their natural or

pathological contexts. IMC empowers the generation of high-

resolution, multi-layer images that illustrate protein expression,

cellular localization, and in situ interactions, thus enhancing its

utility in dermatology research (55).

In this segment, we encapsulate the current investigations into

the application of CyTOF/IMC in immunological skin conditions,

aiming to gain deeper insights into the pathogenic mechanisms

linked to the diversity of immune cells within these diseases

(Tables 1, 2).
4.1 Mass cytometry

4.1.1 Psoriasis (PSO)
Psoriasis is a chronic, autoimmune skin disease that affects

approximately 125 million people worldwide. Psoriasis has various
frontiersin.org
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TABLE 1 Overview of studies in immunological skin diseases using CyTOF.

No Disease
Types

Targeted
cells

Sample
types

Sample size Discoveries by CyTOF Clinical relevance Reference

1 PSO, AD Dendritic
cells,
macrophages

Skin,
PBMC

PSO (n =21),
AD (n=15)

CD14+ DC3s increased in PSO and
co-produced IL1B and IL23A.

Drugs targeting IL23, such as
guselkumab are in clinical use
for PSO.

(56)

2 PSO Immune cells Skin PSO (n=20),
HCs(n=15)

The epidermal immune
microenvironment played a dominant
role in PSO.

Not mentioned. (57)

3 PSO T cells PBMC PSO (n =38),
HCs(n=30)

The CD3-CD4+cells had elevated
OX40 and decreased FRA2.

KHK4083(anti-OX40) has been in
a Phase I clinical trial for PSO.

(58)

4 PSO Immune cells PBMC PSO (n=32),
HCs(n=10)

Intracellular pp38 and pERK in Th
cells were associated with
disease severity.

pp38 and pERK correlate with
disease severity.

(59)

5 PSO Tregs PBMC PSO (n=31),
HCs(n=32)

Psoriatic circulating Tregs exhibited
an impaired skin-
trafficking phenotype.

The frequency of Tregs correlate
with PASI scores.

(60)

6 PSO,
PsA

Immune cells PBMC PSO (n=12),
PsA (n=7)

CD28 and CD127, specifically
differentiated PsA from PsV.

Abatacept(blocking CD28
interaction on T cells)is in clinical
trials for PsA.

(61)

7 PsA, RA T cells SFMC PsA (n =7),
RA (n=5)

Type17 CD8+ T cells enriched in the
PsA joint.

IL-17 inhibitors, such as
secukinumab, ixekizumab,
brodalumab and bimekizumab are
approved for treating PsA.

(62)

8 PsA Leukocytes SFMC,
PBMC

PsA (n=10) CXCR3 upregulated in synovial CD8
T cells, while CXCL9 and CXCL10
elevated in PsA SF.

Elevated CXCL10 is known to
predict the future development of
PsA in patients with PsC.

(63)

9 PsA, RA Immune cells PBMC PsA (n =27),
RA (n=14)

pSTAT3 levels increased in all the
CD4+ T cell subsets analyzed.

TYK2 inhibitors like
deucravacitinib have shown
efficacy in PsA.

(64)

10 PsA, RA Leukocytes PBMC PsA (n =16), RA
(n=21),
HCs(n=13)

CD8+ T cells, B cells, MAIT/iNKT,
and ILCs elevated in PsA.

Not mentioned. (65)

11 PsA Leukocytes SFMC,
PBMC

PsA(n=11),
HCs(n=15)

Monocytes and macrophages
produced osteopontin and CCL2 in
PsA SF.

Osteopontin could be a clinical
biomarker for PsA.

(66)

12 PSO,
AD

T cells PBMC PSO (n=19), AD
(n=15),
HCs(n=9)

Skin-homing TRcM cells with IL-22
production were elevated in AD.

Fezakinumab (anti-IL-22) has
showned efficacy in a clinical trial.

(67)

13 AD T cells PBMC AD(n=20),
HCs(n=15)

IL-21 expression in IL-13+ T cells
correlated with AD severity

JAK1 inhibitors like updacitinib
can inhibit IL-21R signaling,
showing efficacy in AD.

(68)

14 SLE Immune cells PBMC SLE (n =8),
HCs(n=17)

CD14hi monocytes showed a unique
signature of MCP1 in SLE patients.

MCP1 neutralization may serve as
an anti-inflammatory therapy
for SLE.

(69)

15 SLE Monocytes PBMC cSLE (n=10),
HCs(n=10)

Inhibiting JAK eliminates the cytokine
profile induced by cSLE plasma in
CD14hi monocytes.

JAK inhibitor baricitinib showed
positive results in a phase 2 study.

(70)

16 SLE Monocytes PBMC The U1-snRNP stimulated MIF
production in monocytes, which, in
turn, regulated NLRP3 activation and
IL-1b production.

Milatuzumab (anti-CD74 antibody
against MIF) is in clinical trials
for SLE.

(71)

17 SLE Immune cells PBMC ANA+healthy
(n=24), ANA-
healthy (n=24),
SLE (n=24)

ANA+ healthy individuals with lower
lupus risk displayed a unique
immune endotype.

