
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Tomasz Kordula,
Virginia Commonwealth University,
United States

REVIEWED BY

Lutz Graeve,
University of Hohenheim, Germany
Masanori A. Murayama,
Kansai Medical University, Japan

*CORRESPONDENCE

Irina Kerkis

irina.kerkis@butantan.gov.br

RECEIVED 13 March 2024
ACCEPTED 04 June 2024

PUBLISHED 24 June 2024

CITATION
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Interleukin-6 (IL-6) is a versatile cytokine crucial for immune responsemodulation,

inflammation regulation, and various physiological processes in the body. Its wide-

ranging functions underscore its importance in maintaining health. Dysregulated

IL-6 is closely associated with many diseases, making it a key research and

therapeutic target. Elevated IL-6 levels in the central nervous system worsen

neuroinflammation in neurodegenerative diseases by activating microglia and

astrocytes and releasing pro-inflammatory cytokines and neurotoxic molecules.

Moreover, dysregulated IL-6 weakens the blood-brain barrier, exacerbating

neuroinflammation and neuronal damage by allowing peripheral immune cells

and inflammatory mediators to enter the brain. Mesenchymal stem cells (MSCs)

show promise in modulating neuroinflammation by regulating IL-6 levels.

They effectively suppress pro-inflammatory cytokines, including IL-6, while

promoting anti-inflammatory factors. This therapeutic approach highlights the

importance of targeting IL-6 and other inflammatory mediators to alleviate

neuroinflammation and its adverse effects on neurological disorders. This review

provides a comprehensive overview of IL-6’s involvement in neurological

disorders, examining endogenous IL-6 and IL-6 derived from MSCs. We explore

IL-6’s mechanisms affecting neuronal function, survival, and immune modulation

in the central nervous system. Additionally, we discuss the potential of MSC-

derived IL-6 in neuroregeneration and neuroprotection. By elucidating IL-6’s

interplay with neurological pathologies, this review offers insights into novel

therapeutic strategies targeting IL-6 signaling pathways for neurological disorders.
KEYWORDS

interleukin-6 (IL-6), mesenchymal stem cells (MSCs), IL-6 dysregulation, neurodegenerative
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1 Introduction

Interleukin-6 (IL-6) is an indispensable pleiotropic cytokine, that

plays a pivotal role in orchestrating the body’s immune response to

infection, injury, or inflammation to induce and coordinate the

different elements of the acute-phase response (1–3). Its multifaceted

actions encompass the stimulation of activation and proliferation of

diverse immune cells, including T cells, B cells, and macrophages.

Additionally, IL-6 facilitates the differentiation of B cells into plasma

cells, which is essential for antibody production (4–8).

Beyond its immunomodulatory functions, IL-6 also influences

hematopoiesis, the intricate process of blood cell formation within the

bonemarrow, by promoting the differentiation of hematopoietic stem

cells into various blood cell types, ensuring a balanced and functional

immune system (9–12). Furthermore, IL-6 triggers the liver to

produce acute- phase proteins essential for inflammation, tissue

repair, and immune responses. It also contributes to fever

induction during infection or inflammation by interacting with the

hypothalamus, the brain region regulating body temperature (13–16).

In summary, IL-6 is a multifaceted cytokine with crucial roles in

immune response modulation, inflammation regulation, and diverse

physiological processes throughout the body (17). The IL-6 intricate

functions underscore its significance in maintaining health and

homeostasis. Dysregulation of IL-6 is closely linked to numerous

diseases, emphasizing its prominence as a prime target for both

research exploration and therapeutic intervention strategies (18, 19).

The clinical significance of IL-6 spans multiple domains (5). In

inflammatory disorders, dysregulation of IL-6 signaling is at the

core of conditions like rheumatoid arthritis (20–23), inflammatory

bowel disease (24), and systemic lupus, exacerbating inflammation,

that cause to tissue damage (25, 26). IL-6’s involvement in cancer

extends beyond inflammation, since the IL-6 serves as “fuels” to

tumor growth, promoting angiogenesis, and facilitating metastasis

(27–29). By contrast, the IL-6 deficiency has been shown to

exacerbate neurodegenerative disorders (30).

