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Establishment of a chemokine-
based prognostic model and
identification of CXCL10+ M1
macrophages as predictors of
neoadjuvant therapy efficacy
in colorectal cancer
Abudumaimaitijiang Tuersun1,2,3†, Jianting Huo1,2†, Zeping Lv1,2†,
Yuchen Zhang1,2, Fangqian Chen1,2, Jingkun Zhao1,2,
Wenqing Feng1,2, Zhuoqing Xu1,2, Zhihai Mao1,2*, Pei Xue1,2*

and Aiguo Lu1,2*

1Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China, 2Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong
University School of Medicine, Shanghai, China, 3Department of General Surgery, Second People’s
Hospital, Kashi, Xinjiang Uygur Autonomous Region, China
Background: Although neoadjuvant therapy has brought numerous benefits to

patients, not all patients can benefit from it. Chemokines play a crucial role in the

tumor microenvironment and are closely associated with the prognosis and

treatment of colorectal cancer. Therefore, constructing a prognostic model

based on chemokines will help risk stratification and providing a reference for

the personalized treatment.

Methods: Employing LASSO-Cox predictive modeling, a chemokine-based

prognostic model was formulated, harnessing the data from TCGA and GEO

databases. Then, our exploration focused on the correlation between the

chemokine signature and elements such as the immune landscape, somatic

mutations, copy number variations, and drug sensitivity. CXCL10+M1 macrophages

identified via scRNA-seq. Monocle2 showed cell pseudotime trajectories, CellChat

characterized intercellular communication. CytoTRACE analyzed neoadjuvant

therapy stemness, SCENIC detected cell type-specific regulation. Lastly, validation

was performed through multiplex immunofluorescence experiments.

Results: A model based on 15 chemokines was constructed and validated. High-

risk scores correlated with poorer prognosis and advanced TNM and clinical

stages. Individuals presenting elevated risk scores demonstrated an increased

propensity towards the development of chemotherapy resistance. Subsequent
Abbreviations: GEO, Gene Expression Omnibus; nCRT, neoadjuvant chemoradiotherapy; pCR, pathological

complete response; NpCR, Non pathological complete response; TCGA, The Cancer Genome Atlas; scRNA-

seq, Single-cell RNA sequencing; TME, Tumor microenvironment; LASSO, Least absolute shrinkage

operator; OS, Overall surviva; DFS, Disease-free survival; PFS, Progression-free survival; GDSC, Genomics

of Drug Sensitivity in Cancer; OXPHOS, Oxidative phosphorylation; SCENIC, Single-cell Regulatory

Network Inference and Clustering tool.
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scRNA-seq data analysis indicated that patients with higher presence of

CXCL10+ M1 macrophages in tumor tissues are more likely to benefit from

neoadjuvant therapy.

Conclusion:We developed a chemokine-based prognostic model by integrating

both single-cell and bulk RNA-seq data. Furthermore, we revealed epithelial cell

heterogeneity in neoadjuvant outcomes and identified CXCL10+ M1

macrophages as potential therapy response predictors. These findings could

significantly contribute to risk stratification and serve as a key guide for the

advancement of personalized therapeutic approaches.
KEYWORDS

colorectal cancer, neoadjuvant therapy, chemokines, cancer immunity, tumor
microenvironment, prognosis
Introduction

Colorectal cancer (CRC) manifests as one of the most

common malignant neoplasms worldwide, holding the third

position in terms of incidence and emerging as the second

primary source of cancer-induced fatalities globally (1).

Estimates predict that the United States will witness 153,020

fresh instances and 52,550 mortalities from colorectal cancer in

2023. Despite continuous advancements in treatment strategies

and healthcare standards, the prognosis remains poor for most

colorectal cancer patients. This is predominantly a consequence of

the late-stage diagnosed that is common among these patients,

and the outcomes after radiotherapy and chemotherapy are still

far from satisfactory (2). The primary therapeutic approach for

CRC is surgical resection. Nevertheless, the effectiveness of solely

relying on surgical intervention is not fully satisfactory. Some

patients are unable to preserve the anus, and there is a high risk of

postoperative recurrence, which adversely affects their quality of

life. Preoperative neoadjuvant chemoradiotherapy (nCRT) can

effectively downstage the tumor, enhance the rate of curative

resection, and improve the postoperative anal preservation rate

(3). Nevertheless, nCRT efficacy in improving long-term survival

rates is limited, and it may induce postoperative complications

and long-term toxicity. Additionally, roughly one in five patients

with locally advanced colorectal cancer may demonstrate a less

than satisfactory response to nCRT, potentially missing the

optimal opportunity for curative surgery. Consequently, future

research should focus on integrating multiple biomarkers to

develop predictive models, aiming to enhance prognosis and

treatment outcomes (4). Therefore, a profound understanding of

tumor characteristics and the identification of reliable prognostic

markers are crucial for providing personalized treatment

approaches aimed at elevating the life expectancy of individuals

diagnosed with colorectal cancer.
02
Chemokines, small molecules of 8–12 kDa, are categorized into

four primary subclasses: C, CC, CXC, and CX3C, based on the location

of their N-terminal cysteine residues. To date, fifty distinct chemokine

ligands and their nineteen matching receptors are recognized in the

human system.Within oncological processes, chemokine signaling and

the chemotaxis of diverse cellular entities is pivotal for sculpting the

tumor microenvironment (TME), significantly impacting tumor

progression, metastasis, and the establishment of immune responses

via the mobilization and stimulation of inherent effector cells (5, 6).

Chemokines significantly contribute to cancer therapy, especially in

enhancing the effectiveness of checkpoint blockade therapy, Methods

that propel the manifestation of chemokines attracting T cells, or

counteract the chemokine inhibitory trajectory, which is responsible for

the mobilization of myeloid-derived suppressor cells and regulatory T

cells, possess the capability to boost the receptiveness of

immunotherapy in immunologically inactive and morphologically

altered tumors (7). Certain antagonists targeting chemokine receptors

have been validated as potential therapeutic targets in preclinical

research pertaining to colorectal cancer. For instance, in phase I trial

revealed that the CXCR4 inhibitor exhibited clinically safe and well-

tolerated antitumor activity in CRC and other solid tumors, with a

primary response rate of 20% of stable disease (8). In a different phase I

study, employing CCR5 antagonists for managing advanced resistant

CRC with liver metastases exhibited anti-tumor effectiveness (9).

Nonetheless, an exhaustive assessment of chemokines’ influence on

the prognosis and effectiveness of neoadjuvant treatment for CRC

remains inadequate.

In our research, we constructed a chemokine-based prognostic

model. Subsequently, we demonstrated that a chemokine-related

model contributes to distinguishing the prognosis, immune

infiltration, and drug sensitivity of CRC patients. Furthermore, we

explored the heterogeneity between neoadjuvant therapy efficacy

and identified CXCL10+M1 macrophages as potential biomarkers

for predicting neoadjuvant therapy efficacy.
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Materials and methods

Data collection

As the train group, raw bulk transcriptome counts data and

clinicopathological information of colon adenocarcinoma (COAD)

and rectum adenocarcinoma (READ) were obtained from the

Universi ty of Cal i fornia Santa Cruz (UCSC, https : //

xenabrowser.net/datapages/), with the TCGA cohort comprising a

merged dataset of COAD and READ. The training set included data

from 581 CRC patients sourced from The Cancer Genome Atlas

(TCGA), featuring comprehensive clinicopathological profiles and

exhaustive follow-up data. Subsequently, ensembl IDs were

converted to official gene symbols, and the data underwent

normalization and log2 transformation. As the test group, we

retrieved survival outcomes and gene expression profiles for an

independent cohort of 556 CRC cases from the Gene Expression

Omnibus (GEO) databases (https://www.ncbi.nlm.nih.gov/geo).

Besides, GSE45404 (Affymetrix Human Genome U133 Plus 2.0

Array) datasets were applied to analyze the neoadjuvant

chemoradiotherapy response of locally advanced rectal cancer.

Somatic mutation profiles and copy number alteration data were

acquired through the application of the R package “TCGAbiolinks”.

ScRNA-seq data for tumors and adjacent normal tissues from 10

CRC patients were collected from dataset GSE146771 (Smart-seq2).