Not mentioned. (72)

(Continued)
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clinical phenotypes, but the most frequent is chronic plaque or

psoriasis vulgaris. It is chacterized by red plaques covered with

silvery scales, accompanied by itching and discomfort (98). These

skin lesions typically manifest on the elbows, knees, scalp, and sacral

region, and can also involve nails and joints. Psoriatic arthritis, a

commonly occurring comorbidity, manifests in approximately 30%

of individuals with psoriasis and exhibits a wide range of clinical

features, often leading to a delay in diagnosis and treatment (99).

The immune mechanism leading to tissue damage in psoriatic

arthritis remains elusive. Applying CyTOF to PSO/PsA blood, skin

tissue, synovial fluid (SF) and synovial tissue can help us understand

the cellular landscape, identify new biomarkers, and uncover

therapeutic targets.
Frontiers in Immunology 06
Inflammatory skin diseases, including PSO and AD are

underpinned by DC–mediated T cell responses. The heterogeneous

human cutaneous DC population is not yet fully characterized, and

its contribution to these diseases remains unclear (100). Xue et al.

documented two DCs (cDC2), while Cytlak et al. disclosed the

existence of CD141+cDC1, CD1c+CD14-DC2, and CD1c+CD14+

DC3 in both human blood and dermis (101). These findings imply

the presence of DC3 in human skin, however, the precise

contribution of DC3 in psoriasis pathogenesis remains ambiguous.

Based on CyTOF data, CD14+ DC3s were found to be increased in

PSO lesional skin, co-producing IL1B and IL23A, which are

pathological in PSO (56). IL-23 and Th17 responses are considered

important drivers of psoriasis (102, 103). IL23 can promote the
TABLE 1 Continued

No Disease
Types

Targeted
cells

Sample
types

Sample size Discoveries by CyTOF Clinical relevance Reference

18 SLE Immune cells PBMC SLE (n=28),
HCs(n=15)

SLE ICPs can categorize into five
clusters based on the proportion of
Ki-67.

Assessing ICP proliferative activity
can be correlated with the clinical
phenotypes of SLE.

(73)

19 SLE B cells PBMC SLE (n=30),
HCs(n=30)

B cell populations in SLE increased
with an activated phenotype, lacking
CD21 and CD27.

CD21−CD27− B cells can be a
biomarker for assessing SLE
disease activity.

(74)

20 SLE T cells PBMC SLE (n=22),
HCs(n=8)

CD8+CD27+CXCR3− T cells were
increased in rSLE compare to aSLE.

CD8+CD27+CXCR3− T cells may
serve as key biomarkers for
SLE remission.

(75)

21 SLE Leukocytes PBMC SLE (n=20),
HCs(n=20)

CD38 increased on SLE immune cells. Mezagitamab (anti-CD38) has
shown effectiveness in
treating SLE.

(76)

22 SLE PBMCs PBMC Not taking MMF
(n=10),
Taking (n=5)

MMF reduced STAT3
phosphorylation in SLE patients.

MMF has shown effectiveness in
treating SLE.

(77)

23 SLE PBMC B cells SLE (n=79),
HCs(n=80)

CXCR5–CD19low B cells, which are
precursors of plasmablasts, increased
in SLE.

Belimumab targets early,
transitional B cells and partially
targets PBs/plasma cells.

(78)

24 SSc Immune cells PBMC SSc (n =20),
HCs(n=10)

The study revealed disease-induced
peculiarities in the
immune architecture.

Not mentioned. (79)

25 SSc,
SLE, pSS

Immune cells PBMC SADs (n =169),
HCs(n=44)

All autoimmune diseases displayed
diverse frequencies of immune
cell subsets.

Not mentioned. (80)

26 SSc T cells PBMC SSc (n =17),
HCs(n=9)

A new CCR5+CD28+ DNT cell subset
decreased in SSc.

CCR5+CD28+ DNT subset may
indicate disease activity in SSc.

(81)

27 HS Immune cells PBMC HS (n=18),
HCs(n=11)

Memory B cells, plasmablasts, late NK
cells, pDCs and I.Monos exhibited
increased CD38 in HS.

Anti-CD38 immunotherapy may
be a new management strategy
for HS.

(82)

28 TEN T cells Skin,
Blisters,
PBMC

TEN(n=18),
MPE
(n=14), HCs

Effector memory polycytotoxic CD8+
T cells are the main leucocytes in
TEN blisters at the acute phase.

Not mentioned. (83)

29 JDM Immune cells PBMC JDM (n=17),
HCs(n=17)

PLCg2 phosphorylation dysregulated
in NK cell.

Not mentioned. (84)

30 DM, PM T, B cells PBMC DM or
PM (n=12)

Positive correlations were observed
between the CD4/CD8 ratio in DM at
CTLA4‐Ig treatment.

CTLA4-lg (abatacept) has
showned efficacy in treating DM.

