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Pázmándi K, Szöllősi AG and Fekete T (2024)
The “root” causes behind the anti-
inflammatory actions of ginger
compounds in immune cells.
Front. Immunol. 15:1400956.
doi: 10.3389/fimmu.2024.1400956

COPYRIGHT

© 2024 Pázmándi, Szöllősi and Fekete. This is
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The “root” causes behind
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in immune cells
Kitti Pázmándi, Attila Gábor Szöllősi and Tünde Fekete*

Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
Ginger (Zingiber officinale) is one of the most well-known spices and medicinal

plants worldwide that has been used since ancient times to treat a plethora of

diseases including cold, gastrointestinal complaints, nausea, and migraine.

Beyond that, a growing body of literature demonstrates that ginger exhibits

anti-inflammatory, antioxidant, anti-cancer and neuroprotective actions as well.

The beneficial effects of ginger can be attributed to the biologically active

compounds of its rhizome such as gingerols, shogaols, zingerone and

paradols. Among these compounds, gingerols are the most abundant in fresh

roots, and shogaols are the major phenolic compounds of dried ginger. Over the

last two decades numerous in vitro and in vivo studies demonstrated that the

major ginger phenolics are able to influence the function of various immune cells

including macrophages, neutrophils, dendritic cells and T cells. Although the

mechanism of action of these compounds is not fully elucidated yet, some

studies provide a mechanistic insight into their anti-inflammatory effects by

showing that ginger constituents are able to target multiple signaling

pathways. In the first part of this review, we summarized the current literature

about the immunomodulatory actions of the major ginger compounds, and in

the second part, we focused on the possible molecular mechanisms that may

underlie their anti-inflammatory effects.
KEYWORDS
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1 Introduction

The rhizome of ginger (Zingiber officinale) has been used as a dietary food supplement

across China and Southeast Asia since ancient times. Ginger was first documented as an

herbal medicine around 3000 BC in China (1). It was primarily recommended as a remedy

for cold, fever, leprosy and tetanus (1). Other medicinal uses of ginger include the treatment

of nausea, upset stomach and it’s use as a digestive aid (2). The U.S. Food and Drug

Administration (FDA) classified ginger root as a safe herbal supplement that can be used in
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complementary and alternative medicine preparations (3). Due to

its proven beneficial effects, in 2012 the European Medicines

Agency listed the ginger rhizome as an approved treatment

modality in the prevention of nausea and vomiting associated

with motion sickness (4). In the last few years a myriad of studies

indicated that ginger possesses various biological activities such as

anti-inflammatory, antioxidant, anti-microbial, anti-cancer and

neuroprotective effects. It has also been revealed that the

pharmacological benefits of ginger can be credited to the

bioactive compounds of its rhizome.

To date, more than 400 chemical compounds such as lipids,

terpenes, carbohydrates and phenolic compounds have been

identified in the ginger rhizome (5, 6). The phenolic compounds or

phenolics, which are usually referred to as the nonvolatile components

of ginger, are mainly responsible for its pharmacological activities and

consist of gingerols, shogaols, paradols and zingerone (7). Gingerols are

the main pungent components of fresh ginger that can be differentiated

based on their unbranched alkyl side chain length. Among them, 6-

gingerol is the most abundant constituent that is followed by 8-gingerol

and 10-gingerol (8). Upon drying or heating of ginger root the

thermally labile gingerols undergo dehydration reactions to form the

corresponding shogaols, which are twice as pungent as gingerols (9).

Although shogaols are scarcely found in fresh ginger root, 6-shogaol is

the predominant bioactive compound in the dried rhizome. At high

temperatures or by microbial metabolism shogaols might be partly

transformed to paradols, which represent a minor but important

bioactive constituent of ginger (10). Cooking or drying can also

convert gingerol into zingerone through a retro-aldol reaction (11).

In addition, a number of other gingerol derivatives such as gingerdion,

gingerdiol, dehydrogingerdione and other minor components have

been isolated from ginger rhizome (12). A recent study using synthetic

strategy to prepare 6-gingerol derivatives indicates that several of those

show promising anti-platelet and antioxidant activities; however, their

biological effects needs to be further elucidated (13). The major

bioactive compounds of ginger and the conversion of 6-gingerol into

6-shogaol, paradol and zingerone are shown in Figure 1.

In the last two decades, especially since the outbreak of

coronavirus disease 2019 (Covid-19) pandemic, herbal plants

have gained special interest as an alternative or complementary

medicine due to their beneficial medicinal properties and minimal

adverse effects (14, 15). Ginger is one of the most researched

medicinal plants due to its long-known health benefits and high

bioactive agent content. In the last few years, a number of studies

have proven the pharmacological potential of ginger-derived

phytochemicals; however, the cellular and molecular mechanisms

behind their activities are not fully revealed yet. It was shown that

ginger phytochemicals might exert their anti-inflammatory effects

by modulating the function of various immune cells such as

macrophages, neutrophils, T cells and dendritic cells (DC) (5). It

was also demonstrated that ginger constituents have the potential to

regulate key signaling pathways such as the nuclear factor-kappa B

(NF-kB), mitogen activated protein kinase (MAPK) and

phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of

rapamycin (mTOR) signaling cascades in these cell types. Some

studies also provided a deeper insight into the mechanism of action

of ginger constituents by showing that those are able to target
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several signaling molecules such as the AMP-activated protein

kinase (AMPK), nuclear factor erythroid 2-related factor 2

(NRF2), heme oxygenase-1 (HO-1), and peroxisome proliferator-

activated receptor gamma (PPARg).
Although ginger rhizome is abundant in bioactive compounds,

the in vitro and in vivo studies mainly focus on gingerols and

shogaols, since those possess the most significant pharmacological

effects. Some reports also suggest that shogaols exhibit more potent

biological activities then gingerols (16). In particular, the loss of the

hydroxyl group in their sidechains might increase their lipophilicity

and thus shogaols show a superior bioavailability compared to

gingerols (9). Reviews published in the last few years focused on the

general biological effects (5), anti-cancer (17, 18) or neuroprotective

(19) activities of ginger constituents. Some reports also addressed

the anti-inflammatory actions of ginger extract, or one or the other

components in general (20, 21). Nevertheless, the current literature

lacks a comprehensive review on the immunomodulatory effects of

ginger phytochemicals at the cellular and molecular level. Most

importantly, an update is needed to discuss the scientific merit of

the most recently published research articles. Therefore, in this

recent review we aimed to collate all the available evidence on the

effects of the major ginger constituents on different immune cell

types and to highlight the latest advances in our understanding of

their mechanisms of anti-inflammatory actions.
2 Effects of ginger compounds on the
cells of the immune system

Ginger has been used for centuries for its anti-emetic effect.

Recent clinical trials demonstrated that ginger supplementation can

be used as an adjuvant therapy for managing and preventing

chemotherapy-induced nausea and vomiting as well (22, 23).

Additionally, some clinical studies also suggested that ginger can

effectively ameliorate chronic pain in conditions such as arthritis

(24, 25). Interestingly, the pain-relieving properties of ginger

constituents are similar to that exerted by the non-steroidal anti-
FIGURE 1

Conversion of 6-gingerol into 6-shogaol, paradol and zingerone.
Upon heating or drying 6-gingerol is mostly converted to 6-shogaol
through dehydration and to a lesser extent to zingerone through a
retro-aldol reaction. Moreover, 6-shogaol is transformed to 6-
paradol by microbial metabolism.
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inflammatory drugs such as ibuprofen (26, 27). Research data also

indicates that the pain reducing effect of ginger is linked to its high

anti-inflammatory capacity [reviewed in (28)]. Indeed, a number of

in vitro and in vivo studies demonstrated that the bioactive

compounds of ginger are able to dampen the inflammatory

responses of various immune cells. Most of these studies focused

on the innate immune machinery; however, there are a few reports

available on the effects of the major ginger compounds on T cells as

well. This chapter summarizes those studies that investigated the in

vitro effects of ginger phenolics on different immune cell types.
2.1 Effects of ginger phenolics
on macrophages

Macrophages serve as the first line of defense against invading

pathogens and represent a highly plastic cell population with

divergent phenotypes and functions. Generally, macrophages play

an essential role in clearing out microbial pathogens by producing

antimicrobial molecules such as reactive oxygen species (ROS) and

nitric oxide (NO). In response to pathogenic stimuli macrophages

also secrete various types of cytokines and chemokines and thus

contribute to the initiation of inflammatory responses. Owing to

their high functional plasticity, macrophages are also involved in

the resolution of inflammation and restoration of homeostasis (29).

Nevertheless, abnormal activation and polarization of macrophages

has been suggested to contribute to the pathogenesis of different

autoimmune diseases (30).