In addition, scRNA-seq data of tumor tissue from 13 pathological

complete response (pCR) and 4 Non pathological complete

response (NpCR) patients after neoadjuvant immunotherapy for

colorectal cancer were collected from the GSE205506 dataset. The

baseline characteristics of CRC patients in the TCGA and

GSE39582 datasets were detailed in Supplementary Table S1.
Identification of differentially expressed
prognostic chemokines

Differentially expressed genes (DEGs) between CRC samples

and normal colorectal samples (P value< 0.05, |logFC| ≥ 1) were

obtained using the “limma” R package. official gene symbols name

was used to screen for differentially expressed prognostic

chemokines (DEPCs). Prognostic chemokines were identified by

conducting univariate Cox regression analysis using the “survival”

R package; these selected chemokines were identified as candidate

DEPCs. which were screened again based on the LASSO

regression to preclude model overfitting. The optimal penalty

coefficient lambda value was determined via 10-fold cross-

validation using the “glmnet” R package. The risk score for each

patient was computed using the formula: Risk score =on
i=1(expi

�coefi), In this formula, expidenotes the expression level of

each chemokine, while coeficorresponds to its associated

coefficient. Subsequently, the risk score signature was applied to

validation cohort, GSE39582 cohort as well as the neoadjuvant

chemoradiotherapy GSE45404.
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Construction and validation of
prognostic model

Univariate and multivariate Cox regression analyses were

conducted to confirm the independent prognostic factor of the

risk score. The forest plot unveiled the outcomes. Kaplan-Meier

curves were constructed using the “survminer” R package, and the

log-rank test was utilized to differentiate overall survival (OS),

progression-free survival (PFS), or disease-free survival (DFS)

outcomes among high-risk and low-risk groups.

We utilized the “RColorBrewer” software in accordance with

the solid tumor immune classification developed by Thorsson et al.,

which includes wound healing (C1), IFN-g dominance (C2),

inflammation (C3), lymphocyte depletion (C4), immune silencing

(C5), and TGF-b dominance (C6) (10). Subsequently, we compared

the differences in immune classifications among different

risk groups.

A prognostic nomogram was constructed based on Clinical

features including age, T stage and risk score, utilizing multivariable

Cox and stepwise regression analyses. The “regplot” package

facilitated the display of the nomogram plot. Calibration plots

and Decision Curve Analysis (DCA) were employed to assess the

clinical applicability of the model. Furthermore, The R package

“timeROC” was employed to carry out time-dependent receiver

operating characteristic (ROC) curve analysis, with the aim of

identifying the specificity and sensitivity of the risk signature for

survival rates at intervals of 1, 3, and 5 years.

The “surv_cutpoint” algorithm from the “survival” R package

was utilized to identify the ideal cut-off value for the risk score.

Patients were subsequently divided into two categories - low risk

and high risk - according to this optimal cut-off value.
Functional enrichment analysis

Utilizing the “limma” R package, differentially expressed genes

between the high-risk and low-risk categories were identified (|log

FC|>0.585, P<0.05). Subsequently, the ‘clusterProfiler’ R package

facilitated functional annotation through Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG).
Gene set enrichment analysis

In order to investigate the molecular and biological distinctions

between the two categories, The “c2.cp.kegg.v2023.1.Hs.symbols.gmt”

and “h.all.v2023.1.Hs.symbols.gmt” gene sets from the molecular

signature database were utilized as the reference in the conduct of

Gene Set Enrichment Analysis (GSEA). We considered pathways to

reach statistical significance when exhibiting a normalized P value less

than 0.05 coupled with a false-discovery rate (FDR) q value under 0.25.

The top enriched pathways were determined by ranking the

normalized enrichment scores (NESs). We conducted gene set
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variation analysis utilizing the GSVA package (version 1.46.0).

Differential pathway activity between the non-pathological complete

response (NpCR) and pathological complete response (pCR) groups

was quantified employing the limma package (version 3.54.2). In

addition, the standard procedure of the “AUCell” R package is used

to explore the pathway activity of individual cells.
Evaluation of immune cell infiltration

The disparity in immune cell infiltration between the two

categories was assessed via the CIBERSORT algorithm. This tool

utilizes expression data to depict cell composition in complex

tissues from preprocessed gene expression profiles (11).

CIBERSORT’s LM22 delineates 22 immune cell subsets, accessible

from the CIBERSORT web portal.
Somatic mutation and copy number
variation analysis

Utilization of the “Maftools” R package facilitated the analysis

of gene mutations across different risk subgroups. Subsequently, the

exploration of amplifications and deletions with CNV data was

enabled by GISTIC2.0.
Drug sensitivity prediction

Harnessing resources from Genomics of Drug Sensitivity in

Cancer (GDSC) pharmacogenomics repository, an examination was

conducted on chemotherapeutic response profiles of patients within

TCGA dataset. Calculation of half-maximal inhibitory

concentration (IC50) was achieved through “oncoPredict” R

package. Specifically, we focused on several drugs commonly

employed in colorectal cancer neoadjuvant chemotherapy and

explored the variations in sensitivity observed between categories

of low risk and high risk.
Consensus clustering analysis

Based on the chemokine model, the k-means approach was

employed to discern and categorize the patient into molecular

subtypes. The determination of cluster quantity and their

robustness was conducted using the “ConsensusClusterPlus”

package, with 50 iterations to confirm the stability of the

subtyping. Subsequently, an unsupervised clustering algorithm

served to categorize patients into varied subtype classifications

(cluster A, cluster B, and cluster C) based on the expression of

prognostic DEGs for further analysis.

To assess immune cell infiltration and the and clinical value of

each consensus clustering subtype, single-sample gene set

enrichment analysis (ssGSEA) and Kaplan-Meier survival analysis

were performed.
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Analysis of neoadjuvant therapy efficacy

For each individual within the GSE45404 cohort, a risk score

was computed. Following the median risk score, patients were

subsequently partitioned into either low- or high-risk categories.

Then we compared the proportion of response (TRG 1 and 2)

versus Non-response (TRG 3, 4 and 5) between low - and high -risk

groups, CIBERSORT and ssGSEA were utilized to quantify the

immune cell infiltration of each sample. Subsequently, a

comparison was conducted to evaluate the disparities in immune

cell infiltration and expression of Model-based chemokine

signatures between the response and Non-response groups.
Single−cell RNA sequencing analysis

Analysis of the scRNA data was performed utilizing Seurat (v4.3.0.1)

(12). For the GSE146771 (Smart-seq2 platform) datasets (13) individual

cells with gene counts exceeding 7000 or falling below 700were excluded,

Additionally, cells exhibiting over 10% of mitochondria-derived UMI

counts and erythrocyte-derived UMI counts surpassing 20% were

considered of suboptimal quality and subsequently excluded. For the

GSE205506(10X Genomics) dataset individual cells with gene counts

exceeding 5000 or falling below 500 or genes per cell identified or those

possessing over 20% of mitochondria-derived UMI counts were

evaluated as subpar in quality, leading to their subsequent removal.

Initial data normalization was performed using the ‘NormalizeData” and

“ScaleData” routines. This was followed by the identification of the 2000

most variable genes through the “FindVariableFeatures” function.

Dimensionality reduction was achieved via principal component

analysis (PCA) leveraging these variable genes, with a resolution

parameter set at 0.8. For the GSE205506(10X Genomics) dataset (14)

set the resolution parameter to 0.4. Tomitigate batch-related variabilities,

an integration of datasets across different experimental conditions was

conducted using the “RunHarmony” function. Marker gene candidates

were ascertained utilizing the “FindAllMarkers” function. Annotation of

diverse cellular populations leveraged the expression profiles of

established marker genes as referential benchmarks. Visualization of

the cellular landscape via the tSNE algorithm.
Pseudotime trajectory analysis

For the elucidation of cell differentiation trajectories, Monocle2

(version 2.26.0) was employed to conduct pseudotime analyses (15).

For the trajectory analysis, genes exhibiting a mean expression level

exceeding 0.1 were selectively included, This was followed by the

application of the differentialGeneTest() function, which served to

identify and exclude genes for cell ordering purposes, adhering to a

stringent q-value threshold of less than 0.01. Dimensionality

reduction was performed utilizing the reduceDimension()

function, which integrates the DDRTree algorithm. All analytical

procedures were executed using the functions” default parameters.

The final cell ordering was accomplished through the

“orderCells” function.
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Intercellular communication

The intercellular communication analysis was carried out with

the assistance of the “CellChat”(1.6.1) R package, this tool

capitalizes on established knowledge of signaling ligand-receptor

interactions and their related cofactors, facilitating the prediction of

potential intercellular communication networks derived from

scRNA-seq data (16). Each group was subjected to individual

analysis, with the “mergeCellChat” function being used to

evaluate the distinctions existing among the two categories. The

receptor-ligand interaction database “CellChatDB.human” was

selected, and default parameters were employed.
Predicting differentiation potential
with CytoTRACE

The validation of the CytoTRACE algorithm, conducted by

Gulati et al., utilized extensive datasets to demonstrate its

superiority over existing computational methods for cells

differentiation. This algorithm effectively identifies predictive

factors for cell differentiation status, independent of tissue type,

species, or platform (17). In the assessment of differentiation

potential within malignant cell populations, the R package

CytoTRACE (version 0.3.3) was deployed to derive CytoTRACE

scores. The CytoTRACE scoring system is scaled from 0 to 1, with

elevated scores denoting an augmented propensity for cellular

differentiation. We further applied CytoTRACE to epithelial cells,

endothelial cells, cancer-associated fibroblasts, and fibroblast

subsets, and compared their differentiation potential between the

pCR and NpCR groups.
Cell-type-specific regulon analysis

The enrichment of pivotal transcriptomic factors in

macrophage clusters was examined using single-cell regulatory

network inference and clustering [SCENIC (1.3.1)]. Leveraging

the SCENIC workflow (18), Genes that were manifested in no less

than 3% of the samples and cells exhibiting more than 0 unique

molecular identifiers were retained for further analysis. Following

this, the expression levels were normalized by log2(filtered expr+1).