(85)
PBMC, Peripheral Blood Mononuclear Cells; SLE, systemic lupus erythematosus; cSLE, childhood-onset systemic lupus erythematosus; PSO, psoriasis; AD, atopic dermatitis; PsA, psoriatic
arthritis; SFMC, Synovial Fluid Mononuclear Cells; SF, Synovial Fluid; RA, rheumatoid arthritis; SSc, systemic sclerosis; pSS, primary sjögrens syndrome; SADs, systemic autoimmune diseases;
HS, hidradenitis suppurativa; TEN, toxic epidermal necrolysis; MPE, maculopapular exanthema; JDM, juvenile dermatomyositis; DM, dermatomyositis; PM, polymyositis.
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differentiation and activation of Th17 cell. Drugs targeting IL23, such

as ustekinumab, guselkumab, and risankizumab, are currently in

clinical use for psoriasis (104, 105). Hence, it might possible to

discover new therapeutic targets for PSO by developing drugs that

inhibit metabolism by targeting IL1B/IL23A co-producing CD14+

DC3s. Subsequently, Zhou et al. (57) used CyTOF to analyze DC

subsets in psoriatic epidermis and dermis. They found that CD1c

+CD11b+cDC2s migrated to the epidermis in pre-lesional skin,

replacing EpCAM+CD11clow LCs and triggering inflammation.

CD207+CD11chi LCs and CD5+ T cells also accumulated in the

epidermis, driving psoriasis inflammation. The epidermal immune

environment was more significant than the dermal one, aligning with

psoriasis inflammation.

PSO is characterized by the presence of activated T cell subtypes

in the skin, which secrete proinflammatory cytokines. This T cell-

mediated immune imbalance is at the core of the pathogenesis of this

widespread inflammatory skin disease. In 2019, researchers used
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CyTOF and IMC technologies to analyze immune cells in peripheral

blood and lesional skin. The study identified three novel subsets

abundant in the peripheral blood of PSO patients, resembling CD3–

CD4+ lymphoid tissue inducer cells, Tc17 cells, and CD8+CXCR3+

Tregs. The CD3–CD4+ cells had elevated OX40 and reduced FRA2

expression, with these markers positively correlating with the PS area

and severity index (PASI) (58). Notably, OX40-OX40L, as an

immune checkpoint, has been proposed as a potential therapeutic

target to treat psoriasis. An anti-OX40 monoclonal antibody

(KHK4083) has been administered to patients with PSO in a phase

I clinical trial, showing improved outcomes (106). Furthermore, mass

cytometry analysis of peripheral blood before and after biologic

therapy revealed an increase in circulating Th17, Th22, Th9, and

cytotoxic T cells in severe psoriasis. The intracellular pp38 and pERK

in T helper cells correlated with disease severity (59).

Accumulating evidence has shown an important role of tissue-

resident memory T (TRM) cells in the pathogenesis of psoriasis
TABLE 2 Overview of studies in immunological skin diseases using IMC.

No Disease
Types

Target
cells

Sample size Discoveries by IMC Clinical relevance Reference

1 DM Immune
cells

DM(n=10),
HCs (n=5)

IFNb is abundant in all cells present in
DM skin.

The IFN–chemokine score correlates with
disease activity.

(86)

2 DM, ASyS Immune
cells

DM (n=7),
ASyS (n=5)

The Type I interferon system played a role
in the DM-like skin lesions.

The IFN–chemokine score correlates with
disease activity.

(87)

3 DM, cSLE Immune
cells

DM (n=6),
cSLE (n=4)

JDM skin showed a strong innate immune
signature and endothelial
–immune cell interaction.

Not mentioned. (88)

4 DM Immune
cells

DM(n=10),
HCs (n=5)

CB2R was upregulated on immune cells,
especially DCs in DM.

Lenabasum (CB2R agonist) is being
investigated as a potential treatment for DM.

(89)

5 CLE Myeloid
cells

CLE (n=7),
HCs (n=14)

Lupus-enriched CD16+DCs underwent IFN
education in the skin.

Sifalimumab (anti-IFN-a) and anifrolumab
(IFN receptor-blocking) have been evaluated
in clinical trials for SLE.

(90)

8 CLE Immune
cells

SCLE(n=19),
DLE(n=19)

pDCs were not the major producers of
IFN-1 in CLE.

Litifilimab and VIB7734 (targeting pDCs)
are under investigation for CLE.

(91)

6 CLE B cells CLE(n=50),
HCs (n=5)

DLE lesions harbored a enrichment of B
cells compared to ACLE and SCLE.

The skin B cell score could be a clinical
marker for SLE risk assessment.

(92)

7 CLE Immune
cells

CLE (n=44) The immune cell composition differed
among CLE patients.

Categorizing patients by their immune cell
composition in CLE enables the stratification
of drug responses.

(93)

9 SSc Immune
cells

SSc(n=5),
HCs (n=5)

SSc skin exhibited elevated IL1RAP and
upregulated IL1RAP-associated
signaling molecules.

The anti-IL1RAP antibody CAN10 has
entered a phase 1 clinical trial.

(94)

10 SSc Endothe-
lial
cells and
immune
cells.

SSc (n=19),
HCs (n=14)

CD34+aSMA+CD31+ VECs as a novel EC
population was increased in SSc.

CD34+aSMA+CD31+ VEC counts correlate
with fibrotic remodeling outcomes.

(95)

11 HS Plasma
cells and
B cells

HS (n=22),
HCs (n=10)

Plasma cells and B cells are key infiltrating
leukocytes in HS, with BTK and SYK
pathways central to signaling.

BTK inhibitors and SYK inhibitors could be
new management strategies for HS.