The very first study investigating the effects of ginger components

on immune cells was published in 2003. Ippoushi et al. demonstrated

that 6-gingerol decreased the production of NO and the protein levels

of inducible NO synthase (iNOS) in lipopolysaccharide (LPS)-

stimulated J774.1 murine macrophages (31). 6-gingerol also

protected against DNA and protein damage by suppressing the

peroxynitrite-induced single strand breaks in supercoiled plasmid

DNA as well as the formation of nitrotyrosine in these cells (31). In

mouse peritoneal macrophages, 6-gingerol decreased the LPS-

triggered production of the inflammatory cytokines interleukin 1

beta (IL-1b), tumor necrosis factor (TNF), IL-12 and the chemokine

CCL5 (RANTES), whereas it had no effect on the upregulation of

major histocompatibility complex (MHC) class II, and the co-

stimulatory molecules CD80 (B7.1) and CD86 (B7.2) (32). The

authors also gave some mechanistic insight by demonstrating that

6-gingerol was able to suppress the LPS-induced activation of NF-kB
(32). In the human monocytic U937 cell line, 6-, 8-, 10-gingerols

efficiently reduced the mRNA level of cyclooxygenase-2 (COX-2), a

key enzyme responsible for prostaglandin E2 (PGE2) production, and

thus were more potent inhibitors of PGE2 production compared to 6-

shogaol (33). On the contrary, 6-shogaol more effectively decreased

the level of PGE2, COX-2 and iNOS than 6-gingerol in LPS-

stimulated murine RAW 264.7 cells (34). The authors further

demonstrated that 6-shogaol blocked the LPS-mediated

phosphorylation and degradation of inhibitor kBa (IkBa) that

suppressed the subsequent phosphorylation, nuclear translocation

and transcriptional activity of NF-kB p65 in RAW 264.7 cells.

Furthermore, 6-shogaol reduced the activation of PI3K and Akt
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and interfered with the MAPK signaling pathway by attenuating

the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2)

but not that of p38 in LPS-stimulated RAW 264.7 macrophages (34).

Similarly, another study demonstrated that 6-gingerol inhibited iNOS

and TNF production through the suppression of IkBa
phosphorylation and NF-kB activation (35). It was also shown that

6-gingerol inhibits the LPS-triggered intracellular Ca2+ mobilization

and ROS generation, most likely by blocking the cytosol-to-

membrane translocation of protein kinase C-a (PKC-a) (35).
In LPS-stimulated primary microglia cells, 6-shogaol

significantly decreased NO levels by reducing iNOS activity,

suppressed PGE2 production by downregulating COX-2

expression, and reduced IL-1b and TNF secretion by inhibiting

IkBa phosphorylation and degradation, and thereby NF-kB
activation (36). Nevertheless, in contrast to the results obtained

by RAW264.7 macrophages (30), 6-shogaol inhibited the LPS-

stimulated activation of p38 and JNK but not that of ERK1/2 in

primary microglia cells (32). A few years later similar results were

published showing that 6-shogaol suppressed LPS-induced IL-1b,
IL-6, TNF and PGE2 production by inhibiting the phosphorylation

and nuclear translocation of NF-kB in BV2 cells (37). As a new

concept the authors suggested that 6-shogaol blocks the LPS-

induced inflammatory mediator production through activating

PPARg, which is a known inhibitor of NF-kB activation (33).

Similar to 6-shogaol, 6-gingerol also effectively inhibited the LPS-

stimulated expression of iNOS and production of NO, IL-1b and

IL-6 in primary mouse microglia (38). Furthermore, 6-gingerol was

able to suppress the phosphorylation of Akt, mTOR and signal

transducer and activator of transcription 3 (STAT3), the latter of

which is a crucial signaling intermediate for TLR4-induced

inflammatory responses in macrophages (39).

In primary mouse calvarial osteoblasts, 6-shogaol also inhibited

the IL-1-induced expression of PGE2 by suppressing the enzymatic

activity of COX-2 and PGE synthase that resulted in decreased

receptor activator of NF-kB (RANKL) production and thus

reduction of osteoclast differentiation (40).

Finally, two reports investigated the effect of gingerols and shogaols

on the nucleotide-binding oligomerization domain-like receptor family

pyrin domain containing 3 (NLRP3) inflammasome-mediated

responses. The first study compared the inhibitory effects of 6-, 8-,

10-gingerols and 6-, 8-, 10- shogaols in human THP-1 macrophages

stimulated with LPS and adenosine 5’-triphosphate (ATP) (41). It was

demonstrated that 10-gingerol and all the shogaols effectively reduced

the secretion of TNF and IL-1b as well as the protein levels of NLRP3

and caspase-1. In general, shogaols show a higher anti-inflammatory

capacity than the corresponding gingerols that could be attributed to

the a, b-unsaturated carbonyl group in the structure of shogaols.

Among the investigated phytochemicals 6-shogaol was the most potent

inhibitor of NLRP3-mediated inflammasome activation. Interestingly,

the results also indicate that the increase in alkyl side chain length

weakens the anti-inflammatory potential of shogaols, while enhancing

that of gingerols (41). The other study was conducted on RAW 264.7

cells and mouse bone marrow-derived macrophages (BM-DMs), in

which 6-gingerol greatly reduced the release of caspase-1 p20 as well as

the production of IL-1b and IL-18 in response to ATP and LPS (42). 6-

gingerol significantly suppressed the phosphorylation of p38, JNK and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1400956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pázmándi et al. 10.3389/fimmu.2024.1400956
ERK1/2 in RAW 264.7 cells, while it inhibited only ERK1/2 activation

in BM-DMs. Treatment of RAW 264.7 cells with an ERK agonist

reversed the inhibitory effects of 6-gingerol on caspase-1 p20 release

suggesting that 6-gingerol exerts its effect through blocking MAPK

activation (42).

Recent in vivo studies further suggest that 6-gingerol might inhibit

NLPR3 inflammasome activation by reducing oxidative stress. In the

lung tissues of LPS-subjected rats, 6-gingerol repressed the levels of

oxidative stress markers and the expression of NLRP3 inflammasome

(43). 6-gingerol also decreased the arsenic-trioxide induced

production of ROS and the expression of NLRP3 inflammasome

components in the liver tissues of mice (44). These current findings

indicate that 6-gingerol migth exert its anti-inflammatory effects by

inhibiting the ROS-NLRP3 inflammasome pathway.

Table 1 summarizes the effects of the major ginger compounds

on macrophages, whereas Figure 2A shows the signaling pathways,
Frontiers in Immunology 04
which are affected by the regulatory actions of major ginger

phenolics in these cells.
2.2 Effects of the major ginger phenolics
on neutrophil granulocytes

As phagocytic cells of the innate immune system, neutrophil

granulocytes take an important part in clearing infectious agents

and cellular debris from the human body. In addition to their

phagocytic capacity, activated neutrophils extrude neutrophil

extracellular traps (NETs), composed of DNA, histones, and

antimicrobial enzymes, such as neutrophil elastase (NE) and

myeloperoxidase (MPO), in which pathogens are immobilized

and exposed to a lethal dose of effector proteins (45). A large

body of evidence also indicates that through NET release
TABLE 1 Effects of the major ginger phenolics on macrophages.

Macrophages

Compounds Cell types Challenges Observed effects Potential mechanisms Ref.

6-gingerol J774.1 murine macrophage
cell line

LPS • reduced NO, iNOS levels
• protection against DNA and
protein damage

– (31)

6-gingerol mouse peritoneal macrophage
LPS • decreased IL-1b, IL-12,

TNF, CCL5
• suppressed NF-kB activity

(32)

6-, 8-, 10-gingerols
and 6-shogaol

human monocytic U937
cell line

LPS • reduced PGE2 production
• gingerols reduced COX-
2 expression

– (33)

6-shogaol RAW 264.7 murine
macrophages cell line

LPS • reduced PGE2 production
• reduced COX-2, iNOS levels

• blocked IkBa phosphorylation and
degradation
• suppressed NF-kB activity
• inhibited PI3K/Akt and ERK1/2 activation

(34)

6-gingerol RAW 264.7 murine
macrophages cell line

LPS • inhibited iNOS and TNF
expression
• reduced intracellular Ca2+

mobilization
• decreased ROS generation

• suppressed IkBa phosphorylation, NF-kB
nuclear translocation and PKC-a translocation

(35)

6-shogaol primary microglia LPS • reduced IL-1b, TNF and PGE2
production
• downregulated COX-
2 expression

• blocked IkBa phosphorylation and nuclear
translocation
• decreased NF-kB activity
• inhibited p38 and JNK activation

(36)

6-shogaol BV2 murine microglial
cell line

LPS • suppressed IL-1b, IL-6, TNF
and PGE2 production

• reduced NF-kB phosphorylation and nuclear
translocation
• increased PPARg activity

(37)

6-gingerol primary mouse microglia cell LPS • reduced NO, iNOS levels
• reduced IL-1b and IL-
6 production

• reduced Akt, mTOR and
STAT3 phosphorylation

(38)

6-shogaol primary mouse
calvarial osteoblast

IL-1a • reduced PGE2 expression
• decreased RANKL production
and osteoclast differentiation

• suppressed COX2 and PGE2 synthase activity (40)

6-, 8-, 10-
gingerols/shogaols

THP-1 human monocytic
cell line

LPS+ATP • reduced TNF and IL-1b
secretion
• reduced NLRP3 and caspase-
1 levels

– (41)

6-gingerol RAW 264.7 macrophage cell
line and mouse BM-DM

LPS+ATP • reduced IL-1b and IL-18
secretion
• reduced caspase-1 p20 release

• suppressed MAPK activation (42)
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neutrophils are implicated in the pathogenesis of autoimmune

diseases such as lupus (46).