Subsequently, GENIE3 was used to identify the target genes

potentially regulated by transcription factors (TFs). “RcisTarget”

was employed to perform DNA-motif enrichment analyses,

enabling the detection of direct binding sites (regulons). AUCell

(1.22.0) was applied for the assessment of individual regulon

activities within single cells.
Tissue microarray and patients
and follow-up

In this study, for the purpose of validation analysis, we included

two distinct cohorts of patients with CRC from Ruijin Hospital,

Shanghai, China. The cohort 1 consisted of 70 patients whose tissue
Frontiers in Immunology 05
samples were collected from surgeries performed between 2010 and

2011, with follow-up data gathered bi-monthly through outpatient

visits or telephone communications. Inclusion criteria encompassed

a pathological diagnosis of colorectal cancer, no preoperative

radiotherapy or chemotherapy, and no history of other

malignancies. The collection of follow-up data was completed by

August 2015. The cohort 2 included 72 patients, with tissue samples

obtained from surgeries conducted between July 2020 and October

2023. The evaluation of tumor regression grading conformed to the

criteria established in the 8th edition of the American Joint

Committee on Cancer’s Tumor Regression Grading system,

utilizing pathological assessments of postoperative tissue samples.

Criteria for inclusion required a pathological diagnosis of colorectal

cancer, receipt of neoadjuvant therapy before surgery, and no

history of other malignancies.
Fluorescence-based multiplex
immunohistochemistry staining

The study followed a standard protocol for tissue sectioning

and immunohistochemical analysis. Tumor tissues and adjacent

normal tissues were fixed in formalin for 24 to 48 hours starting

within 5 minutes post-excision. and then deparaffinized in xylene

and ethanol gradients to obtain 4mm thick sections. The process of

antigen retrieval was carried out in a high-pressure heat repair

procedure utilizing citrate buffer at pH 6.0. Following the blocking

of endogenous peroxidase with 3% hydrogen peroxide, the tissue

sections were pre-incubated with 10% normal goat serum and left

overnight for incubation with primary antibodies, subsequently

followed by the appropriate HRP-conjugated secondary

antibodies for 20 minutes at ambient temperature and a final

step of diaminobenzidine staining. The primary antibodies used

in this study were as follows: CXCL-10 (Proteintech Group,

10937–1-AP), CD163(Abcam, MA, ab182423), and CD68 (Cell

Signaling, 76437T). The secondary antibody was (Sanying

Biotech, SA00013–2) and counterstained with DAPI. The

quantitative analysis was performed by two independent

pathologists, who randomly captured 5 images at 60x

magnification from each IHC-stained slide for scoring. The

scores were then normalized after averaging and log2

transformation, followed by visualization and statistical analysis

using R software.
Statistical analysis

Statistical computation and data visualization were carried out

using R (v4.2.0). Chi-square testing assessed the association between

CRC patient clinicopathological traits and risk categories. Survival

outcomes were analyzed via Kaplan-Meier estimates. Cox regression

models, both univariate and multivariate, pinpointed independent

prognostic indicators. Variable differences across risk cohorts were

evaluated with Wilcoxon’s test, and ANOVA facilitated multi-group

comparisons. Significance was set at P< 0.05. All methodologies

adhered to relevant guidelines and regulations.
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Results

Identification of differentially expressed
prognostic chemokines

In the TCGA cohort, we identified a total of 7632 DEGs

between CRC samples and normal colorectal samples, adhering to

a defined criterion of p value was less than 0.05 and an absolute log2

fold change greater than 1. Out of these, 3703 genes exhibited

upregulation, whereas 3,929 genes were downregulated in CRC

tissues. In order to create a predictive model, we performed LASSO

Cox regression analysis using the expression of the DEPCs. we

successfully filtered out 15 chemokines using the optimal value of

lambda (l), Figure 1A presents a volcano plot illustrating the

distribution of differentially expressed genes, Figure 1B provides

depiction of the trajectory of these expression alterations as

informed by the LASSO regression analysis. Figure 1C shows the

confidence interval for each lambda value. In addition, a network

was constructed to display the overall landscape of the connections

among the chosen chemokines, regulatory links, and prognostic

significance in patients with CRC (Figure 1D). To explore the

interactions among selected chemokines, PPI analysis was

conducted to elucidate the molecular interplay , and

operationalized by setting the minimum interaction score at a

high-confidence level of 0.9. (Figure 1E). and then interaction

information of the PPI network imported to Cytoscape for

visualization. Finally, Utilizing the cytoHubba algorithm, our

investigation identified CXCL10, CXCL11, CXCL8, CXCL1,

CXCL13, CXCL14, CXCR5, CCR9, and CCR8 as hub genes

(Figure 1F). Additionally, Cox univariate and multivariate

regressions were conducted to assess the prognostic independence

of the signature. univariate analysis corroborated a significant

correlation between the signature’s risk score and OS in CRC

patients within the TCGA cohort. (HR=142.724, p< 0.001;

Figure 1G) and GSE39582 cohort (HR=13.963, p< 0.001;

Figure 1H). Subsequent multivariate Cox regression analysis

corroborated the risk score as an independent prognostic factor

for OS in the TCGA cohort (HR=41.894, p< 0.001; Figure 1I) and

GSE39582 cohort (HR=5.836, p =0.003; Figure 1J).
Assessment of chemokine related
prognostic model

Patients were stratified into low- and high-risk categories

according to the optimal cutoff in each cohort, Elevated fatality

incidences in the high-risk categories denoted poorer outcomes in

both TCGA cohort (Figure 2A) and GSE39582 cohorts (Figure 2B).

Disparities in risk scores were assessed among clinical-pathological

categories, revealing significant variance with T, N, M, and clinical

stages. Higher stages paralleled increased risk scores (Figure 2C).

Significant survival discrepancies were observed, with high-risk

individuals demonstrating notably reduced overall survival within

both TCGA cohort (Figure 2D, P<0.0001) and GSE39582 cohort

(Figure 2E, P<0.0001), aligning with Progression-Free Survival
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(PFS) in the TCGA cohort (Figure 2F, P<0.0001) and DFS in

GSE39582 cohort (Figure 2G, P<0.0001).

Exploration of clinicopathological variables within TCGA

cohorts uncovered substantial differences in TNM classifications

and clinical stage across risk categories (Figure 3A, p< 0.05).

Immune subtypes also demonstrated a significant association with

risk categories. Elevated risk corresponded to more severe disease

progression, highlighting the predictive capacity of chemokine-

based risk scores for colorectal cancer prognosis. Utilizing

multivariate Cox regression, a nomogram incorporating age, T

stage, clinical stage, and risk score was constructed to predict 1-, 3-

, and 5-year survival probabilities in TCGA (Figure 3B) and

GSE39582 cohorts (Figure 3C). Time-dependent ROC curves

and corresponding AUC values substantiated the risk score’s

predictive accuracy for OS in TCGA cohort (AUC of 1-year =

0.792; AUC of 3-year =0.813; AUC of 5-year = 0.798; Figure 3D),

and GSE39582 cohort(AUC of 1-year = 0.832; AUC of 3-year

=0.741; AUC of 5-year = 0.726; Figure 3E).Time-dependent ROC

curve corroborated the nomogram’s superior prognostic precision

relative to traditional clinicopathological features in TCGA cohort

(Figure 3F) and GSE39582 cohort (Figure 3G). Calibration

assessments affirmed model precision for predicting 1-, 3-, and

5-year survivals. Comparative decision curve analysis (DCA)

underscored the nomogram’s enhanced predictive capacity over

other markers within TCGA cohort (Figure 3H) and GSE39582

cohort (Figure 3I), underscoring its prognostic utility in

clinical practice.
Potential mechanism analysis of
chemokine-related gene signature

To elucidate the underlying mechanisms contributing to the

disparate outcomes in high-risk versus low-risk categories, GO,

KEGG, and GSEA analyses were conducted. DEGs were identified

with a threshold of log2|FC| > 0.585 and P< 0.05. GO enrichment

analysis showed DEGs prominently associated with chemokine-

mediated signaling pathway, immunoglobulin-mediated immune

response, and B cell mediated immunity (Figures 4A, B).

Furthermore, KEGG pathway analysis revealed notable

enrichments in the Calcium signaling pathway, Cytokine-cytokine

receptor interaction, and Cell adhesion molecules (Figure 4C). The

ESTIMATE analysis showed reduced immune scoring in the high-

risk categories versus the low-risk categories (Figure 4D).