(96)

12 MDR T cells COVID-MDR
(n=4), MDR (n=7)
and DRESS (n=4)

A systemic cytokine storm might promote
activation of Mo/Mac and cytotoxic CD8+
T cells.

Not mentioned. (97)
CLE, cutaneous lupus erythematosus; DLE, discoid lupus erythematosus; ACLE, acute cutaneous lupus erythematosus; SCLE, subacute cutaneous lupus erythematosus; ASyS, antisynthetase
syndrome; MDR, maculopapular drug rashes; DRESS, drug rash with eosinophilia and systemic symptoms.
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(107). A recent study used CyTOF and scRNA-seq to analyze SF

CD8+ and CD4+ CD69+CD103+ TRM cells in PsA and RA patients.

Three distinct CD8+ CD69+CD103+ TRM cell populations were

identified within inflamed arthritic joints: cytotoxic and Treg-like

TRM cells, found in the synovial joint of both PsA and RA patients,

while type 17-like TRM cells and type 17-like CD8+CD103 T cells

were specifically enriched in PsA patients (62). These data shed light

on a potential underlying reason for the differential clinical efficacy

of secukinumab, an IL-17A blocker, in treating PsA compared to

RA (108): a significantly larger fraction of IL-17A-secreting tissue-

resident and non-resident CD8+ T cells within the synovial PsA

joint may contribute to the immunopathology and persistence of

this disease. Exploration of TRM cells diversity persists. Using mass

cytometry, a study revealed a three-fold increase in memory CD8+

T cells in the synovial fluid compared to peripheral blood in PsA

patients (63). These cells express cell-cycle activation, tissue-

homing and tissue residency markers, including the skin or gut-

homing marker ITGA1 and granulysin. Remarkably, CXCR3 was

upregulated in the expanded synovial CD8+ T cells, and its two

ligands, CXCL9 and CXCL10, were elevated in PsA SF. Elevated

CXCL10 is known to predict the future development of PsA in

patients with cutaneous-only psoriasis (PsC) (109).

Studies have shown that overexpression of STAT3C, an active

form of STAT3, in CD4+ T cells induces many major features of

PsA in an animal model (110, 111). Recent CyTOF research

examined pSTAT3 levels in circulating immune cells from PsA

patients during active and inactive phases. The results showed

heightened STAT3 signaling in CD4+ T cells (especially Th1 and

Tfh subtypes) and CD14+CD16-monocytes during active PsA (64).

Increased STAT3 expression in these cells suggests their

recruitment to inflammation sites and underscores their role in

PsA immunopathology. The effectiveness of TYK2 inhibitors like

deucravacitinib supports STAT3’s pivotal role in PsA (112). In a

later study, scientists used CyTOF comprehensively analyzed 47

immune cell subpopulations in the peripheral blood of active PsA

patients, comparing them to healthy controls (HCs) and active RA

patients, both seropositive and seronegative. The analysis showed

higher frequencies of naïve and activated CD8+ T cells, B cells,

MAIT/iNKT, and ILCs in PsA compared to seropositive RA, while

the opposite was observed for terminal effector, senescent, and Th2-

like cells (65).

Past research, often centered on specific immune cell types in

PsA SF, has emphasized the potential roles of CD8 T cells (113).

However, the significance of other myeloid populations in PsA has

been comparatively underexplored. By utilizing CyTOF, Nicole

Yager et al. observed pronounced shifts in the myeloid

component of PsA SF when compared to blood samples. This

included an expansion of intermediate monocytes, macrophages,

and dendritic cell populations. Importantly, these myeloid cells

exhibited substantial production of osteopontin and CCL2, even in

the absence of in vitro stimulation (66). Studies have shown that

osteopontin serum and SF levels correlate with C-reactive protein in

RA patients (114, 115). Here, they found that elevated serum

osteopontin was associated with PsA, indicating it as a potential

clinical biomarker for PsA. Additionally, CCL2 inhibition has

shown efficacy in rat adjuvant arthritis (116). Future research
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should investigate the potential of CCL2 inhibition in

PsA treatment.
4.1.2 Atopic dermatitis (AD)
AD is the most common chronic inflammatory skin disease

which often develops during childhood. It is characterized by

recurrent eczematous lesions and intense itch and discomfort.

The pathophysiology of AD entails a complex interplay of factors,

including a significant genetic predisposition, impaired functioning

of the epidermis, and the initiation of inflammation driven by T-

cells (117, 118). While whole tissue biopsy studies and analysis of

blood composition have contributed to a better understanding of

AD, the specific molecular alterations at the single-cell level remain

largely unexplored.

AD is linked to the activation of various T-cell subsets. While

it’s widely recognized for robust Th2 immune responses, other

pathways like Th22, Th17/IL-23, and Th1 cytokines may also

contribute, especially in certain AD subtypes (119, 120).