It was first published in 2010 that 6-,8-,10-gingerols and 6-

shogaol are able to effectively inhibit ROS generation by human

neutrophils in response to formylmethionine-leucyl-phenylalanine

(fMLP), a strong inducer of neutrophil activation (16). Among the

tested ginger phenolics, 6-shogaol showed the highest potential to

suppress fMLP-induced ROS release, while 6-gingerol had the

weakest inhibitory capacity (16). More than 10 years later, a study

from 2021 also investigated the anti-inflammatory properties of

gingerols in neutrophils. Ali et al. demonstrated that 6-, 8-, and 10-

gingerols suppressed NET-associated MPO levels, thereby netosis of

human neutrophils in response to LPS, phorbol 12-myristate 13-

acetate (PMA) and various lupus-relevant stimuli as well (47). All

three gingerols suppressed the formation of hydrogen-peroxide

(H2O2) in neutrophils indicating that gingerols attenuate netosis
Frontiers in Immunology 05
by inhibiting the generation of ROS. Further, 6-gingerol also

decreased the activity of phosphodiesterase 4 (PDE4), which by

regulating cAMP levels plays a prominent anti-inflammatory effect

in basically all cells involved in inflammation (48). Concomitantly,

6-gingerol increased the intracellular levels of cAMP and thus that

of cAMP-dependent protein kinase A (PKA), which exerts anti-

inflammatory activity by promoting the production of anti-

inflammatory cytokines and by reducing the transcriptional

activity of NF-kB (48). Mechanistically, the authors proposed that

the antineutrophil effects of 6-gingerol depend, at least partially, on

its ability to inhibit PDE4 activity (47).

A year later it was published that zingerone, a less-studied

component of ginger, also displays antineutrophil potential (49). In

PMA-stimulated mouse bone marrow-derived neutrophils,

zingerone significantly suppressed ROS production and formation

of NET, as indicated by the decreased level of DNA-associated
B

C D

A

FIGURE 2

Inhibition of immune cell functions by the bioactive compounds of ginger. (A) Gingerols and shogaols reduce the LPS-triggered production of
inflammatory cytokines, PGE2 and NO by interfering with the activation of NF-kB, MAPK and mTOR signaling pathways at different levels in
macrophages. Ginger phenolics also inhibit the NLRP3-mediated inflammasome activation and subsequent production of IL-1b in macrophages.
(B) Ginger phytochemicals display antineutrophil potential by effectively inhibiting ROS generation and netosis in response to various stimuli.
(C) Similar to macrophages, ginger-derived compounds also attenuate human DC functionality via suppressing the NF-kB, MAPK and mTOR
signaling pathways at various levels. Consequently, the bioactive compounds of ginger are able to reduce the cytokine production, costimulatory
molecule expression and T cell stimulatory ability of DCs. (D) Gingerols are also potent inhibitors of T cell activation, proliferation and polarization.
The regulatory action of ginger phenolics is indicated by the minus symbol. MKK: MAPK kinase; NFAT: nuclear factor of activated T cells.
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MPO. Interestingly, the bactericidal activity of neutrophils was not

affected by zingerone treatment either in vitro or in vivo. In

particular, zingerone did not alter the phagocytic capacity of

neutrophils in vitro and had no effect on bacteria dissemination

in vivo. Nevertheless, zingerone treatment significantly increased

the levels of the nuclear NRF2 and HO-1 in PMA-stimulated

neutrophils. Further it was shown that a specific inhibitor of

NRF2 could efficiently reverse the protective effect of zingerone in

septic mice (49).

In contrast with the previous findings, a recent study reported

that 6-gingerol increased fMLP-stimulated CXCL8 chemokine

secretion and ROS production in primary human neutrophils

(50). Furthermore, 6-gingerol also increased the expression of

neutrophil surface markers such as CD11b and CD66, as well as

the expression of formyl peptide receptor 1 (FPR1), which may lead

to increased responsiveness to its ligand, fMLP. In this particular

study, the authors used a very low concentration of 6-gingerol (50

nM), which is generally a hundred- and thousand-fold lower

compared to the doses used in previous publications on

neutrophils and other immune cell types. The report also

suggested that 6-gingerol applied in a low dose facilitates

neutrophil functions through binding to the transient receptor

potential cation channel subfamily V member 1 (TRPV1), the

potential of which as a mechanism of action we discuss in

chapter 4.4 in detail.

The effects of the major ginger phenolics on neutrophil

granulocytes are included in Table 2, whereas their antineutrophil

actions are shown in Figure 2B.
2.3 Effects of 6-gingerol and 6-shogaol
on DCs

DCs represent a heterogeneous population, which acting as the

most potent professional antigen presenting cells (APCs) bridge the

innate and adaptive immune systems. Expressing a wide repertoire

of innate receptors, DCs can recognize a broad range of pathogen-,

and danger-associated molecular patterns (PAMPs and DAMPs),

and then migrate to secondary lymphoid organs to present antigens

to T cells. Activated DCs upregulate costimulatory molecules and
Frontiers in Immunology 06
produce polarizing cytokines to drive T cell differentiation, and

initiate different types of antigen-specific adaptive immune

responses. In the steady-state, in the absence of activation signals,

antigen presentation by DCs leads to T cell unresponsiveness and

tolerance (51). In addition to their well-known functions of

controlling innate and adaptive immunity, accumulating evidence

indicates that DCs are implicated in the pathogenesis and

pathomechanism of various autoimmune disorders (52).

Although DCs play a central role in the coordination of

immune responses, only two studies investigated how ginger-

derived phytochemicals might affect their functionality. Han et al.

studied the effects of 6-gingerol on mouse BM-DCs, and found that

6-gingerol was able to remarkably reduce the production of TNF,

IL-1b, IL-6 and IL-23 as well as the expression of CD80, CD86 and

MHC II in response to LPS exposure (53). 6-gingerol treated BM-

DCs also had an inferior capacity to prime T helper 17 (Th17) cell

polarization upon co-culture with CD4+ naïve T cells. Further, it

was demonstrated that 6-gingerol prevented the LPS-induced

phosphorylation of NF-kB, JNK and ERK1/2 suggesting that 6-

gingerol suppressed the activation of BM-DCs by interfering with

the NF-kB and MAPK signaling cascades (53).

Our research group has recently reported that 6-gingerol and 6-

shogaol are also able to modulate the phenotypical and functional

properties of human DCs (54). The studies so far have investigated

the effect of 6-gingerol or 6-shogaol on the TLR4-mediated

response of immune cells. In our experiments, monocyte-derived

DCs (moDCs) were first treated with 6-gingerol and 6-shogaol then

were exposed to various TLR ligands including agonists of TLR4,

TLR2/1 and TLR7/8. We found that 6-gingerol and 6-shogaol could

significantly decrease the TLR-triggered expression of CD40, CD83,

CD86 and HLA-DQ in moDCs. Furthermore, 6-gingerol and 6-

shogaol significantly reduced the secretion of TNF, IL-6 and IL-10

by TLR-stimulated moDCs. Similarly, both compounds

significantly reduced the Escherichia coli-triggered secretion of

inflammatory cytokines, and thus their capacity to promote a Th1

phenotype in naïve CD4+ T cells (54). Investigating the mechanism

underlying the actions of these compounds, we found that both 6-

gingerol and 6-shogaol could significantly decrease the TLR-

induced nuclear translocation of NF-kB p65, while not affecting

IkBa degradation. Both compounds were also able to reduce the
TABLE 2 Effects of the major ginger phenolics on neutrophil granulocytes.