Furthermore, GSEA demonstrated significant enrichment of

Epithelial Mesenchymal Transition (EMT) gene sets within the

TCGA Cohort. (Figure 4E). Similarly, the GSE39582 Cohort gene

sets were enriched in EMT, hypoxia, interferon gamma response,

mtorc1 signaling, and cytokine-cytokine receptor interaction

pathway (Figure 4F). In conclusion, our findings suggest that the

chemokine-related risk score signature is primarily associated with

tumor metastasis, tumor immunity, and drug resistance in colorectal

cancer. The GISTIC2.0 results indicated an elevated CNV rate,

mainly deletions, in high-risk patients (Figure 4G), in contrast to a

lesser CNV rate in the low-risk demographic (Figure 4H). The
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1400722
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tuersun et al. 10.3389/fimmu.2024.1400722
location of CNV of all chemokine-related genes on chromosomes was

exhibited in Figure 4I. We determined the frequency of CNV in

selected chemokine-related genes and most genes have amplification

and deletion (Figure 4J). Ultimately, we evaluated the microsatellite
Frontiers in Immunology 07
status distributions across groups delineated by risk level, discovering

an increased incidence of microsatellite instability-low (MSI-L) and a

diminished incidence of microsatellite stability (MSS) within the

high-risk population (Figure 4K).
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FIGURE 1

Identifification of differentially expressed prognostic chemokines (A) Volcano plot of DEPCs between Tumor and Normal. Blue and red dots denote
genes with upregulation in Normal and Tumor tissues, respectively. (B, C) The cvfit and lambda trace plots illustrate the execution of LASSO
regression adhering to the minimum criteria. (D) A network graphically represents the interplay among selected chemokines. Connective lines
between elected chemokines reveal interactions, with line thickness indicating association strength. Colors blue and pink differentiate between
negative and positive correlations, respectively. (E) A PPI network of DEPCs. (F) Hub genes identifited by betweenness centrality according to
cytoHubba plug-in. (G, I) Outcomes from univariate and multivariate Cox regression assessments of risk scores and clinicopathological attributes for
OS within the TCGA cohort. (H, J) Outcomes from univariate and multivariate Cox regression assessments of risk scores and clinicopathological
attributes for OS within GSE39582 cohort. PPI: protein-protein interaction.
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The mutational landscape of chemokine-
related prognostic models in CRC

In order to elucidate potential disparities in gene mutation

patterns between the high-risk and low-risk categories, somatic

mutation profiling was undertaken. Generally, mutation rates in
Frontiers in Immunology 08
the high-risk categories were observed to be elevated compared to

those in the low-risk categories. Specifically, TP53 (66% vs.57%),

SYNE1(33% vs.25%) and MUC16(31% vs.23%) were the most

prevalent in high-risk group. (Supplementary Figures S1A–S1C).

By conducting mutual exclusion and cooperation analysis among

mutated genes, Gene mutation synergies were found among most
A B

C

D E

F G

FIGURE 2

Assessment of chemokine Related Prognostic Model. (A, B) Risk score and corresponding overall survival outcomes in TCGA and GSE39582 cohorts,
respectively. (C) Relationship of risk score with clinicopathological features attributes such as T, N, M, along with clinical stage. (D, E) Kaplan-Meier
survival plots delineate OS among high- and low-risk groups in TCGA cohort and GSE39582 cohort, respectively. (F) Kaplan-Meier survival plots
delineate PFS among high- and low-risk groups in TCGA cohort. (G) Kaplan-Meier survival plots delineate DFS among high- and low-risk groups in
GSE39582 cohort.
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genes in the both high-risk (Supplementary Figure S1D) and low

risk group (Supplementary Figure S1E), notable genes like TTN,

SYNE1, and MUC16 were included. Additionally, a substantial

mutational mutual exclusion was observed between TP53-MUC16

and TP53-PCLO in the low risk categorized. (Supplementary

Figure S1E). The distribution of TP53 and SYNE1 mutation

sites across the protein structure were shown in (Supplementary
Frontiers in Immunology 09
Figure S1F). Additionally, the correlation of the risk score and

TMB was investigated. An elevation in TMB was discerned within

the categories deemed high-risk when contrasted with the

categories of lower risk, but there was no statistical significance

(p= 0.13, Supplementary Figure S1G), and we found a weak

positive interrelation of risk score with TMB (log 10) (r = 0.1 6,

p< 0.05, Supplementary Figure S1H).
A

B C

D
E

F G

H I

FIGURE 3

Assessment of chemokine Related Prognostic Model. (A) Heatmap and table illustrate the variance in immune subtypes and diverse
clinicopathological features between two categories. (B, C) Nomograms forecasting 1-, 3-, and 5-year overall survival probabilities within TCGA and
GSE39582 cohorts. (D, E) ROC analysis illustrates the nomogram’s efficacy in forecasting 12-, 36-, and 60-month overall survival across TCGA and
GSE39582 cohorts. (F, G) Comparison of prognostic accuracies via ROC for nomogram, risk score and other variables in TCGA and GSE39582
cohorts. (H, I) Calibration plots and decision curve analysis for the nomogram are illustrated for both TCGA and GSE39582 cohorts. *P<0.05;
**P<0.01; ***P<0.001.
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FIGURE 4

Potential mechanism analysis of chemokine-related gene signature. (A, B) Bar and Circos plots illustrate the GO enrichment analysis for DEGs,
contrasting the high-risk with the low-risk categories in the TCGA cohort. (C) Bar graph representation of KEGG enrichment analysis comparing
DEGs within high-risk versus low-risk categories in the TCGA cohort. (D) Associations of risk score with immune and stromal scores within the
TCGA cohort. (E, F) Gene sets enriched in high-risk categories in TCGA cohort and GSE39582 cohort, respectively. (P< 0.05, FDR< 0.25).
(G) Amplifcation and deletion regions detected in the high-risk categories in TCGA cohort. (H) Amplifcation and deletion regions detected in the
low risk group in TCGA cohort. (I) Locations of CNV alterations in chemokine-related genes on 23 chromosomes. (J) Incidence of CNV gain,
loss, and non-CNV among chemokine-related genes. (K) The distribution of microsatellite status across high-risk and low-risk classifications
within the TCGA cohort. **p< 0.01.
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Immune cell infiltration characteristics and
drug sensitivity analysis in chemokine-
related subgroups

Expression profiles of immune checkpoint genes were

contrasted between high-risk and low-risk categories. Notably,

Figure 5A depicts substantial disparities in established

immunotherapeutic markers, including PDCD1, CD274, CTLA4,
Frontiers in Immunology 11
and HHLA2 between the two categories. Furthermore, Correlation

assessments indicated a robust positive linkage of risk scores with

immune-inhibitor molecules, including PDCD1 and CD274, while

a negative correlation was observed with CTLA4 and HHLA2

(Figure 5B). Moreover, we characterized the immune cell

infiltration profiles across individuals in both TCGA and

GSE39582 cohorts via the CIBERSORT algorithm. Subsequently,

we evaluated the immune cell composition variance between high-
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FIGURE 5

immune checkpoints and Immune cell infiltration characteristics (A). The boxplots illustrate differential expression of immune checkpoint genes in
high-risk versus low-risk categories. (B) Association of risk score with immune checkpoint markers (PDCD1, CD274, CTLA4, HHLA2). (C, D) Boxplots
contrast 22 immune cell profiles between high-risk and low-risk groups in TCGA and GSE39582 cohorts. (E, F) Correlation between model genes
and abundance of immune cells in TCGA cohort and GSE39582 cohort, respectively. (G-J) Kaplan-Meier curve of OS for CRC patients grouped by
the infiltration or expression levels. *p< 0.05, **p< 0.01, ***p< 0.001, and ****p< 0.0001, ns, No significance.
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risk and low-risk categories within each cohort, revealing elevated

levels of M0 and M2 macrophages, along with regulatory T cells, in

the high-risk category, while the abundance of activated CD4

memory T cells, resting CD4 memory T cells and plasma cells

was elevated in the low-risk group compared with the high-risk

group (Figures 5C, D). Correlation analysis indicated a robust

positive association between CXCL10 expression and M1

macrophage prevalence in both the TCGA and GSE39582

cohorts. (Figures 5E, F, p<0.01). Additionally, we found that the

infiltrating abundance of M1 macrophages, M2 macrophages, CD4

memory activated T cells and expression levels of CXCL10 was

significantly related to OS rate in GSE39582 cohort. Specifically,

patients with higher infiltration of M1 macrophages, CD4 memory

activated T cells and elevated expression of CXCL10 exhibited a

better prognosis (Figures 5G–I, p<0.05), while patients with higher

infiltration of M2 macrophages had a worse prognosis (Figure 5J,

p<0.05). Furthermore, our research demonstrated a direct

correlation between the risk score and the prevalence of M2

macrophages (Supplementary Figure S2A, p<0.05), alongside an

inverse correlation with the occurrence of plasma cells.

(Supplementary Figure S2B, p<0.05).