Therefore, it is crucial to thoroughly investigate the circulatory T-

cell phenotype in AD. In a prior CyTOF study, T-cell subsets within

healthy skin were investigated (121). Nevertheless, AD lacked a

comprehensive mass cytometry analysis until recent limited data

emerged, by using CyTOF, researchers provided an exhaustive

description of the circulatory T-cell compartment, highlighting

phenotypic and functional differences in patients with AD and

patients with psoriasis (122). Particularly, they identified

recirculating memory T (TRcM) cells by the expression of

CD103. Skin-homing TRcM cells were the major IL-22 producers

within CD8+T cells, with patients with AD producing significantly

more IL-22 than HCs. IL-22 production in TRcM cells was

correlated with AD disease severity. Moreover, a clinical trial has

demonstrated the efficacy of blocking IL-22 with fezakinumab in

treating moderate-to-severe AD patients (123). IL-22–producing

skin-homing TRcM cells could serve as promising candidates for

future studies to identify biomarkers of response to IL-22 blockade

in AD patients.

In order to further characterize the immune profile of AD,

Czarnowicki et al. implemented a surface, cytokine, and

transcription multi-biomarker CyTOF panel to investigate T cell

polarization in the blood of AD patients versus controls (68). They

discovered a correlation between IL-21 expression in IL-13+ T cells

and AD severity, suggesting a potential role for IL-21 in AD. It is

noteworthy that IL-21 signals through the JAK/STAT pathway, and

JAK1 inhibitors, such as abrocitinib, baritinib, and updacitinib,

have recently been demonstrated to block IL-21R signaling,

showing efficacy in AD (124, 125). Further studies are needed to

precisely determine the contribution of IL-21 to AD pathogenesis.

4.1.3 Systemic lupus erythematosus (SLE)
SLE stands as a complex autoimmune disorder characterized by

multifaceted organ involvement and perturbed immune system

responses. SLE is characterized by a wide range of clinical

manifestations including fatigue, fever, joint pain, joint swelling,

and skin rash etc., which leading to an unpredictable disease

trajectory. Advancements in research have revealed that the
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pathogenesis of SLE involves aberrant production and activation of

various immune cells, inflammatory mediators, and immune

complexes (126, 127).

CyTOF has been employed by many researchers to investigate

the heterogeneity of immune cells in peripheral blood of SLE

patients, greatly enhancing our understanding of the functional

and status changes within various immune cell subsets as a

consequence of the aberrant immune responses in SLE disease state.

In 2015, researchers stimulated peripheral blood samples with

TLR ligands while concurrently performing mass cytometry

analysis of surface marker expression, intracellular signaling

protein activation status, and cytokine production (69). CD14hi

monocytes exhibited the most polyfunctional cytokine expression

patterns. In SLE patients, these monocytes showed a unique

signature of MCP1, Mip1b, and TNFa, with MCP1 being the

most prominent. It’s worth noting that MCP1 can recruit

monocytes and lymphocytes to sites of inflammation and its

elevated levels are linked to disease activity in various

autoimmune conditions (128–130). Study has demonstrated that

MCP1 neutralization can ameliorate disease symptoms in rodent

models of SLE (131). Neutralizing MCP1 may serve as an adjunct

anti-inflammatory therapy for SLE. In subsequent research,

scientists found that exposure to cSLE plasma induced a unique

cytokine signature in CD14hi monocytes (elevated MCP1, Mip1b,
and IL-1RA) in the blood of HCs, which could be abrogated by

selectively inhibiting JAK1/JAK2 signaling (70). Type I interferons,

TLRs, and other pro-inflammatory cytokines involved in the

pathogenesis of SLE transmit signals through the JAK/STAT

signaling pathway, thereby regulating critical cellular functions

such as survival, proliferation, and differentiation (132–135).

Recently, JAK inhibitors have been incorporated into treatment

regimens for autoimmune diseases. The JAK1 and JAK2 inhibitor

baricitinib showed positive results in a Phase 2 study in SLE

patients (136).

The exploration of SLE continues. Experimental evidence

implicates the Macrophage Migration Inhibitory Factor (MIF) and

the NLRP3 inflammasome in SLE pathogenesis and progression

(137–139), but their precise molecular interplay remains unclear.

Shin et al. used CyTOF to study monocyte phenotypes associated

with MIF-related molecules and their changes after snRNP immune

complex stimulation. They found that the U1-snRNP immune

complex specifically stimulates MIF production, which plays an

upstream role in regulating NLRP3 inflammasome activation and

IL-1b production in activated monocytes (71). Study has shown that

MIF antagonism reduces both the functional and histological indices

of glomerulonephritis, as well as the expression of inflammatory

cytokines and chemokines, in lupus-prone MRL/lpr or NZB/NZW

F1 mice (140). These findings support the therapeutic potential of

targeting MIF-dependent pathways in SLE, currently being

investigated in clinical trials using anti-CD74 (141).

SLE is influenced by environmental and genetic factors. A

recent study explored SLE heterogeneity at the single-cell level in

ANA+ healthy individuals from diverse racial backgrounds. They

identified a unique immune signature in ANA+ European

Americans, characterized by a suppressive immune phenotype

and reduced CD11C+ autoimmunity-associated B cells. This
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African Americans, suggesting it may protect against disease

transition (72).

Many peripheral immune cell populations (ICPs) change with

disease progression, but their association with SLE clinical

phenotypes remains unclear. Akiko Kajihara et al. used mass

cytometry to analyze PBMCs from SLE patients, identifying 30

ICPs. By measuring the expression of specific markers and Ki-67 in

CD45+ cells, they classified SLE patients into five clusters with

distinct phenotypes (73). Horisberger et al. employed mass

cytometry to investigate peripheral B cells from 30 SLE patients

and 30 HCs. They identified CD21−CD27− B cells as a reliable

biomarker for assessing SLE disease activity (74). In addition,

researchers using mass cytometry to study immune cell

dysregulation in peripheral blood samples from active SLE

(aSLE), remission SLE (rSLE), and HCs found that the abundance

and dysfunction of CD8+CD27+CXCR3−T cells could be potential

biomarkers for SLE prognosis and concomitant diagnosis (75).