Neutrophil granulocytes

Compounds Cell types Challenges Observed effects Potential mechanisms Ref.

6-,8-,10-gingerols and
6-shogaol

human neutrophil fMLP • suppressed ROS release – (16)

6-, 8-, and 10-gingerol human neutrophil LPS, PMA • suppressed netosis
• reduced ROS generation

• decreased PDE4 activity
• increased cAMP levels and PKA

(47)

zingerone mouse BM-
derived neutrophil

PMA • suppressed ROS production
• reduced netosis

• activated the NRF2
signaling pathway

(49)

6-gingerol human neutrophil fMLP • increased ROS and CXCL8
production
• increased CD11b, CD66,
FPR1 expression

• binding to TRPV1 (50)
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TLR-triggered activation of the MAPK pathway. Further, we

demonstrated that 6-gingerol decreased mTOR complex 2

(mTORC2)-mediated Akt phosphorylation, whereas it had no

effect on mTORC1-mediated p70S6K phosphorylation in TLR-

stimulated moDCs. In contrast, 6-shogaol could greatly suppress

the TLR-mediated activation of both mTOR complexes. Further, we

found that 6-shogaol but not 6-gingerol could significantly increase

the activity of AMPK, the nuclear translocation of NRF2 and the

expression of HO-1. Altogether, our data imply that both ginger-

derived compounds attenuate human DC functionality via

suppressing the NF-kB, MAPK and mTOR signaling pathways.

Further, we demonstrated that compared to 6-gingerol, 6-shogaol

possesses a stronger inhibitory activity on moDCs that might be

attributed to its ability to activate AMPK and the NRF2/HO-1

system (54).

The effects of 6-gingerol and 6-shogaol on DCs are summarized

in Table 3, and illustrated in Figure 2C.
2.4 Effects of gingerols on T cells

As specialized cells of the adaptive immune system, T cells play

a central role in directing immune responses against pathogens,

allergens, or tumors. While CD4+ T helper cells modulate immune

responses by facilitating the activity of other immune cells,

regulatory T cells (Treg) contribute to the maintenance of

immune homeostasis and CD8+ cytotoxic T cells are essential to

the elimination of cancer cells and virally infected cells (55).

Nevertheless, it must be noted that specific populations of T cells

such as Th17 cells might contribute to the pathogenesis of various

chronic inflammatory disorders (56).

The first study regarding the effects of gingerols on the

activation and effector function of T cells was published in 2015.

Bernard et al. found that 6-, 8- and 10-gingerols inhibited the

proliferation of mouse spleen-derived CD3+ T cell in response to

anti-CD2/CD3/CD28-coated beads (Dynabeads) or syngeneic DCs

(57). 8- and 10-gingerols also significantly decreased the expression

of the activation markers CD25 and CD69. All three gingerols

reduced the Dynabead-stimulated production of interferon-gamma

(IFN-g), but did not affect IL-4 synthesis. Moreover, 8- and 10-

gingerols decreased IL-2 secretion as well. In general, the data
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suggest that 8- and 10-gingerols are more potent inhibitors of T cell

activation and proliferation than 6-gingerol (57).

In accordance with the above, another study demonstrated that

6-gingerol is able to suppress the production of IFN-g and IL-4 by

mouse spleen-derived CD4+ T cells cultured under Th1 or Th2

polarizing conditions, respectively (58). 6-gingerol also significantly

suppressed the proliferation of pan T cells isolated from ovalbumin

(OVA)-sensitized mice. In addition, 6-gingerol abrogated the

staphylococcal enterotoxin B (SEB)-induced proliferation of

unprimed T cells and the proliferation of human Jurkat T cells in

response to anti-CD3/CD28 and IL-2. Pre-treatment with 6-

gingerol also inhibited the activation of p38, ERK1/2 and JNK, as

well as the nuclear translocation of NF-kB and c-fos transcription

factors in Jurkat cells stimulated with PMA and ionomycin. Thus,

the results suggest that 6-gingerol suppresses T cell activation and

proliferation through inhibiting NF-kB and activating protein 1

(AP-1) activation (58).

The effects of 6-gingerol on CD8+ T cells were studied only in

the context of cancer. Two publications reported that 6-gingerol is

able to increase the number of tumor-infiltrating CD8+ T cell in

mice that might play an important role in the anti-tumor effect of

ginger (59, 60). The anti-cancer activity of ginger compounds is not

in the scope of the recent review; however, it has been discussed in

detail elsewhere (17, 18). The effects of gingerols on CD4+ T cells

are summarized in Table 4, and illustrated in Figure 2D.

In conclusion, the above data indicate that the bioactive

compounds of ginger can efficiently modulate the functionality of

different immune cell types, mostly via interfering with the activity

of various signaling pathways in them. Nevertheless, opposing data

were also published regarding the effects of different ginger

phenolics that might be attributed to the varying cell types,

culture conditions and stimuli applied in these studies.

Furthermore, the effect of ginger phenolics on other immunce cell

types such as NK cells, basophils, and eosinophils have not been

explored yet. Furthermore, in lymphomatic cell lines with B cell

origin only the anti-cancer potential of these compounds were

investigated (61, 62).

Altogether, the pleiotropic effects of ginger phenolics

suggest that their mechanism of action likely involves multiple

regulatory mechanisms, which is discussed in chapter 4

in details.
TABLE 3 Effects of 6-gingerol and 6-shogaol on DCs.

DCs

Compounds Cell
types

Challenges Observed effects Potential mechanisms Ref.

6-gingerol mouse
BM-DC

LPS • reduced TNF, IL-1b, IL-6 and IL-23 secretion
• reduced CD80, CD86 and MHC II expression
• reduced Th17 priming capacity

• inhibited NF-kB, JNK and ERK1/
2 activation

(53)

6-gingerol,
6-shogaol

human
moDC

various
TLR ligands

• decreased costimulatory molecule and MHC II
expression
• reduced TNF, IL-6 and IL-10 production
• decreased capacity to prime Th1 T cells

• inhibited NF-kB nuclear translocation
• reduced mTOR and MAPK activity
• 6-shogaol increased AMPK and
NRF2 activity

(54)
frontier
sin.org

https://doi.org/10.3389/fimmu.2024.1400956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pázmándi et al. 10.3389/fimmu.2024.1400956
3 Protective effects of ginger
phenolics in animal models of
autoinflammatory and
autoimmune diseases

Abnormal activation of the immune system can lead to the

generation of autoinflammatory or autoimmune disorders. The

pathogenesis of autoimmune diseases is characterized by loss of

tolerance against self-tissues, appearance of autoreactive T and B

cells, and production of autoantibodies. On the contrary,

autoinflammatory diseases are mainly caused by altered innate

immunity. They are also characterized by the activation of

inflammasomes, and lack of self-reactive antibodies and T cells

(63). Although there is a wide range of treatment options to manage

symptoms, currently there is no cure for these disorders. As we

introduced above several reports suggest that gingerols and

shogaols might also alleviate disease symptoms due to their

strong antioxidant and anti-inflammatory activities. These

assumptions were later also supported by data from animal

models of inflammation such as sepsis (42, 64, 65) or

neuroinflammation (36, 38). Here we summarize the most recent

in vivo animal data on the efficacy of gingerols and shogaols in the

treatment of autoinflammatory and autoimmune diseases.

Ulcerative colitis (UC), one of the main forms of inflammatory

bowel disease, is characterized by chronic recurrent inflammation

of the large intestine. The etiology and pathogenesis of these

diseases is not yet fully understood, although it appears to involve

both autoinflammatory and autoimmune traits (66). A study

investigated the therapeutic efficacy of intraperitoneally-injected

6-, 8-, and 10-gingerols in a dextran sulfate sodium (DSS)-

induced rat colitis model (67). Results show that all three

gingerols attenuated DSS-induced symptoms of colitis and

accelerated the healing of mucosal damage. Gingerols elevated the

activity of the anti-inflammatory enzyme superoxide dismutase

(SOD), while reduced the activity of MPO, a marker of

neutrophil infiltration, in the colon tissue. All three gingerols also

reduced the DSS-induced serum levels of the pro-inflammatory

cytokines TNF and IL-1b (67).

A subsequent study further explored the mechanism behind the

anti-inflammatory effects of 6-gingerol in the DSS-induced mouse
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colitis model (68). Orally-administered 6-gingerol significantly

decreased the DSS-induced weight loss of mice. It was

demonstrated that 6-gingerol decreased IL-17 levels, while it

increased IL-10 levels both in the serum and bowel tissues of

DSS-treated mice. Moreover, 6-gingerol inhibited the DSS-

induced phosphorylation of IkB and the phosphorylation and

nuclear translocation of p65 in the bowel tissue (68).