To probe the differential drug resistance across risk categories,

IC50 metrics for various chemotherapy drug or inhibitor in TCGA

cohort samples. Upon analysis of 198 compounds’ sensitivity from

the GDSC dataset, 99 demonstrated notably reduced IC50 levels in

the low-risk cohort, in contrast to a mere two in the high-risk group.

Clinically prevalent chemotherapeutic agents are detailed in

Supplementary File 1: Supplementary Figure S2. Notably,

individuals within the high-risk category showed increased IC50

values for agents such as 5-fluorouracil_1073, oxaliplatin_1089,

camptothecin_1003, irinotecan_1088, KRAS (G12C) inhibitor-

12_1885 , and the VEGFR inhibi tor Sorafenib_1085 .

(Supplementary Figures S2C–2H, p<0.05). Data reveal a

heightened likelihood of chemotherapeutic resistance among

patients designated as high-risk. However, they may exhibit

sensitivity to two other drugs, specifically a small molecule

inhibitor was sepantronium bromide_1941 (Supplementary

Figure S2I, p<0.05), and non-small cell lung cancer chemotherapy

drug was Vinorelbine_2048 (Supplementary Figure S2J, p<0.05).

Therefore, these two drugs hold promise for treating colorectal

cancer patients resistant to chemotherapy.
Consensus clustering analysis

To better define the clinical significance and underlying

biological mechanisms of these DEPCs, we performed consensus

clustering analysis based on differentially expressed prognostic

chemokines, the samples from the TCGA cohort were segregated

into three distinct subgroups, referred to as cluster A, cluster B and

cluster C. when K=3, Our analysis discerned the strongest within-

group congruence and the weakest between-group associations

(Figure 6A), which additionally provide optimal cluster

robustness across a range from k=2 to k=9 (Figure 6B). PCA

substantiated notable transcriptional distinctions across the three

identified clusters (Figure 6C). Survival analysis indicated that
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individuals within Cluster C exhibited a more advantageous

prognostic outcome relative to those in Clusters A and B, with

Cluster B correlating with a less favorable prognosis (Figure 6D, p

=0.050). Subsequently, ssGSEA was employed to evaluate the

infiltration of various immune cells across the three Clusters, as

illustrated in Figure 6E, it was observed that cluster B was

characterized by a lack of immune cell infiltration. Finally, we

compared the risk scores of patients in groups A, B, and C, these

findings align with the outcomes of the survival analysis, revealing

that Group B exhibited the most elevated risk score, in contrast,

Group C was associated with the least risk score (Figure 6F).
CXCL10 expression and M1 macrophage
infiltration were associated with efficacy of
neoadjuvant treatment

Evaluating the prognostic capacity of the risk score and

chemokine signature-derived models in forecasting neoadjuvant

treatment response, each subject within the GSE45404 cohort was

assigned a risk score. Following this, stratification into low-risk and

high-risk categories ensued, utilizing the median risk score as the

delineation criterion. Notably, Patients within the low-risk

categories demonstrated significantly enhanced efficacy in

response to neoadjuvant therapy relative to their high-risk

counterparts (52.4% vs.38.1%, Figure 6G). Additionally, non-

responsive patients showed relatively higher risk score compared

to responsive patients, although there was no statistical significance

(Figure 6H). A comparison of model-based chemokine signatures

between response and non-response group patients revealed

indicated elevated expressions of CXCL10 and CXCL11 in the

response group (Figure 6I). Subsequent CIBERSORT analysis

indicated that the response group patients exhibited a higher

infiltration of M1 macrophages (Figure 6J). Correlation analysis

showed a significant positive linkage of CXCL10 and CXCL11

expression with M1 macrophage infiltration (Figure 6K).

Furthermore, ssGSEA assessments indicated that patients from

the response group patients manifested increased penetration of

activated CD4 T cells and immature B cells (Figure 6L). The

outcomes herein align with our prior results. In summary, the

overexpression of CXCL10, activated CD4 T cells, and M1

macrophages not only reduces the risk of CRC and had a better

prognosis but also enhances the efficacy of neoadjuvant therapy,

suggesting their might play an essential role in antitumor immunity.
Identification of chemokine-related
prognostic genes in single−cell
transcriptomics atlas

In order to systematically assess the role of chemokine-related

prognostic genes in the immune microenvironment and tumor

progression of CRC, we use the GSE146771 data set, and retained a

total of 7,343 cells (4,957 from tumor tissue and 2,386 from adjacent

normal tissue) for subsequent analysis after quality control. We

then employed the t-SNE algorithm for scRNA-seq data
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visualization, effectively categorizing cells into 13 distinct clusters

(Figure 7A), Cell clusters were delineated through manual

annotation leveraging established cellular markers, categorizing

them into NK cells (KLRC1, CD160, NKG7), CD8+ T cells

(CD3D, CD8A, GZMK), CD4+ T cells (CD3D, CD4, GZMA),

Epithelial cell (EPCAM, KRT18), plasma cells (MZB1, CD79A),
Frontiers in Immunology 13
M1 macrophage (CD68, CD86, CD80, TREM2), Monocyte

(S100A8, S100A9,CD14), Mast cells (TPSAB1, TPSB2), B cells

(CD79A, MS4A1, CD19), T_01 (NKG7, GZMA), Fibroblast

(ACTA2, COL1A2), T_02 (NKG7, CD8A), Endothelial

(PECAM1, VWF) (Figure 7B). Expression of chemokine-related

prognostic genes in each cell type showed in Figure 7C, Notably,
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FIGURE 6

Consensus clustering analysis and neoadjuvant therapy Efficacy. (A) Heatmap of the consensus matrix delineating three distinct clusters (k = 3)
alongside their respective areas of correlation. (B) Cumulative distribution function profiles for consensus clustering across a range of k values from
2 to 9. (C) PCA analysis showing the robustness and stability of the clustering. (D) Kaplan–Meier plots delineating the disparities in OS between the
three clusters in TCGA cohort. (E) Distinct types of infiltrating immune cells in the three clusters. (F) Comparison of risk scores in three clusters.
(G) The distribution of patients demonstrating a reaction to neoadjuvant treatment in the low- and high-risk groups from GSE45404 cohort.
(H) Comparison of risk scores in response and Non response groups. (I) Comparison of model genes in response and Non response groups.
(J) CIBERSORT analysis for response versus Non response groups. (K) Association between the expression of model genes and the prevalence of
immune cells in the GSE45404 cohort. (L) ssGSEA analysis for response versus Non response groups. *p< 0.05, **p< 0.01, ***p< 0.001.
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FIGURE 7

Delineation of Chemokine-Associated Prognostic Markers in Single-Cell Transcriptome Atlas. (A) t-SNE plot of each cluster delineated by color in
accordance with established marker-defined classifications. (B) Bubble diagrams displaying the expression quantities of signature genes
corresponding to each cellular cluster. (C) Violin plots of model genes expression levels for each cell cluster. (D) t-SNE plot of Macrophage
subclusters colored by cell types. (E) Bubble diagrams displaying the expression quantities of signature genes corresponding to each cellular
subcluster. (F, G) Functional enrichment of GO and KEGG leveraging differentially expressed genes in each cell (H) Macrophage trajectory analysis
delineates two divergent cell destinies colored by cluster. The arrow indicates the likely course of evolution within the trajectory. (I) The heat map
visualizes branching cell trajectories and gene dynamics in Macrophage cells, with columns representing cells and rows denoting genes. Genes are
ranked and divided into three stages based on expression trends, accompanied by corresponding GO annotations on the left. (J) The bar graph
represents the count and intensity of intercellular communications in Normal and Tumor. (K) Bar plot of tumor- or normal- specifc signaling
pathways between each cell types. (L) Heatmaps illustrate the comparative metrics of interaction frequency (left) and relative interaction intensity
(right) contrasting Normal and Tumor tissue. The upper color bar encapsulates the cumulative columnar values, indicative of incoming signals,
whereas the lateral color bar aggregates the values of outgoing signals. (M) The series of heatmaps delineate the comprehensive signaling network
activity within individual immune cell subsets, orchestrated by specific pathways in Normal (left) and Tumor (right). (N) The Heatmaps of CXCL
signaling pathway in Normal (left) and Tumor (right).
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CXCL10 expression was markedly upregulated in M1 macrophages

in contrast to other cell type.

To investigate the role of CXCL10 and M1 macrophage in

tumorigenesis and tumor development, we further subdivide the

monocyte and M1 Macrophage cells into four subgroups based on

different expressed cell markers, including IL1B+ Macrophage

(CD68, CD163, IL1B), CXCL10+ M1 Macrophage (CD68,

TREM2, CXCL10), CXCL10- M1 Macrophage (CD68, CD86,and

low expression of CXCL10), SPP1+ M1 Macrophage (CD68, SPP1)

(Figures 7D, E), The subsequent GO enrichment analysis suggested

that IL1B+ Macrophage related to Oxidative phosphorylation

(OXPHOS), regulation of intrinsic apoptotic signaling pathway,

while CXCL10+ M1 Macrophage involved in macrophage

migration (Figure 7F). Additionally, SPP1+ M1 Macrophage

enriched in regulation of cell morphogenesis pathway. KEGG

enrichment analysis also highlighted that IL1B+ Macrophage

were significantly implicated in OXPHOS, Nucleotide metabolism

and Chemical carcinogenesis − reactive oxygen species pathways

(Figure 7G). which suggested that IL1B+ Macrophage may be

implicated in the oncogenic and therapeutic resistance in

colorectal cancer.