Given its critical role in various diseases, IL-6 and its receptors

have emerged as promising therapeutic targets (31–34). However,

IL-6 is naturally expressed by different mesenchymal stroma/stem

cells (MSCs) populations, since its expression regulates the MSC

stemness (35), in vitro proliferation (36) and differentiation (37, 38).

Based on this, herein we summarize the IL-6 roles in

pathophysiology of neurodegenerative disorders and, discussing

the possible IL-6 and MSC-derived IL-6 therapeutic applications

for the treatment of these diseases.
2 IL-6 signaling pathways

The IL-6/IL-6R axis is crucial for mediating a wide range of

biological processes, including immune response modulation,

inflammation regulation, and cellular proliferation (1–3). IL-6

exerts its effects through classic signaling, where it binds to the

membrane-bound IL-6 receptor (mIL-6R) on target cells, and trans

signaling, where it interacts with the soluble IL-6 receptor (sIL-6R)

and the signal transducer gp130 on cells that do not express mIL-

6R. This axis plays a pivotal role in the acute-phase response, T-cell
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differentiation, and B-cell maturation, contributing to both pro-

inflammatory and anti-inflammatory effects (39, 40). In the central

nervous system, IL-6 can activate glial cells and disrupt the blood-

brain barrier, exacerbating neuroinflammation, while also

promoting neuronal survival and neurogenesis. IL-6 signaling

exerts influence over specific brain regions crucial for cognitive

function, motor control, and emotional regulation (41, 42).

Dysregulation of IL-6 signaling within these regions, such as the

hippocampus, cortex, striatum, and substantia nigra, can

significantly affect neurological function and contribute to the

manifestation of various symptoms observed in neurological

disorders (43–45). Additionally, IL-6 influences metabolic

processes and is implicated in conditions like cancer, where it

supports tumor growth and survival. Understanding the IL-6/IL-

6R axis is essential for developing targeted therapies for a variety of

diseases, including autoimmune disorders, neurodegenerative

diseases, and metabolic syndromes (28, 39, 46).

IL-6 signaling pathways constitute intricate networks of molecular

interactions governing the biological effects of IL-6 (47–49).

The initiation of IL-6 signaling commences with IL-6 binding to its

specific receptor, the IL-6 receptor (IL-6R), existing in two forms:

membrane-bound (mIL-6R) and soluble (sIL-6R). The classical IL-6

signaling pathway primarily operates through membrane-bound IL-6R

(mIL-6R) and involves four key steps (Figure 1).

In addition to the classical pathway, IL-6 can initiate signaling

through a trans-signaling mechanism involving soluble IL-6

receptor (sIL-6R) (48, 49). This process begins with the binding

of IL-6 to its soluble receptor (sIL-6R), forming a complex. The sIL-

6R is generated through proteolytic cleavage of mIL-6R or

alternative splicing, releasing the extracellular domain of mIL-6R

into circulation. Subsequently, the soluble IL-6/sIL-6R complex

circulates freely in the bloodstream (48, 49).

In tissues lacking mIL-6R expression, the soluble IL-6/sIL-6R

complex binds to the glycoprotein 130 (gp130) receptor on the cell

surface. Gp130 is ubiquitously expressed on various cell types.

Binding of the soluble IL-6/sIL-6R complex to Gp130 triggers

receptor dimerization and activates intracellular signaling

pathways (50). These signaling cascades typically involve the

activation of the Janus kinase/signal transducer and activator of

transcription (JAK/STAT) pathway, mitogen-activated protein

kinase (MAPK) pathway, and phosphoinositide 3-kinase (PI3K)/

Akt pathway (51, 52). Activation of these pathways culminates in

the modulation of gene expression and cellular responses akin to the

classical IL-6 signaling pathway.