Another study investigated the efficacy of orally-administered

6-shogaol-loaded nanoparticles in the mouse model of DSS-

induced colitis (69). Similar to gingerols, 6-shogaol also alleviated

colitis symptoms and accelerated wound repair. In addition, 6-

shogaol significantly decreased the levels of TNF, IL-6, IL-1b and

iNOS, while it increased the expression of the anti-inflammatory

genes HO-1 and NRF2 in colon tissues of DSS-treated mice (69).

A recent study compared the anti-colitis efficacy of 6-, 8-, 10-

gingerols and shogaols in the DSS-induced colitis mouse model

(70). All components were able to prevent DSS-induced weight loss,

colon length reduction and IL-1b, IL-6 and IFN-g serum levels in

DSS-treated mice. Among the ginger compounds, 8-, and 10-

shogaols, which were also able to significantly decrease DSS-

induced serum levels of TNF, showed the greatest efficacy

compared to the other compounds. 6-, 8-, and 10-gingerols and

6-, 8-, and 10-shogaols also downregulated iNOS and COX-2

protein levels and significantly reduced phosphorylation of NF-kB
in colonic tissue. Interestingly, 10-shogaol was found to be the most

potent in its ability to block iNOS and COX-2 expression and NF-

kB activity. It was also the most effective in increasing the

expression of tight junction proteins, thus the intestinal integrity

of DSS-treated mice. The study concluded that 8-, and 10-shogaols

are highly efficient in their ability to suppress colitis symptoms and

inflammation, thus may serve as better candidates for the treatment

of colitis than the corresponding gingerols.

Multiple sclerosis (MS) is a T cell-mediated autoimmune

disease of the central nervous system that is characterized by

immune-mediated demyelination in the spinal cord and cerebral

cortex (71). The neuroprotective effects of ginger phenolics were

extensively studied in animal models of neurotoxicity and brain

damage [reviewed in (19)]; however, so far only two studies

investigated the immunomodulatory activity of gingerols and

shogaols in experimental autoimmune encephalomyelitis (EAE),

the mouse model of MS. The first study showed that 6-gingerol
TABLE 4 Effects of gingerols on T cells.

T cells

Compounds Cell types Challenges Observed effects Potential mechanisms Ref.

6-, 8- and
10-gingerols

mouse spleen-derived CD3+
T cell

Dynabead, syngeneic DCs • decreased proliferation
• reduced expression of CD25
and CD69
• reduced IFNg and IL-2

– (57)

6-gingerol mouse spleen-derived CD4+
T cell

ovalbumin,
Th1 or Th2 polarizing
conditions, SEB

• decreased proliferation
• reduced IFNg and IL-
4 production

– (58)

6-gingerol Jurkat human T cell line PMA, ionomycin
anti-CD3/CD28 and IL-2

• reduced proliferation
• decreased T cell activation

• inhibited MAPK activation
• suppressed NF-kB and AP-
1 activation

(58)
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decreased the inflammatory infiltration and demyelination in the

white matter of spinal cord of EAE mice (53). 6-gingerol-treated

mice had lower numbers of inflammatory cells including DCs and T

cells in the spleen. Further, splenocytes from 6-gingerol treated

mice produced significantly lower levels of IL-17 and GM-CSF

indicating that 6-gingerol inhibited Th17 cell polarization in vivo

(53). In addition, 6-gingerol lowered the percentage of leukocytes

such as CD11c+MHC II+ DCs, CD45+CD11b+ monocytes and

Th17 cells in the central nervous system (CNS) of EAE mice. This

suggests that 6-gingerol inhibits inflammatory cell infiltration in the

CNS. The next study investigated whether 6-shogaol or its

metabolite, 6-paradol could ameliorate EAE symptoms and

inflammation (72). Administration of 6-shogaol or 6-paradol

significantly reduced the clinical signs of the disease. Histological

analysis showed that both components decreased demyelination,

cell accumulation and TNF expression in the spinal cord of EAE

mice. In addition, 6-shogaol and 6-paradol markedly reduced

astrogliosis and microglial activation of EAE mice. These findings

suggest that the neuroprotective effects of 6-gingerol and 6-paradol

in EAE might be associated to the dampened inflammatory

responses in the CNS (72).

The protective role of 6-gingerol was also investigated in the

context of systemic autoimmune diseases such as systemic lupus

erythematosus (SLE) and rheumatoid arthritis (RA). SLE affects

almost every organ in the body and is characterized by the

appearance of anti-nuclear autoantibodies and circulating

immune complexes. In a lupus mouse model 6-gingerol

administration significantly reduced serum levels of anti-dsDNA,

cell-free DNA and also MPO-DNA complexes, the latter of which

serves as a marker of NET formation (47). 6-gingerol also greatly

reduced the serum levels of the pro-inflammatory cytokines TNF

and IFN-g. In line with that, 6-gingerol suppressed netosis and thus

large-vein thrombosis in a mouse model of antiphospholipid

syndrome (APS) as well. Pharmacokinetic studies further revealed

that 6-gingerol accumulated in neutrophils, even while its plasma

level was dropping (47). These results are in line with previous

reports showing that ginger phenolics are converted into

glucuronide conjugates and thus are rapidly cleared from the

plasma. In tissues, these conjugated forms are then reconverted

into their free active form by specific enzymes such as b-
glucuronidase (73, 74).

RA is also a systemic chronic immune-mediated disorder,

which is characterized by synovial inflammation, joint damage,

loss of function and deformities. IL-17 is one of the key cytokines in

promoting inflammation and thus cartilage damage in RA (75).

Therefore, in a recent study, 315 natural extracts were tested in their

ability to inhibit IL-17-induced IL-6 production by synovial cells

(76). Among these extracts, dried ginger and in particular its

specific component 8-shogaol showed the highest inhibitory

activity against IL-17-mediated IL-6 secretion by synovial cells

and macrophages. Thereafter, the anti-arthritic potency of 8-

shogaol was investigated in adjuvant induced arthritis (AIA), a rat

model of RA (76). Treatment with 8-shogaol reduced paw thickness

and weight loss of AIA rats and improved their walking

performance as well. Furthermore, 8-shogaol treatment decreased

bone erosion and cellular infiltration into the joints of AIA rats.
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Upon 8-shogaol treatment the levels of TNF, IL-6 and IL-8 were

markedly downregulated both in the serum and synovial tissues of

AIA rats. These data suggest that 8-shogaol has the potential to

ameliorate disease severity and inflammation in RA (76).

The above data indicate that the bioactive compounds of ginger

exert a general anti-inflammatory effect by efficiently decreasing

immune reactions in a number of autoimmune and inflammatory

disease models, thus it is plausible that ginger-derived phytochemicals

might serve as supplementary agents in the therapy of these diseases.

The effects of the major ginger phenolics in animal models of

autoimmune and autoinflammatory diseases are included in Table 5.
4 Proposed mechanism of action of
gingerols and shogaols

As we have introduced above ginger constituents are able to

interfere with common inflammatory signaling pathways including

the NF-kB, MAPK and PI3K/Akt/mTOR cascades in different

immune cell types; however, the previously introduced in vitro

studies did not, or rarely revealed the mechanism behind the anti-

inflammatory actions of ginger phenolics. Nevertheless, mounting

evidence, mostly from in vivo studies and experiments with non-

immune cell types, indicates that ginger constituents might affect

the inflammatory signaling pathways by targeting different

upstream regulatory molecules such as AMPK, NRF2, or PPARg.
Recent publications also suggest that these compounds might exert

their actions through binding to the TRPV1 ion channel. In this

chapter we summarize our current knowledge about the possible

mechanisms of immunomodulation by different ginger phenolics.
4.1 The mechanism of action of ginger
phenolics through AMPK activation

AMPK is a central regulator of diverse physiological and

metabolic processes, which can be dysregulated in pathological

conditions, such as cancer, obesity or chronic inflammatory

diseases (77). Generally, AMPK blocks mTORC1 activation by

phosphorylating two of its regulatory proteins. On the one hand

AMPK phosphorylates and thereby increases the activity of

Tuberous Sclerosis Complex 2 (TSC2), an upstream inhibitor of

mTORC1. On the other hand, it phosphorylates Raptor, a scaffold

protein of mTORC1 that also leads to mTORC1 inactivation and

consequently to the suppression of anabolic processes and

inflammation (78). Accumulating evidence suggests a negative

correlation between AMPK activity and inflammation (77).

Chronic inflammation is associated with reduced AMPK activity

and thereby aberrant mTOR activity. Thus, targeting AMPK might

serve as a potential therapeutic strategy for treating inflammatory-

related diseases (79). Many phytochemicals such as resveratrol,

quercetin, and curcumin act as natural activators of AMPK (80).