Subsequently, monocle2 was utilized to infer the potential

developmental trajectory of Macrophage cells. Remarkably, we

observed a well-ordered differentiation pattern wherein CXCL10+

M1Macrophages were predominantly situated at the initial point of

the developmental trajectory, while CXCL10- M1 Macrophages,

IL1B+ Macrophages and SPP1+ M1 Macrophages were located at

separate branches (Figure 7H). Further, branched expression

analysis modeling (BEAM) indicated that 848 genes with

significant expression changes, which could be clustered into

three expression patterns: Cell fate 1 were associated with chronic

inflammatory response. The pre-branch cluster were involved in the

positive regulation of T cell activation, production of molecular

mediator of immune response and leukocyte mediated immunity

pathway. The Cell fate 2 were enriched in focal adhesion and cell

−substrate junction (Figure 7I). In summary, CXCL10+ M1

macrophages may promote the activation and differentiation of T

cells to enhance anti-tumor immunity.
Intercellular interaction in the TME

To assess the prospective interplay within the tumor

microenvironment, we utilized CellChat analysis to establish

divergent networks of intercellular communication within tumors

and normal tissues. we observed that numbers of interactions and

strength of interactions were markedly elevated in the tumor group

than in normal group (Figure 7J). An integrative analysis of

communication likelihoods within the information network was

conducted to discern the differential in cumulative information flux

between the control and tumor cohorts. Findings elucidated an

elevated presence of CD137, ACTIVIN, CD40, IL10, BAFF, IL16,

EGF, and VEGF signaling pathways in normal group (red), in

contrast to an augmented prevalence of kIT, IL2, WNT, TGFb,

CCL, GRN, MIF, TNF, CSF, and SPP1 signaling pathways within

the tumor group (green) (Figure 7K). Remarkably, outgoing signals
Frontiers in Immunology 15
from CXCL10+ M1 Macrophages to B cells, CD4+T cell, CD8+T

cells and Endothelial cell were more abundant and stronger in

tumor group compared with normal group, while the output signal

of SPP1+ macrophages cell was reduced in the tumor group

(Figure 7L). The visualization results of overall information flow

revealed that the information flow from CXCL10+ M1

macrophages and CD4+T cell was significantly increased in the

tumor group (Figure 7M). Notably, CXCL signaling network exhibit

heightened activity in mediating communication between CXCL10

+ M1 macrophages and CD4+T cell, with significantly elevated

activity within the tumor group compared to the normal group

(Figure 7N). Further analysis reveals that communication through

CXCL16-CXCR6 pairs between these cells is also markedly higher

in the tumor group (Supplementary Figure S2K). Additionally,

studies report that CXCL16-CXCR6 pairs enhance T cell

positioning and differentiation, particularly into resident memory

T cells, thereby improving tumor immunosurveillance and

therapeutic efficacy (19). In conclusion, CXCL10+ M1

macrophages are p ivota l in modula t ing ce l l - to -ce l l

communication in CRC and hold potential as a strategic avenue

for CRC therapy.
Single-cell expression atlas of neoadjuvant
immunotherapy-treated CRC and
variations in cancer stemness among
diverse therapeutic outcomes

To elucidate disparities in the efficacy of neoadjuvant

immunotherapy, a total of 37287 cells (8812 from non-

pathological complete response samples and 28475 from

pathological complete response samples) from 17 tumor tissue

were analyzed after quality control in our study. Subsequently, the

t-SNE dimension reduction method was employed to successfully

identify 8 major cell subsets according to typical marker genes

(Figure 8A), including T cells (PTPRC, CD3D, CD3E),

Endothelial cells (PCAM1, VWF), Epithelial cells (EPCAM,

KRT18), Monocyte/Macrophage (CD68, CD163, S100A8), B

cells (CD79A, CD19B, MS4A1), Plasma cells (MZB1),

Fibroblasts (ACTA2, COL1A2), CAF (FAP, DCN) (Figure 8C).

Moreover, Figure 8B illustrates the differential genes across cell

subgroups within the NpCR and pCR groups. In the NpCR group,

elevated expression of immunosuppressive receptors TNFRSF18,

LAG3, and HAVCR2 in the T cell subpopulation, as well as

elevated levels of pro-inflammatory chemokines (CCL20,

CXCL8, CCL4) and cytokines (IL1B, IL6) in Monocyte/

Macrophage subsets identified within the NpCR group.

However, in the pCR group, HLA-DQA1 was found to be

upregulated in T cells subsets, and complement genes C1QA,

C1QB, and C1QC were upregulated in Monocyte/Macrophage

subsets, while HLA-DRB5 and HLA-DRA exhibited increased

expression in B cells and plasma cells subsets, respectively. To

summarize, the upregulation of antigen-presenting HLA genes,

activation of the complement cascade, and inhibition of IL1B+

monocyte mediated pro-inflammatory response may enhance the

efficacy of neoadjuvant therapy (14).
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To reveal the difference of TME remodeling between the two

therapeutic effects, we compared the cell composition between each

patient (Figure 8D) and different response groups (Figures 8E, F).

Increased presence of T cells, B cells, and monocyte/macrophage

subsets was observed in the pCR group, in contrast to the notably

elevated epithelial cells in the NpCR group. Additionally, to explore

the correlation between tumor stemness attributes and outcomes of
Frontiers in Immunology 16
neoadjuvant therapy, we employed the CytoTRACE algorithm to

calculate stemness scores. We observed that epithelial cells,

endothelial cells and CAF cells stemness scores were significantly

increased in the NpCR group, suggesting that higher differentiation

potential was associated with worse neoadjuvant efficacy

(Figure 8G). The GSVA results presented in Figure 8H indicate a

marked enrichment in pathways associated with tumor
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FIGURE 8

Landscape of neoadjuvant immunotherapy-treated CRC and Cancer Stemness. (A) t-SNE plot of each cluster delineated by color in accordance with
established marker-defined classifications. (B) DEGs that differentiate the NpCR group from the pCR group were detected across diverse cell types.
(C) Bubble charts representing the expression of signature genes within respective cellular clusters. (D) Bar graphs displaying the relative abundance
of major cellular populations across individual patients. (E) t-SNE visualization of the cellular landscape categorized by NpCR and pCR across distinct
major cell populations. (F) proportion of major cell types in NpCR group and pCR group. (G) tSNE diagrams display the variance in CytoTRACE
evaluations among four distinct cell categories. The coloration transitions from dark green, denoting lesser values indicative of reduced stemness, to
dark red, representing greater values associated with heightened stemness. and compare the stemness scores between NpCR group and pCR group.
(H) Variations in intracellular pathway activations, quantified through GSVA, contrasting NpCR and pCR group (I, J) Overlay of single-cell AUC
evaluations corresponding to activities within the OXPHOS and glycolysis pathways, respectively.
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proliferation and metastasis in the NpCR group, including MYC

targets, Wnt b catenin, EMT, and purine metabolism pathways.

Moreover, the NpCR group showed increased activities in

OXPHOS and glycolytic metabolism pathways (Figures 8I, J).

Conversely, pCR group associated with anti-tumor immunity,

including B cell receptor signaling, natural killer cell mediated

cytotoxicity and apoptosis pathway.
Heterogeneity of macrophages between
different therapeutic effects

To investigate the heterogeneity of macrophages among

different therapeutic effects, we further subdivided the monocyte

and macrophage cells into seven subgroups based on differentially

expressed cell markers (Figure 9A), including S100A9+

Macrophage (CD68, S100A9, S100A8), CXCL10+ M1

Macrophage (CD68, TREM2, CXCL10), FOLR2+ Macrophage

(CD68, FOLR2, TREM2), C1QA+M1 Macrophage (CD68, C1QA,

C1QB), SPP1+ M1 Macrophage (CD68, SPP1), LAGALS2+

Macrophage (CD68, LAGALS2, FCER1A), CCR7+ Dendritic

(LAMP3, CCR7) (Figure 9B). The GSEA findings revealed that

angiogenesis, EMT, hypoxia, and inflammatory response pathways

were enriched by the upregulated genes within the macrophage

subpopulation of the NpCR group, whereas the pCR group related

to intestinal immune network for IgA production, complement and

coagulation cascades, and antigen processing and presentation

pathways (Figure 9C). Furthermore, the pCR group exhibited a

higher proportion of S100A9+ Macrophage, CXCL10+ M1

Macrophage, and FOLR2+ Macrophage relative to NpCR group

(Figure 9D). Moreover, we utilized SCENIC to assess the upstream

transcription factors driving heterogeneity of macrophages. Our

investigation revealed distinct activity profiles of pivotal

transcription factors (TFs) across macrophage subpopulations.