With the development of high-dimensional CyTOF technology,

SLE classification is poised to shift from clinical to molecular

phenotypes. This transition is expected to streamline the

identification of patients suitable for specific targeted therapies.
4.2 Imaging mass cytometry

4.2.1 Dermatomyositis (DM)
Idiopathic inflammatory myopathies (IIM) encompass a group

of inflammatory muscle disorders characterized by varying degrees

of involvement of additional organs. Among adults, DM and

polymyositis (PM) are prevalent forms of IIM, while juvenile DM

is the most commonly observed IIM in children (142). DM

pathogenesis involves an immune-driven process triggered by

environmental factors in genetically susceptible individuals (143).

Cutaneous inflammation has been shown to be associated with

systemic disease activity and chronicity in DM (144). However, our

understanding of the underlying mechanisms and immune cells

driving cutaneous inflammation and disease-specific characteristics

remains limited. Conducting an in-depth analysis of the

inflammatory infiltrate in DM holds significant importance.

A recent study employing IMC to phenotype adult DM skin

identified 13 distinct immune cell populations, predominantly

myeloid, including abundant CD14+ macrophages and CD11c+

myeloid dendritic cells (mDCs), as well as lymphoid cells. The

CD14+ monocyte/macrophage population correlated with disease

activity. The study also found IFNb protein was highly upregulated

in the T cell, macrophage, DC, and endothelial cell populations of

DM skin (86). In a subsequent study has once again highlighted the

involvement of the type I IFN system in skin lesions of DM.

Pathways associated with the type I IFN system, such as pSTING,

pIRF-3, IFNb, IFNk, IFNa, IRF-5, TYK2, and TBK1, exhibited

increased activity in both DM and Antisynthetase syndrome(ASyS).

Interestingly, researchers revealed a potential divergence in

pSTING+ macrophage pathways between ASyS and DM (87).

The pathogenesis of DM is attributed to the activation of the type

I interferon system, specifically IFNb (145, 146). Upregulation of
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1401102
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1401102
genes associated with type I interferons, cytokines (such as IL-6 and

IL-1), and chemokines (including CXCL10, CXCL9, and CXCL11)

can damage skin and muscle tissues (147). The IFN–chemokine

score correlates with disease activity in both adult and juvenile DM

cohorts (148). Investigating the origins and effects of type I

interferons is crucial for identifying therapeutic targets to regulate

disease activity (149).

In a study by Jessica et al., IMC was employed to characterize

inflammatory cell populations and cell–cell interactions within

juvenile DM lesional skin versus the childhood-onset systemic

lupus erythematosus (cSLE). They found differences in cell

populations, such as CD14+ macrophages, pDCs, and CD8+ T

cells, in juvenile DM versus cSLE, and highlight a predominance of

innate immune cells and endothelial cell–immune cell interactions

in juvenile DM skin (88). IMC was also used to explore potential

treatment targets for DM with Lenabasum, a cannabinoid type 2

receptor (CB2R) agonist. CB2R upregulated on immune cells in

skin and blood, and in particular DCs. Demonstrating CB2R

expression on key immune cells and its pathway effects can better

guide this therapy in identifying DM patients with susceptible

lesions (89).

Research has demonstrated the significance of IMC technique

in the analysis of subcellular populations and identification of

single-cell protein expression within the context of DM skin

tissue microenvironment. Work using IFN signaling as a

biomarker and using IMC findings as a rational basis for

treatment and therapy will be a challenge for DM researchers in

the future.

4.2.2 Cutaneous lupus erythematosus (CLE)
CLE is an autoimmune disease that can present either as a

primary dermatological disorder or as a manifestation within the

spectrum of SLE. It is observed in 75%-85% of individuals

diagnosed with lupus and distinguished by recurrent,

photosensitive skin lesions that can give rise to scarring and

alopecia (150). The pathogenesis of CLE is multifactorial,

involving a complex interplay between genetic and environmental

factors that lead to immune dysregulation. The mechanism remains

incompletely understood (151).

Inflammation plays a key role in CLE, with the initiation of

lesions likely rooted in a pro-inflammatory epidermis (152).

Therefore, defining the cellular makeup in both lesional and

nonlesional skin and characterizing key mediators of inflammatory

changes are vital steps in identifying new therapeutic targets for CLE.