Recent studies also suggest that ginger phytochemicals might also

exert their anti-inflammatory effects on immune cells via

suppressing mTOR and increasing AMPK activity.
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Initially, studies reported that 6-shogaol inhibit inflammation

by suppressing the phosphorylation of key mTOR pathway

components. First it was demonstrated that 6-shogaol inhibited

the LPS-induced phosphorylation and activation of NF-kB by

interfering with the PI3K/Akt and MAPK signaling pathways in

murine macrophages (34). Thereafter, it was shown that 6-shogaol

inhibited TNF-induced disassembly of tight junctions via inhibition

of NF-kB and PI3K/Akt in the human colonic epithelial cell line

HT-29/B6 (81). Another study further demonstrated that 6-

gingerol suppressed LPS-induced microglia activation by down-

regulating the Akt/mTOR pathway activity (38).

Later it was also demonstrated that 6-gingerol indirectly

suppress mTOR activity by promoting the activation of AMPK.

First it was reported that ginger extract restored the high fat diet

(HFD)-induced downregulation of AMPK activity in the liver of

rats (82). Another study presented that 6-gingerol attenuates

hepatic steatosis, inflammation and oxidative stress in HFD-fed

mice via activating AMPK (83). In particular, intragastrical

administration of 6-gingerol decreased the concentration of TNF,

IL-6 and ROS, while it increased the phosphorylation level of liver

kinase B1 (LKB1) and AMPK in the liver of HFD-fed mice. LKB1 is
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one of the master upstream kinases of AMPK, which forms a

trimeric complex with two other proteins and then phosphorylates

and activates AMPK. The authors suggest that 6-gingerol enhanced

the stability of the LKB1 complex that consequently increased

LKB1/AMPK pathway activity in the liver of mice. These results

were also strengthened by in vitro experiments using palmitic acid-

treated HepG2 cells, in which 6-gingerol reduced lipid

accumulation and oxidative stress by increasing LKB1 complex

stability and thus LKB1/AMPK pathway activity (83).

Recent observations further suggest that the anti-diabetic and

anti-cancer efficacy of ginger phenolics are also associated with their

ability to induce AMPK activation. It was reported that 6-shogaol

and 6-paradol promote glucose utilization in mouse adipocytes that

could be attributed to the increased activity of AMPK (84).

Furthermore, 6-gingerol was found to suppress oral cancer cell

growth by inducing the activation of AMPK and blocking mTOR

pathway activity (85), while 10-gingerol was shown to inhibit the

proliferation and migration of vascular smooth muscle cells by

AMPK activation (86). The latter study also demonstrated a stable

binding between 10-gingerol and AMPK by molecular docking

studies and surface plasmon resonance imaging analysis. This was
TABLE 5 In vivo effects of ginger phenolics in animal models of autoinflammatory and autoimmune diseases.

Compounds Models Administration
routes

Observed effects Potential mechanisms Ref.

6-, 8-, and
10-gingerols

DSS-induced rat
colitis model

intraperitoneal • attenuated DSS-induced symptoms of colitis
• accelerated mucosal damage healing
• decreased neutrophil infiltration in the colon
• reduced TNF and IL-1b serum levels

• increased SOD activity
• decreased MPO activity

(67)

6-gingerol DSS-induced
mouse
colitis model

oral • decreased DSS-induced weight loss
• decreased IL-17 levels and increased IL-10
levels both in serum and bowel tissue

• inhibited IkB phosphorylation
• suppressed NF-kB nuclear
translocation in the bowel tissue

(68)

6-shogaol DSS-induced
mouse
colitis model

oral • alleviated colitis symptoms
• accelerated wound repair
• decreased the levels of TNF, IL-6, IL-1b
and iNOS

• increased HO-1 and NRF2
expression in the colon tissues

(69)

6-, 8-, 10-gingerols
and 6-, 8-, 10-shogaols

DSS-induced
mouse
colitis model

oral • prevent DSS-induced weight loss, colon length
reduction
• reduced IL-1b, IL-6 and IFN-g serum levels
• downregulated iNOS and COX-2 levels

• reduced NF-kB phosphorylation (70)

6-gingerol EAE mice intraperitoneal • decreased inflammatory cell infiltration and
demyelination in spinal cord and CNS
• lowered number of inflammatory cells in the
spleen
• inhibited Th17 polarization

– (53)

6-shogaol, 6-paradol EAE mice oral • decreased demyelination, cell accumulation
and TNF expression in spinal cord
• reduced astrogliosis and microglial activation

– (72)

6-gingerol lupus and APS
mouse model

intraperitoneal • reduced serum level of anti-dsDNA, cell-free
DNA, MPO-DNA complexes, TNF, IFN-g
• suppressed netosis
• inhibited thrombosis in APS

– (47)

8-shogaol AIA rats intraperitoneal • reduced paw thickness and weight loss
• improved walking
• decreased bone erosion and cellular infiltration
to the joints
• reduced TNF, IL-6 and IL-8 levels in serum
and synovial tissues

– (76)
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the first study showing a direct interaction between 10-gingerol and

AMPK that proposed 10-gingerol as a natural agonist of AMPK.

Nevertheless, there are no available data on the binding affinity of

other ginger phytochemicals to AMPK.

Although, some reports demonstrated that gingerols and

shogaols decrease PI3K/Akt/mTOR signaling pathway activity in

immune cells, the regulatory role of AMPK activity was not

investigated in these studies. We have recently reported that 6-

shogaol was able to inhibit mTORC1 signaling through

upregulating AMPK activity in moDCs, while 6-gingerol was not

able to do so (54). Nevertheless, further studies are needed to reveal

whether the anti-inflammatory activities of gingerols and shogaols

could be generally linked to increased AMPK activity.

Figure 3A shows how the activation of AMPK by the major

ginger phenolics might affect the mTOR and thus the NF-kB
signaling pathways.
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4.2 Anti-inflammatory actions of ginger
phenolics through NRF2 regulation

NRF2 is a transcription factor that plays a pivotal role in the

regulation of antioxidant and anti-inflammatory responses (87).

Besides inducing the expression of an array of enzymes involved in

antioxidant defense and detoxification, it is able to negatively

regulate NF-kB activity by multiple mechanisms. For instance, by

inducing antioxidant enzymes NRF2 decreases ROS levels that

consequently inhibit oxidative stress-mediated NF-kB activation.

NRF2 is also able to prevent IkBa proteasomal degradation and

thus the nuclear translocation of NF-kB. In addition, a series of in

vitro and in vivo studies indicated that NRF2-mediated HO-1

expression substantially contributes to the anti-inflammatory

activity of NRF2. As an important antioxidant enzyme HO-1

catalyzes the degradation of toxic free heme that leads to the
B
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FIGURE 3

Schematic representation of the possible mechanism of action of ginger phenolics in immune cells (A) Ginger phenolics suppress mTORC1
functionality by increasing AMPK activity. Generally, mTORC1 supports protein synthesis and thus cell growth and proliferation by direct
phosphorylation of p70S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In immune cells mTORC1 is also involved in
NF-kB activation and its target gene expression. (B) Ginger-derived bioactive compounds might also exert their anti-inflammatory effects by
activating NRF2, which induces the expression of an array of antioxidant and cytoprotective genes. NRF2 also inhibits NF-kB activity by preventing
IkBa proteasomal degradation and thus blocks the nuclear translocation of NF-kB. (C) Ginger phenolics might also exert their anti-inflammatory
effects by activating PPARg. By interacting with p65 NF-kB, PPARg can induce its ubiquitination and proteolytic degradation. Stimulation of PPAR-g
limits NF-kB dependent gene transcription through transrepression as well. Moreover, PPARg supports the expression of inhibitory proteins such as
IkBa via transactivation. (D) Ginger constituents can directly interact with TRPV1 channels and might act as either TRPV1 agonists or antagonists.
Generally, TRPV1 mediated Ca2+ influx facilitates the activation of different transcription factors that might be facilitated or inhibited by ginger-
derived bioactive compounds. NFAT: nuclear factor of activated T cells, PPRE: PPAR response elements.
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release of anti-inflammatory products, such as carbon monoxide

and biliverdin (88). Beyond its enzymatic functions, HO-1 exerts

non-canonical, signaling functions, through which HO-1 is able to

control essential cellular signaling processes such as gene

expression, protein translation, and DNA repair mechanisms (89).

In the last few years many studies proposed that ginger-derived

bioactive compounds exert their anti-inflammatory effects by

activating the NRF2/HO-1 axis. A study suggest that this is

especially true for shogaols, which in contrast to gingerols, bear

an a,b-unsaturated carbonyl group in their side chain (90).