Specifically, the transcription factor CEBPA, a promoter of

myeloid cell differentiation (20), STAT1, an inhibitor of stemness

properties and cell proliferation (21), and NFIC, The TF of has been

reported to inhibit pancreatic cancer (22), were found to be

substantially upregulated in the CXCL10+ M1 and FOLR2+ M1

macrophages, which demonstrated increased cell counts within the

pCR group. Simultaneously, we identified a pronounced expression

of the TF HIF1A, known to facilitate tumor immune escape (23)

within SPP1+ M1 macrophages, a population that was notably

abundant in the NpCR group (Figures 9E, F).
Experimental validation

To corroborate our initial observations, we conducted

immunofluorescence staining on tissue specimens from cohort 1.

The Kaplan-Meier survival diagrams underscored a notable

correlation between the heightened concentration of the M1

macrophage marker CD68, the decreased presence of the M2

macrophage marker CD163, and increased expression of

CXCL10. These findings were particularly evident in CRC

samples with favorable prognostic outcomes (Figures 10A–C).
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Notably, samples with high expression of both CXCL10 and

CD68 also showed a significant survival advantage (Figure 10D).

In order to further explore the possibility of the signature from

CXCL10+CD68+ cells operating as an advantageous biomarker for

neoadjuvant therapy. We also performed mIHC staining in cohort

2, This cohort comprised 72 CRC patients post-neoadjuvant

therapy, with 11 patients exhibiting complete or near-complete

pathological response (TRG0 or TRG1) classified as the Response

group, and 61 patients with minimal or no response (TRG2 or

TRG3) as the Non-Response group. The findings demonstrated a

pronounced increase in the frequency of CXCL10+CD68+ cells in

the specimens from the responders relative to those from the non-

responders (Figures 10E–G). This is consistent with our

previous conclusions.
Discussion

Despite substantial advancements in the fields of molecular

biology and immunology lately, the prognosis for patients with

advanced colorectal cancer continues to be disheartening.

Moreover, therapeutic opportunities continue to be limited for

patients without identifiable drug targets. Immunological

checkpoint blockade (ICB) therapy has achieved significant

breakthroughs in treating advanced malignancies, offering

enduring therapeutic outcomes for a subset of patients.

However, it is disappointing that immunotherapy is only

efficacious for a small number of patients with MSI-H, and

those who initially respond well may subsequently develop

resistance. Moreover, the concurrent use of specific drugs holds

potential for enhancing therapeutic efficacy and mitigating related

toxicity. The current emphasis is on identifying a multitude of

biomarkers and establishing standardized scoring systems for

patient stratification, with the aim of benefiting a wider

population. For the majority of colorectal cancer patients

characterized by MSS, ICB monotherapy has proven to be

ineffective. Beyond the status of microsatellites, the development

of other potential biomarkers could help identify patient groups

that may derive benefit (24, 25). Chemokines play an

indispensable role in guiding immune cell migration, a vital

process for instigating and subsequently implementing a

powerful immune response against tumors. Additionally,

Chemokines and their receptors hold considerable value as

biomarkers for cancer forecasting (7). However, there remains a

distinct lack of comprehensive research exploring the role of

chemokines in CRC.

In our research, we devised a risk score derived from 15

Chemokines and identified the risk score as an independent

prognostic element. Furthermore, we confirmed a marked linkage

between the risk score and clinical pathological factors. Subsequently,

we stratified patients from the TCGA and GSE39582 datasets into

dual categories rooted in the risk score and confirming that patients

possessing a low-risk score exhibited a significant survival advantage.

In an effort to enhance the accuracy of prognosis, we integrated

indicators such as T stage, risk score, age, and pathological stage to

construct a nomogram. Validation using the external GSE39582
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dataset substantiated its superior predictive capability and clinical

utility compared to traditional TNM staging. The establishment of

this model offers an innovative and efficacious instrument for

forecasting the clinical outcome of CRC patients. To explore the

potential processes explaining the varied results among categories

with high and low risk, we conducted an enrichment analysis. GSEA

outcomes demonstrated a substantial enrichment of the EMT

pathway in the high-risk groups within both TCGA and GSE39582

datasets. This pathway is known to significantly influence tumor

advancement, metastasis, and drug insusceptibility in CRC (26).

Furthermore, the high-risk population also exhibited enrichment in

the hypoxia pathway, which is intimately linked with enhanced drug

insusceptibility and remote metastasis in CRC (27). The mTORC1

signaling pathway was also found to be enriched, a pathway
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previously reported to foster tumor growth and limit therapeutic

response (28). These pathways hold substantial potential as targets for

drug-resistant treatments in colorectal cancer. In addition, In the

high-risk category, there was a notable upregulation of PDCD1 and

CD274, suggesting that subjects within this group could potentially

benefit from anti PD-1/PD-L1 treatment. A comprehensive

understanding of the tumor TME can help identify novel

approaches for treating CRC. Therefore, high-risk and low-risk

populations were subjected to an analysis with the application of

CIBERSORT algorithms to assess differences in the composition of

immune cellular infiltrates. The CIBERSORT assessment revealed an

increased proportion of CD4+ T cells within the low-risk patients,

whereas a pronounced abundance of M2 macrophages and Treg cells

characterized the high-risk. CD4+ T cells strengthen antitumor
A B

C
D

E F

FIGURE 9

Evaluation and Validation of chemokine Related Prognostic Model. (A) t-SNE plot of monocyte subclusters colored by cell types. (B) Bubble charts
representing the expression of signature genes within respective cellular clusters. (C) GSEA analysis between NpCR group and pCR group in
monocyte subclusters. (D) t-SNE plot of all cells colored by NpCR group and pCR group in monocyte subclusters and proportion of monocyte
subclusters in NpCR group and pCR group. (E) Activity of cell-specific regulons was encoded in a binary matrix: exceeding a custom-set AUC
threshold denoted activation (black), while values beneath indicated inactivity (white). (F) tSNE visualizations represent the distribution of
transcription factor expression levels, delineated by binarized activity based on AUC scores.
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defenses through the efficacy of cytotoxic T lymphocytes (29).

Conversely, Treg cells primarily suppress antitumor immune

responses in the tumor tissue by expressing inhibitory molecules

(30). Moreover, a notable correlation exists between the infiltration of

M2 macrophages and both the proliferation and adverse clinical

outcome in CRC (31). This observation could potentially explain the

propensity of high-risk group patients to exhibit drug resistance and

unfavorable prognostic outcomes. An analysis comparing drug

sensitivity was performed across high-risk and low-risk categories.

The results revealed that the high-risk group exhibited a heightened

IC50 for standard chemotherapeutic drugs used in the treatment of

CRC, including 5-fluorouracil, oxaliplatin, camptothecin, and the

Irinotecan. This discovery might offer additional insights into the

heightened tendency for drug resistance observed among the high-

risk group patient.
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The implementation of neoadjuvant therapy strategies has

notably amplified the rate of tumor reduction before surgery and

lessened the occurrence of local and regional relapses in subjects

with locally advanced rectal carcinoma. Nevertheless, the risk of

distant metastasis remains high, and there are numerous

uncertainties regarding the optimal selection of beneficiaries,

choice of the most effective treatment strategies, and identification

of valid biomarkers. Consequently, there is a critical need to develop

more accurate and dependable predictive biomarkers for the

identification of patients likely to respond favorably to

neoadjuvant treatments (32). On this basis, we further explored

the differential expression of chemokine-related gene signature in

different treatment outcomes. It is noteworthy that patients

categorized within the low-risk populations exhibited a markedly

enhanced response to neoadjuvant therapy relative to their high-
A B

C D

E F

G

FIGURE 10

Experimental validation. (A-D) Kaplan-Meier curve of OS for CRC patients grouped by the expression levels. (E, F) Multiplex immunofluorescence
images of different cell populations in Response group and Non-response group. CXCL10(red), CD68 (yellow), DAPI (blue), scale bar=100µm.
(G) compare the expression of CXCL10+CD68+ cells between Response group and Non-response.
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risk counterparts, demonstrating a considerable increase in

treatment effectiveness. Furthermore, the chemokines CXCL10,

CXCL11, and M1 macrophages were highly expressed in response

group. Previous reports have indicated that the axis comprising

CXCL9, CXCL10, and CXCL11 alongside CXCR3 is pivotal in

directing the recruitment, maturation, and stimulation of immune

cell populations. This signaling pathway is central to immune

responses, modulating the maturation of naïve T cells into T-

helper 1 phenotype while concurrently directing immune cell

populations to specifically migrate to the sites of lesions, thereby

exerting their immunological functions (33). Investigations revealed

that heightened CXCL10 expression impedes tumor proliferation

while enhancing CD8+ T cell penetration, thereby facilitating the

normalization of tumor vasculature. This phenomenon renders

colorectal cancer cells increases the responsiveness of the

synergistic effects of cetuximab and anti-PD1 treatment (34).