To comprehensively understand the functional mechanisms

depicted in Figure 1, it’s essential to delineate the roles of each

cell type involved in the IL-6 signaling pathways. IL-6-secreting

cells produce and release interleukin-6 (IL-6), a pivotal pro-

inflammatory cytokine. Cells expressing membrane-bound IL-6

receptor (mIL-6R) facilitate IL-6 binding, forming a complex with

glycoprotein 130 (gp130), which transduces downstream signals.

ADAM17-expressing cells, such as certain immune cells, cleave

mIL-6R to release soluble IL-6 receptor (sIL-6R). In turn, cells

lacking mIL-6R but expressing gp130 can still respond to IL-6 via

trans-signaling when the IL-6/sIL-6R complex binds to gp130. This

intricate interplay among various cell types orchestrates IL-6
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signaling, culminating in the activation of downstream pathways

and modulation of cellular responses, including inflammation and

immune reactions.

While the classic IL-6 signaling pathway is responsible for the

anti-inflammatory actions, the IL-6 trans-signaling pathway

contribute to pathogenic activities. Thus, they diverge notably in

their cellular targets and the breadth of their biological impact

across various tissues and organ systems. In the classic pathway,

membrane-bound IL-6R is crucial for cell activation, while the

trans-signaling pathway exploits soluble IL-6R to broaden the

spectrum of target cells and biological responses.
3 Role of IL-6 during development
and adult life

During embryonic development, interleukin-6 (IL-6) is

produced by diverse cell types, including trophoblasts (53),

extraembryonic endoderm (54), embryonic stem cells (ESCs) (55,

56), and mesenchymal stem cells (MSCs) (35, 36, 57), contributing

to the intricate orchestration of early developmental processes.
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Trophoblast cells, forming the outer layer of the blastocyst during

early embryonic development, are essential for implantation,

placental formation, and nutrient exchange between the

developing embryo and the maternal environment. Recognized as

IL-6 producers, trophoblasts suggest potential regulatory functions

during early embryonic development and implantation processes.

Additionally, the extraembryonic endoderm, derived from the

blastocyst’s inner cell mass, significantly contributes to yolk sac

formation and placental development. These cells also produce IL-6

during early embryogenesis, implicating its involvement in

supporting placental growth and function (11, 58, 59).

ESCs, originating from the blastocyst’s inner cell mass, exhibit

remarkable pluripotency, capable of differentiating into cell types

representing all three germ layers. Under specific conditions, ESCs

have been observed to produce IL-6, particularly during in vitro

culture and differentiation procedures, suggesting a potential role

for IL-6 in guiding ESC fate and development (60, 61).

Furthermore, MSCs, progenitors of various connective tissues

such as bone, cartilage, and muscle, actively participate in

organogenesis and tissue remodeling throughout embryonic

development. IL-6 production by these cells hints at its regulatory
BA

FIGURE 1

Scheme depicting the classical IL-6 and trans-signaling pathways. (A) In classical IL-6 signaling, IL-6 binds to membrane-boundIL-6 receptor (mIL-6R),
initiating complex formation with gp130. This triggers dimerization of IL-6R, assembling a hexameric signaling complex. This complex activates
intracellular cascades including JAK/STAT, MAPK/MEK-ERK, and PI3K/AKT pathways. Phosphorylated JAKs recruit and phosphorylate STAT proteins,
enabling their nuclear translocation and transcriptional activation. The Classical IL-6 signaling regulates genes involved in inflammation, immune
response, proliferation, and differentiation. It primarily occurs in select peripheral cell types. (B) The soluble IL-6 receptor (sIL-6R) assumes a pivotal role
in IL-6 trans-signaling by engaging with interleukin-6 (IL-6) in the extracellular milieu. This complex formation ensues subsequent to the cleavage of the
membrane-bound IL-6 receptor (mIL-6R) from cell membranes by ADAM17, thereby releasing sIL-6R. Unlike classical signaling, where IL-6 binds
exclusively to mIL-6R on specific cell types, trans-signaling via the IL-6/sIL-6R complex can transpire in any cell expressing the glycoprotein 130 (gp130)
receptor. Given the ubiquitous expression of gp130, this complex has the capacity to activate a plethora of signaling pathways, including the Janus
kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt
pathways. Such broad activation spectrum culminates in diverse cellular responses, notably amplifying JAK/STAT signaling while modulating the MAPK
pathway through SOCS suppression and NF-kB, thereby fostering a pro-inflammatory milieu. This mechanism assumes paramount importance in tissues
devoid of mIL-6R expression, thereby ensuring that IL-6 signaling retains its capacity to modulate gene expression and immune responses across a
diverse array of cell types, including the brain, where it significantly influences inflammation and immune functions.
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involvement in these processes, potentially influencing tissue