Type I interferons are central to lupus pathogenesis and may

trigger disease onset in susceptible individuals (153). Anti-IFN

strategies, including the anti-IFN-a monoclonal antibody

sifalimumab and the IFN receptor-blocking anifrolumab, have

been assessed in clinical trials, demonstrating acceptable safety

profiles (154, 155). Recently, Billi et al. utilized scRNA-seq,

Spatial-seq, and IMC to reveal that the normal-appearing skin of

CLE patients exhibited a type I interferon-rich, prelesional

microenvironment that affects gene transcription in all major skin

cell types and disrupts cell-cell communication. Especially, lupus-

enriched CD16+DCs underwent robust interferon education,
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acquiring proinflammatory phenotypes (90). In a subsequent

study, Vazquez et al. discovered that discoid lupus erythematosus

(DLE) and subacute cutaneous lupus erythematosus (SCLE) share

similar skin immune microenvironments, and smoking might

influence disease activity in CLE through neutrophils and

endothelial GZMB. Notably, the findings suggest that pDCs are

not the primary producers of IFN-1 in CLE (91). Nevertheless,

pDCs may indeed play an important role in at least a subset of CLE

patients. Litifilimab, a monoclonal antibody targeting BDCA2, is

currently under investigation for CLE and has shown superiority

over placebo in a Phase 2 trial (156). Further research is needed to

ascertain the role of pDCs in lupus pathogenesis, especially for

patients who respond to pDC targeting treatments.

Autoimmune responses and the involvement of B cells in the

pathogenesis of SLE have been extensively documented (157).

However, the role of skin-associated B cells in CLE is less evident.

In a recent investigation, researchers found B cell gene expression

signatures can help to distinguish CLE subtypes. Compared to

ACLE and SCLE, DLE has a stronger B cell gene signature,

particularly in patients with isolated cutaneous disease. This work

lays the groundwork for future exploration into the potential

utilization of a skin B cell score as a clinical marker for assessing

SLE risk, particularly in DLE patients (92).

In addition, IMC was also used to identify baseline

immunophenotypes that may predict the response to drug

therapy. Patients were stratified based on their response to

antimalarials: hydroxychloroquine (HCQ) responders, quinacrine

(QC) responders, or nonresponders. HCQ responders had

increased CD4+ T cells compared to QC responders.

Nonresponders had decreased Treg cells compared to QC

responders and increased central memory T cells compared to

HCQ responders. QC responders expressed higher levels of

pSTING and IFNk, localized to conventional dendritic cells

(cDCs), with the intensity correlating with cDC numbers. These

findings reveal different immune cell compositions in CLE patients,

guiding future research on precision medicine and treatment

response (93).

While the current studies on CLE utilizing IMC have been

constrained by small sample cohorts and a limited number of

investigated markers, these endeavors vividly showcase the

remarkable potential of this technology in studying phenotypic

alterations of immune cells and their spatial associations within

CLE skin tissue at high resolution.

4.2.3 Systemic sclerosis (SSc)
SSc, commonly referred to as scleroderma, is an autoimmune

disorder characterized by skin and internal organ fibrosis, as well as

vasculopathy. The mortality rate in systemic sclerosis is notably

high, particularly among individuals with diffuse cutaneous

systemic sclerosis. Nonetheless, the mechanisms underlying the

initiation of autoimmunity that ultimately leads to fibrosis, as well

as the contribution of immune effector pathways to the

pathogenesis of SSc, are still not fully understood (158, 159).

In a recent CyTOF study, notable disparities in T and B cell

subset frequencies among SSc patients underscored disrupted
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immune architecture and the predominant presence of

inflammatory senescent T cell modules (79). Examination of

immune cell sorting revealed that mucosal-associated invariant T

(MAIT) cells in SSc patients exhibited an activated phenotype,

accompanied by increased expression of inhibitory molecules.

MAIT cells constitute a subset of unconventional T cells

characterized by an invariant TCR repertoire and high CD161

expression. Studies have demonstrated a reduction in MAIT cells

in conditions such as Sjogren’s syndrome, RA, and SLE, showing

their significant role in autoimmune disorders (160–163). Further

employing high-dimensional techniques such as CyTOF,

Phenocyler (formerly known as CODEX) to capture all MAIT cell

subsets in SSc patients would be highly valuable.

Although microvascular alterations are the earliest histopathological

manifestation of SSc, the vascular pathophysiology remains poorly

understood. Notably, in SSc, infiltrating immune cells often

accumulate in the perivascular area, and activated endothelial cells

(ECs) emerge as a rich source of pro-fibrotic factors (164, 165).

Moreover, ECs in SSc can undergo endothelial-to-mesenchymal

transition (EndMT), acquiring a fibroblast-like phenotype (166).

Recently, scientists utilized IMC to study vascular cell populations in

situ and characterize their local vascular niche in SSc (95). They identified

different subpopulations of vascular endothelial cells (VECs), lymphatic

endothelial cells (LECs), and pericytes, uncovering an increased

abundance of a novel endothelial cell cluster, CD34+;aSMA+ (alpha-

smooth muscle actin); CD31+ VEC, in SSc. Interestingly, CD34+;aSMA

+;CD31+ VECs express markers associated with EndMT, such as

SNAI1, SNAI2, TWIST1, and ZEB1, and are located near immune

cells and myofibroblasts. These VECs may represent an intermediate

stage of endothelial cells transitioning tomyofibroblasts through EndMT.

Furthermore, the quantity of CD34+;aSMA+;CD31+ VECs correlates

with clinical outcomes of progressive fibrotic remodeling, offering a novel

cellular correlate for the interaction between vascular changes and

fibrosis in SSc.