Therefore, we postulate that CXCL10 could act as a prospective

indicator for the effectiveness of neoadjuvant therapy.

Single-cell sequencing is a powerful tool that offers many

advantages compared to traditional bulk RNA-seq methods,

enabling analysis at the single-cell resolution level and

significantly enhancing data quality. This has already exerted

influence on numerous fields of oncology research, bolstering our

insight into tumor diversity and TME (35). In this study, we

characterized the colorectal cancer landscape using single-cell

data and discovered that CXCL10 is highly expressed in M1

macrophages. Through the utilization of CellChat analysis, we

observed that outgoing signals from CXCL10+ M1 macrophages

to B cells, CD4+ T cells, CD8+ T cells was noticeably enhanced

within the tumor group. This observation is potentially linked to the

role of CXCL10-positive M1 macrophages in recruiting immune

cells within tumor tissues. Following this, upon evaluating scRNA

data from patients after undergoing neoadjuvant therapy, we

detected a considerable augmentation in the epithelial cell

population within the NpCR group relative to the pCR group. By

calculating the stemness score, our analysis revealed that the

stemness score associated with the NpCR group was significantly

elevated relative to the pCR group. A study, validated across

multiple datasets, revealed a correlation between tumor stemness

and resistance to immune checkpoint inhibitor (ICI) treatment

(36), which is consistent with our findings. Furthermore, we noted

an increase in the activity of OXPHOS and glycolytic metabolic

pathways in epithelial cells within the NpCR group. The Warburg

effect, as described in a study, suggests that even well-oxygenated

cancer cells undergo glycolysis, leading to the prevalent hypothesis

of downregulated OXPHOS in cancer. However, recent research

indicates that OXPHOS can also be upregulated in certain types of

cancer. Therefore, Inhibitors of OXPHOS might be strategically

harnessed to address tumor subtypes that display an upregulation of

OXPHOS (37). Finally, through further subclustering of

mononuclear cells, we identified several new subgroups and

observed an increase in FOLR2+ macrophages and CXCL10+ M1

macrophages within the pCR group, whereas the NpCR cluster

witnessed an upswing in SPP1+ macrophages. Recent research
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reported a notable association between the abundance of FOLR2+

macrophages and improved prognostic outcomes in individuals

diagnosed with breast cancer. Additionally, it has been observed

that the occurrence of these FOLR2+ macrophages is found to be

associated with an increased prevalence of CD8+ T cells, suggesting

an anti-tumor immunological function (38). Literature suggests that

the chemotactic draw of effector T cells into tumor sites,

orchestrated by CXCL9 and CXCL10, aids in the establishment of

a “hot” TME characterized by T cell inflammation. M1

macrophages and dendritic cells undertake a significant function

in the profuse creation of CXCL9 and CXCL10.Therefore, their

manifestation in the TME becomes a vital prerequisite for T cell

infiltration, and it facilitates the structuring of the T cell

inflammatory TME. In an effort to amplify the efficacy of

immunotherapies, it becomes necessary to adopt therapeutic

interventions that promote the recruitment of bone marrow cells

capable of producing these chemokines, while also activating the

innate immune pathways they initiate. Such strategies hold

potential for widespread clinical applications (39). Research

findings suggest that FAP+ fibroblasts and SPP1+ macrophages

are involved in the restructuring of the extracellular matrix and aid

in establishing a pro-fibrotic stromal microenvironment, This

action obstructs lymphocyte entry into the tumor core, thereby

further curtailing the effectiveness of PD-L1 therapy (40). Finally,

through multiple immunofluorescence experiments, we have

confirmed the elevated presence of CXCL10+M1 macrophages in

tissue samples from patients who responded favorably to

neoadjuvant therapy, and we have also discovered a significant

association between the heightened expression of CXCL10+M1

macrophages and superior prognosis. Concurrently, this insight

implies that these chemokines might have a crucial role in the anti-

tumor immunity of CRC, thereby offering a novel research direction

for future CRC investigations.

Even though our research has made notable advancements, it’s

essential to be aware of its limitations. Primarily, our investigation

utilizes a retrospective approach to analyze public databases, and

potential sample selection bias may impact the accuracy of the study

results. To validate these findings, it is essential to conduct

comprehensive prospective investigations, supplemented by

extensive experimental work to strengthen our evidence.

Secondly, although our study primarily relies on transcriptomic

data, probing into proteomics and spatial transcriptomic data

undeniably carries substantial importance for a holistic insight

into the tumor microenvironment and the intricate dynamics

of tumorigenesis.
Conclusion

To conclude, our research has developed a solid prognostic

model predicated on chemokines. utilizing a comprehensive

analysis of single-cell and aggregate RNA transcriptomic data, We

have efficaciously pinpointed CXCL10+ M1 macrophages as a

predictive bioindicator for gauging the effectiveness of
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neoadjuvant therapy. This pivotal discovery could stand as a new

clinical bio-indicator, proficient not just in foretelling the prognosis

of CRC patients and their response to neoadjuvant therapy, but also

in facilitating the development of more precise personalized

treatment strategies.
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Núñez NG, et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell
infiltration in human breast cancer. Cell. (2022) 185:1189–207.e25. doi: 10.1016/
j.cell.2022.02.021

39. Reschke R, Gajewski TF. CXCL9 and CXCL10 bring the heat to tumors. Sci
Immunol. (2022) 7:eabq6509. doi: 10.1126/sciimmunol.abq6509

40. Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z, et al. Single-cell and spatial analysis
reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer.
Nat Commun. (2022) 13:1742. doi: 10.1038/s41467-022-29366-6
frontiersin.org

https://doi.org/10.1016/j.cell.2020.03.048
https://doi.org/10.1016/j.ccell.2023.04.011
https://doi.org/10.1038/nmeth.4150
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1126/science.aax0249
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.3389/fimmu.2022.1022136
https://doi.org/10.1016/j.celrep.2018.05.012
https://doi.org/10.18632/aging.v12i11
https://doi.org/10.1038/s41467-023-39291-x
https://doi.org/10.1186/s13045-022-01292-6
https://doi.org/10.1016/S0140-6736(19)32319-0
https://doi.org/10.1016/j.drudis.2023.103669
https://doi.org/10.1016/S1470-2045(21)00343-0
https://doi.org/10.1186/s12943-022-01638-1
https://doi.org/10.1053/j.gastro.2022.11.014
https://doi.org/10.1038/s41577-018-0044-0
https://doi.org/10.1002/eji.201847659
https://doi.org/10.1186/s12964-020-00557-2
https://doi.org/10.1186/s12964-020-00557-2
https://doi.org/10.3389/fimmu.2023.1120684
https://doi.org/10.1016/j.ctrv.2017.11.007
https://doi.org/10.1016/j.canlet.2023.216263
https://doi.org/10.1016/j.ccell.2020.03.008
https://doi.org/10.1186/s13073-022-01050-w
https://doi.org/10.1186/s13073-022-01050-w
https://doi.org/10.1158/1078-0432.CCR-17-3070
https://doi.org/10.1016/j.cell.2022.02.021
https://doi.org/10.1016/j.cell.2022.02.021
https://doi.org/10.1126/sciimmunol.abq6509
https://doi.org/10.1038/s41467-022-29366-6
https://doi.org/10.3389/fimmu.2024.1400722
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Establishment of a chemokine-based prognostic model and identification of CXCL10+ M1 macrophages as predictors of neoadjuvant therapy efficacy in colorectal cancer
	Introduction
	Materials and methods
	Data collection
	Identification of differentially expressed prognostic chemokines
	Construction and validation of prognostic model
	Functional enrichment analysis
	Gene set enrichment analysis
	Evaluation of immune cell infiltration
	Somatic mutation and copy number variation analysis
	Drug sensitivity prediction
	Consensus clustering analysis
	Analysis of neoadjuvant therapy efficacy
	Single&minus;cell RNA sequencing analysis
	Pseudotime trajectory analysis
	Intercellular communication
	Predicting differentiation potential with CytoTRACE
	Cell-type-specific regulon analysis
	Tissue microarray and patients and follow-up
	Fluorescence-based multiplex immunohistochemistry staining
	Statistical analysis

	Results
	Identification of differentially expressed prognostic chemokines
	Assessment of chemokine related prognostic model
	Potential mechanism analysis of chemokine-related gene signature
	The mutational landscape of chemokine-related prognostic models in CRC
	Immune cell infiltration characteristics and drug sensitivity analysis in chemokine-related subgroups
	Consensus clustering analysis
	CXCL10 expression and M1 macrophage infiltration were associated with efficacy of neoadjuvant treatment
	Identification of chemokine-related prognostic genes in single&minus;cell transcriptomics atlas
	Intercellular interaction in the TME
	Single-cell expression atlas of neoadjuvant immunotherapy-treated CRC and variations in cancer stemness among diverse therapeutic outcomes
	Heterogeneity of macrophages between different therapeutic effects
	Experimental validation

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