Molecular modeling revealed that 6-shogaol is able to increase

HO-1 levels through a Michael reaction between its a, b-
unsaturated carbonyl group and Kelch-like ECH-associated

protein 1 (Keap1), which acts as a negative regulator of NRF2.

This interaction initiates conformational changes in Keap1 that

allows the release of NRF2 from Keap1 leading to its nuclear

translocation. In the nucleus NRF2 binds to the antioxidant

response element (ARE) and induces the expression of various

antioxidant and anti-inflammatory genes. In that particular study,

6-shogaol was found to upregulate the protein levels of HO-1 and

suppress thrombin-induced NO release in rat microglia, while 6-

gingerol was not able to do so (90). 6-shogaol also increased the

nuclear import of NRF2 in BV2 microglia and significantly

enhanced the HO-1 mRNA level in primary-cultured microglia

(90). Similarly, we have recently demonstrated that 6-shogaol

increases the expression and nuclear translocation of NRF2 and

enhances the protein levels of HO-1, while 6-gingerol does not affect

that in human moDCs (54). In an in vivo mouse ICH model, 6-

shogaol increased striatal HO-1 protein levels and rescued neuron

loss (90). Another study demonstrated that 6-shogaol protects

against renal ischemia-reperfusion (I/R) injury as well. 6-shogaol

pretreatment significantly decreased the expression of various pro-

inflammatory cytokines and chemokines in mice subjected to renal

I/R. Mechanistically, 6-shogaol reduced kidney inflammation by

attenuating NF-kB activation and inducing HO-1 expression (91).

In the same year it was published that 6-shogaol prevented UVB-

induced inflammation and oxidative stress through modulating

NRF2 signaling in human epidermal keratinocytes (HaCaT cells)

(92). 6-shogaol significantly decreased the UVB-triggered

expression of IL-6, TNF and IL-10, while reduced the

phosphorylation of ERK, JNK and p38 MAPKs in human

epidermal keratinocytes. The authors further demonstrated that

6-shogaol prevented UVB-induced depletion of NRF2 and elevated

HO-1 protein levels in HaCaT cells. In another in vitro model, 6-

shogaol treatment increased the expression of HO-1 in LPS-

stimulated human umbilical vein endothelial cells (HUVECs) as

well (93). Similar to 6-shogaol, 6-gingerol was also able to activate

the NRF2/Keap1 signaling pathway. It was demonstrated that 6-

gingerol significantly reduced the expression of Keap1 and

increased that of NRF2 in the nuclear fraction of buccal pouch

tissues of 7,12‐dimethylbenz(a)anthracened (DMBA)-treated

hamsters (94). By doing so, 6-gingerol prevented buccal pouch

carcinogenesis through inhibiting the expression of inflammatory

and cell proliferation markers such as IL‐6, TNF‐a, IL‐1b, iNOS,
COX‐2 and cyclin D, while inducing pro-apoptotic markers such as

Bax in DMBA-induced hamsters. These findings were further
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strengthened by another study showing that 6-gingerol also

alleviates sepsis-induced liver injury through activating the NRF2

pathway (65). Pre-treatment with 6-gingerol attenuated cecal

ligation and puncture (CLP)-induced hepatic inflammation and

injury by increasing the protein levels of NRF2 and HO-1 in liver

homogenates of C57BL/6 mice. These results were further

confirmed by an in vitro model. 6-gingerol suppressed ATP-

induced pyroptosis, IL-1b and caspase-1 secretion and ROS

production by preventing the downregulation of NRF2 and HO-1

protein levels in LPS-primed RAW 264.7 cells (65). Furthermore, it

was shown that 6-gingerol decreased cardiac injury via the NRF2/

HO-1 pathway in both mouse and cell models of diabetic

cardiomyopathy (DCM) (95). In the mouse heart 6-gingerol

inhibited the expression of ferroptosis-related proteins, while

enhanced the expression of anti-ferroptosis-related proteins. In

addition, 6-gingerol treatment decreased the levels of IL-1b, IL-6,
and TNF-a in serum and heart tissues of diabetic mice. In H9c2

cardiac cells, 6-gingerol also inhibited ferroptosis and inflammation

evoked by palmitic acid and high glucose administration. Most

importantly, 6-gingerol enhanced the NRF2 and HO-1 protein

levels both in the mouse and cell models of DCM. Hence, the

authors suggested that 6-gingerol might protect against DCM by

inhibiting ferroptosis and inflammation via activating the NRF2/

HO-1 pathway (95). A novel study suggests that 6-gingerol

attenuates sepsis-induced acute lung injury by suppressing

NLRP3 inflammasome activation via NRF2 activation (43). In

LPS-induced rats, 6-gingerol repressed the expression of various

oxidative stress markers, inflammatory cytokines and NLRP3

inflammasome components in the lung tissues and inhibited the

infiltration of inflammatory cells into the lungs. In addition, 6-

gingerol prevented the LPS-mediated downregulation of NRF2 and

HO-1 levels in the lung tissues of rats. Intraperitoneal injection of

ML385, an NRF2 inhibitor, reversed the protective effect of 6-

gingerol against LPS-induced oxidative stress and inflammation

suggesting that 6-gingerol exerts its anti-inflammatory effects

through activating the NRF2/HO-1 axis (43). Similar to 6-

gingerol, zingerone, a less-studied natural compound of ginger,

also reduced organ injury through activating the NRF2 signaling

pathway in a CLP-induced sepsis model (49). In particular,

administration of zingerone alleviated ROS accumulation and

systematic inflammation in septic mice and inhibited NET

formation both in vivo and in vitro. The results further suggest

that zingerone attenuates NET formation and inflammation via

NRF2-dependent ROS inhibition (49).

As the above data indicate many studies have demonstrated that

the major bioactive compounds of ginger are able to activate the

NRF2/HO-1 axis that seems to greatly contribute to their anti-

inflammatory effects. Lately, emerging evidence indicate a

cooperation between AMPK and NRF2 signaling as well. In

particular, AMPK might function as a positive upstream regulator

of the NRF2/HO-1 system and thus can lead to the transactivation

of specific target genes (96). Interestingly, the AMPK-mediated

enhancement of the NRF2/HO-1 response does not seem to depend

on mTOR inhibition (97). In our studies, we found that 6-shogaol is

able to increase the activity of both AMPK and NRF2 in human

DCs (54). Nevertheless, it needs to be further elucidated whether
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these components contribute separately to the ant-inflammatory

potential of 6-shogaol or AMPK acts as an upstream regulator

of NRF2.

It is also plausible that certain phytochemicals might control

NRF2 activity through the E3 ubiquitin ligase tripartite motif-

containing 29 (TRIM29), also known as ataxia telangiectasia

group D complementing (ATDC). Recent evidences indicate that

TRIM29 plays a versatile role in orchestrating inflammatory

responses. In alveolar macrophages, TRIM29 negatively regulates

the LPS-induced pro-inflammatory cytokine production by

inducing the ubiquitination and degradation of NF-kB essential

modulator (NEMO) (98). In mice, TRIM29 controls pro-

inflammatory cytokine production by acting as a central regulator

of protein kinase RNA-like endoplasmic reticulum kinase (PERK)-

driven endoplasmic reticulum (ER) stress response (99).

Mechanistic studies have also shown that TRIM29 is also able to

bind to and sequester KEAP1, thereby preventing NRF2 from

proteasomal degradation in pancreatic cancer cells (100). To the

best of our knowledge, it has never been investigated whether plant-

derived compounds are able to control TRIM29; however, as the

previous reports suggest TRIM29 acts as a multifunctional protein,

and thus might regulate immune responses by various mechanisms.

In the future, it could also be explored whether phytochemicals

control NRF2 activity through TRIM29 that might help to better

understand the mechanism behind their anti-inflammatory actions.