Researches into SSc fibrosis are ongoing, studies has revealed

that cytokines released by activated inflammatory cells can induce

fibroblasts-to-myofibroblasts transition and collagen release,

playing a key role in fibroblast activation in SSc (167). Interleukin

(IL)-1, IL-33, and IL-36 are potent pro-inflammatory cytokines

recently discovered to be linked with the development of fibrotic

tissue remodeling (168–170). The IL-1 Receptor Accessory Protein

(IL1RAP) is an essential accessory receptor required for signaling

through IL-1, IL-33, and IL-36 receptors, presenting potential as a

target for simultaneously blocking all three cytokines (171). Using

IMC, researchers revealed an increased protein levels in IL1RAP

and related molecules in SSc skin compared to normal skin. In vitro

treatment with anti-IL1RAP antibodies effectively blocked the

response of human fibroblasts and endothelial cells to IL-1, IL-33,

and IL-36. Moreover, therapeutic administration of the mouse anti-

IL1RAP antibody mCAN10 showed promising anti-inflammatory

and anti-fibrotic effects in mouse models of bleomycin-induced,
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cGvHD-induced, and topo-induced skin and lung fibrosis (94).

These findings provide a rationale for targeted IL1RAP inhibition in

SSc and have significant translational potential, as CAN10 has

recently entered a phase I clinical trial and has been granted

orphan drug designation for the treatment of SSc in the USA.

CyTOF/IMC is expected to continue providing new insights

into the mechanisms of fibrotic tissue remodeling in SSc, thereby

advancing the development of innovative therapeutic strategies for

the disease.

4.2.4 Hidradenitis suppurativa (HS)
HS, commonly referred to as acne inversa, is a debilitating

chronic inflammatory skin disorder characterized by perifollicular

lymphocytic infiltration and subsequent sebaceous gland loss. The

disease involves the activation of both innate and adaptive immune

cells, leading to an unrestrained and persistent immune response.

Over time, this immune dysregulation results in intense pain,

discharge of pus, irreversible tissue damage, and the formation of

scars (172). A genetic predisposition, smoking, obesity and hormonal

factors are established aetiological factors for HS (173). However, the

immunopathogenesis of HS remains poorly understood.

A recent study used IMC and scRNA-seq to assess the

infiltration and spatial localization of various immune cell subsets

in HS skin lesions. The researchers found that B cells, plasma cells,

immunoglobulin production, and complement activation are key

factors in HS pathogenesis, with BTK and SYK pathways as central

signaling networks (96). It’s worth noting that the BTK inhibitor

(G-744) has been found to halt plasma cell generation in

spontaneous and IFNa-accelerated NZB/W_F1 lupus models

(174), while SYK has been shown to be pivotal in B cell antibody

responses, memory B cell survival, and plasma cell proliferation

(175, 176). These findings provide initial evidence for clinical trials

targeting the BTK and SYK signaling pathways in HS.

Adalimumab (anti-TNFa) is the only FDA-approved drug for

treating patients with HS, although approximately 30% of patients

do not respond (177). Targeting a single cytokine may not suffice to

treat HS, as numerous inflammatory pathways in both the skin and

serum of HS patients are dysregulated. Targeting multiple

dysregulated immune cells may yield better results. Through

CyTOF analysis, Dimitrion et al. observed elevated CD38

expression on late NK cells, memory B cells, plasma blasts, pDCs,

and I.Monos, which likely migrate to the skin to contribute to HS

development (82). CD38 is primarily located in immune cells and

serves multiple functions. It acts both as an enzyme, involved in

NAD depletion and intracellular signaling, and as a receptor with

adhesive properties (178). It has been reported that there is an

increase in CD38 expression on peripheral immune cells in patients

with SLE (76), while the anti-CD38 monoclonal antibody

mezagitamab (TAK-079) has shown effectiveness in treating SLE

refractory to anti-TNF (179). In summary, anti-CD38

immunotherapy may be a new management strategy for HS.
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5 Conclusions and future perspectives

Over the last decade, multiplex single-cell proteomic

technologies have emerged as a prominent focus in biomedical

research. Progress in immune phenotyping technologies has

ushered in an unparalleled level of cell subset resolution. CyTOF

offers extensive multiplex single-cell analysis, enabling

simultaneous measurement of cell surface markers and

phosphorylation of orchestrators of biochemical responses. This

capability aids in identifying biomarkers, novel pathways,

therapuatic targets, and dysregulated cell types in immunological

skin diseases. Conducting spatially-resolved single-cell analysis with

IMC represents an exciting advancement in histological imaging

platforms. The resulting high-dimensional histological images

facilitate spatial analysis to identify distinct cell populations and

cell–cell interactions central to cutaneous inflammation, and

provide insights into activation/behavioral states based on skin

tissue location. This capability will significantly enhance our

understanding of dermatopathology. Additionally, CyTOF and

IMC are being integrated with single-cell transcriptomics and

whole-genome sequencing to enable unparalleled multi-omics

analysis , faci l i tat ing a comprehensive explorat ion of

disease mechanisms.

This review provides a detailed overview of mass cytometry and

imaging mass cytometry in the context of investigating immune-

related skin diseases. Integrating single-cell mass cytometry

detection into basic and translational research could significantly

enhance our understanding of disease subtyping, biomarkers,

precision treatment, and prognosis prediction.
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