Figure 3B represents how ginger phenolics might exert their

anti-inflammatory effects via activating the NRF2 signaling pathway.
4.3 Mode of action of ginger-derived
compounds through PPARy regulation

PPARy is a member of the nuclear receptor superfamily that is

widely expressed in immune and endothelial cells (101). It is able to

regulate various biological functions, such as inflammatory

responses and lipid metabolism. Most importantly, PPARg can

suppress inflammation by promoting the inactivation of NF-kB
through direct or indirect mechanisms. PPARg can cause

ubiquitination and proteolytic degradation of p65 NF-kB, and it

can also promote the expression of inhibitory proteins such as IkBa
or HO-1. Many dietary phytochemicals target PPARg (102),

however, only a few studies investigated whether 6-gingerol and

6-shogaol act as PPARg agonists.
In rats subjected to ventilator-induced lung injury, GW9662, a

selective PPARg inhibitor abolished the protective effect of 6-gingerol

(103). In particular, the 6-gingerol-mediated decrease in pro-

inflammatory cytokine release, neutrophil accumulation and

oxidative stress in lung tissues of rats challenged with mechanical

ventilation was partially reversed by the inhibition of PPARg (103). 6-
shogaol was also suggested to exert its anti-inflammatory effects in LPS-

activated BV2 microglia by activating PPARg (37). In these cells 6-

shogaol significantly reduced LPS-induced NF-kB activation, pro-

inflammatory cytokine and PGE2 release that could be reversed by

GW9662 treatment. In contrast, another study presented that GW9662

could not reverse the inhibitory effect of 6-shogaol on TNF-induced

disassembly of tight junctions in human colonic HT-29/B6 cells (81).
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Although data on the relation of ginger phytochemicals to

PPARg activity is scarce and contradictory, we cannot exclude the

possibility that the anti-inflammatory effects of gingerols and

shogaols are at least partially dependent on PPARg activity.
Figure 3C shows that 6-gingerol and 6-shogaol might inhibit the

NF-kB pathway through activating PPARg.
4.4 The mechanism of action of ginger-
derived phytochemicals through
targeting TRPV1

TRPV1 is primarily expressed in sensory neurons and plays an

essential role in heat sensation and nociception. Accumulating data

suggests that TRPV1 is also expressed in various mammalian immune

cells, especially in macrophages, neutrophils, DCs and T cells, where it

modulates various functions such as cytokine release, migration or

phagocytic activity (104). Nevertheless, exploring the role of TRPV1 on

immune cells is hindered by the sometimes-contradictory results

gained from human and animal cells. Specifically, TRPV1 activation

promotes the maturation and activation of murine DCs (105), while

inhibits the differentiation, maturation, phagocytosis and cytokine

secretion of human moDCs (106).

The major pungent compounds of ginger share certain structural

characteristics with capsaicin, the main pungent constituent found in

chili pepper, and the prototypic agonist of TRPV1 (107). In

particular, gingerol, shogaol and zingerone contain the same

vanillyl head group as capsaicin; therefore, these ginger constituents

can directly activate TRPV1 channels, though with a much lower

potency than capsaicin (108). Specifically, a study showed that while

capsaicin shows strong potency on TRPV1, 6-shogaol and 6-gingerol

have presented only moderate potency on the channel (109). It was

further demonstrated that 6‐shogaol, 6‐gingerol, and zingerone bind

to the same ligand‐binding pocket in TRPV1 channels as capsaicin;

however, the distinct structural features in their tails cause large

differences in their potency (110). 6‐shogaol is the most similar to

capsaicin regarding its molecular structure. The aliphatic tail of 6-

shogaol similar in length to that of capsaicin, and 6-shogaol has the

same functional groups, which are able to form hydrogen bonds with

the TRPV1 channels. capsaicin. The major difference between 6-

shogaol and capsaicin is that the C═C bond is located at the tip of the

tail in capsaicin, whereas it is at base of the tail in 6-shogaol.

Although, shifting the C═C bond limits the rotational freedom of

the tail of 6-shogaol, 6-shogaol represents the strongest agonist of

TRPV1 among the ginger compounds (110). In comparison to 6‐

shogaol, 6‐gingerol is slightly weaker in its potency to induce TRPV1

activity. This might be due to the presence of a hydroxyl group

instead of a double bond in the tail of 6-gingerol that reduces its

lengths. Finally, zingerone is a weak agonist for TRPV1 channels that

might be explained by the shortness of its aliphatic tail. Altogether,

the study suggests that the length of the aliphatic tail, the presence or

absence of the hydroxyl group, and the position of the C═C bond in

the tail all might influence the ability of ginger phenolics to bind and

activate TRPV1 (110).

In a rat model of I/R injury 6-gingerol was found to inhibit

NLRP3-mediated inflammation and neuronal apoptosis, while it
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upregulated autophagy (111). The mechanistic findings indicate

that 6-gingerol exerts anti-apoptotic and anti-inflammatory effects

during cerebral I/R injury via dissociating TRPV1 from Fas-

associated factor 1 (FAF1), which is able to modulate the

sensitivity and thus the activity of TRPV1 to various stimuli.

The ligand-induced activation of TRPV1 by ginger compounds

in non-neuronal cell types is poorly characterized. So far, only one

study investigated whether the ligand-induced activation of TRPV1

by 6-gingerol is able to affect the functionality of neutrophils (50).

The analyses showed that 6-gingerol increased intracellular Ca2+

concentrations and the expression of common surface markers such

as CD11b and CD66b in neutrophils. Moreover, 6-gingerol

enhanced fMLP-stimulated CXCL8 secretion and ROS production

that could be reversed by pharmacological inhibition of TRPV1.

Here the authors applied 6-gingerol at a low dose of 50 nM, which is

a dietary relevant concentration that could be reached in blood

plasma after consumption of 1 liter of ginger tea (50). In contrast, 50

µM of geranylacetone, a natural sesquiterpenoid, acting as a TRPV1

agonist inhibited fMLP-induced migration of neutrophils and

CXCL8-induced intracellular Ca2+ mobilization (112). These

observations suggest that lower concentrations of TRPV1 ligands

might induce immune cell functions, while higher TRPV1 ligand

concentrations in the µM range rather inhibit immune responses.

Therefore, further studies are needed to reveal the exact mode of

action of ginger phenolics on TRPV1.

Figure 3D shows that acting through TRPV1, various ginger

phenolics might affect the activity of various signaling pathways.
5 Concluding remarks and
future perspectives

In this review, our goal was to compile the most relevant

findings on the immunomodulatory actions of the major ginger

phenolics. We mainly focused on the anti-inflammatory effects of

these compounds on different immune cells and presented a variety

of studies, which demonstrated the possible mode of their anti-

inflammatory actions. Though, comparative studies are sparse,

most of the findings indicate that 6-shogaol exhibit a stronger

anti-inflammatory and antioxidant capacity than 6-gingerol that

might be attributed to the presence of the a,b-unsaturated ketone

moiety in its skeleton. Although the exact mechanism of action of

ginger-derived bioactive compounds are not yet fully elucidated,

data show that the application of these compounds results in the

successful inhibition of common signaling pathways such as the

NF-kB and PI3K/Akt/mTOR signaling cascades that consequently

leads to the suppression of inflammatory responses by immune

cells. Interestingly, contradictory results were obtained regarding

the action of gingerols and shogaols on the activity of MAPK

signaling components; however, the reason for the varying results

has not been revealed yet. Research data summarized above further

suggest that ginger phytochemicals exert their pleiotropic effects via

targeting multiple regulatory molecules including AMPK, PPARg,
NRF2 and also TRPV1. In addition, recent in silico molecular

docking and molecular dynamics stimulation studies revealed that

6-gingerol has a binding affinity towards COX-1/2 and
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5- lipoxygenase, thus it has the potential to directly target various

enzymes associated with inflammation (113).

Ginger has been used traditionally as an herbal medicine for

the treatment of many maladies, and due to their potent

immunomodulatory capacity several reports proposed ginger-

derived bioactive compounds as candidates for the management

and prevention of autoimmune diseases. Nevertheless, clinical

studies are lacking, probably due to the poor water solubility and

adsorption of ginger phenolics. Among the organic solvents, ethanol

has been proposed as an optimal solvent since it is able to retain the

bioactivity of ginger compounds (114, 115). Pharmacokinetic studies

also revealed that once ginger is consumed gingerols and shogaols are

absorbed quickly and are majorly present in the form of water soluble

glucuronide conjugates in the human plasma (74, 116). Although the

level of ginger phenolics and their metabolites is low and drops

quickly in the serum, experiments with mice demonstrated that

gingerols and shogaols may reach higher concentrations in tissues

in comparison to the serum levels due to the accumulation of free and

conjugated forms of ginger phenolics in various organs (73).

Nevertheless, further studies are needed to increase the solubility,

stability, half-life time and thus the therapeutic efficiency of ginger

phenolics. Recently, more and more projects are focusing on the

development of novel formulation techniques and drug delivery

systems to increase the efficacy and to reduce the toxicity of the

bioactive compounds of ginger (104, 117–120). Current studies

indicate that nanoformulation, ensuring a sustained release of ginger

constituents, might provide an effective delivery system. Possible

nanotechnological approaches include carriers, such as nanovesicles,

exosome-like nanoparticles, nanostructure lipid carrier, and emulsions

(20). Optimization of nano-drug delivery systems for the targeted

delivery and controlled release of ginger phenolics is still in its infancy;

however, it is feasible that in the future ginger supplements might

provide an alternative or most probably a complementary therapeutic

approach to treat various inflammatory and autoimmune disorders.
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