differentiation and morphogenesis (35–37, 57).

The diverse production of IL-6 by various cell types during

embryonic development underscores its importance in regulating

key developmental events and highlights its potential as a critical

player in guiding embryonic growth and organogenesis.

In adult life, IL-6 plays multifaceted roles beyond its well-

established functions in immune response regulation and

inflammation modulation. A crucial aspect of IL-6 activity lies in its

contribution to tissue repair and regeneration following injury or

damage in adults. This cytokine serves as a key orchestrator in the

intricate process of wound healing, facilitating the proliferation and

migration of various cell types important for tissue restoration,

including fibroblasts, essential for generating connective tissue;

endothelial cells crucial for blood vessel formation; and immune cells

that aid in tissue remodeling and defense against pathogens (62–64).

Moreover, IL-6’s involvement extends to the regeneration of

specific tissues such as muscle and liver. By promoting cellular

proliferation and tissue remodeling mechanisms, IL-6 aids in the

restoration of structural and functional integrity in these vital organs

post-injury or during pathological conditions. After skeletal muscle

injury, IL-6 is dynamically released from damaged muscle fibers and

promotes infiltration of immune cells within the injury site. Acting as a

key regulator of muscle repair, IL-6 serves as a potent stimulator of

myoblast proliferation, the precursor cells crucial for initiating muscle

regeneration. Additionally, IL-6 promotes the fusion of myoblasts into

multinucleated myotubes, a fundamental step in the restoration of

muscle fiber integrity post-injury. Furthermore, IL-6 exerts its

regenerative influence by stimulating the secretion of growth factors,

including insulin-like growth factor-1 (IGF-1), which amplifies the

reparative processes within the injured muscle tissue (65). Studies

utilizing animal models underscore the indispensable role of IL-6 in

muscle regeneration, as mice deficient in IL-6 exhibit delayed and

impaired recovery, emphasizing the essential contribution of IL-6 in

ordering efficient muscle repair mechanisms. Furthermore, IL-6 exerts

a significant influence on neurological functions in adults (64, 66–70).

The diverse roles of IL-6 in tissue repair, neurological function,

and disease pathogenesis underscore its importance as a

multifunctional cytokine in adult physiology and pathology.

Further understanding of its intricate mechanisms of action holds

promise for the development of targeted therapeutic interventions

for a range of conditions affecting human health.
4 IL-6 in neurological disorders

The classical IL-6 signaling pathway profoundly influences

neurodegenerative diseases, playing an essential role in various

aspects of their pathophysiology. Similarly, the IL-6 trans-

signaling pathway holds significant relevance in these conditions.

Consequently, dysregulation of IL-6 emerges as a substantial factor

in various neurological disorders, including Alzheimer’s disease

(AD), Parkinson’s disease (PD) (71, 72), and Huntington’s disease

(HD) (30, 73, 74), Multiple Sclerosis (MS) (75, 76), Amyotrophic

Lateral Sclerosis (ALS) (77, 78) an others. HD, AD, and PD are

marked by the gradual deterioration of nerve cells in specific brain
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regions, such as the striatum in HD, the hippocampus and cortex in

AD, and the substantia nigra in PD. This degeneration leads to

cognitive decline and motor impairment, affecting various aspects

of daily life. While they exhibit overlapping symptoms like cognitive

deficits and movement issues, each has unique genetic origins and

impacts individuals uniquely. Nonetheless, these conditions

profoundly impact the well-being of those affected and their

families, underscoring the crucial demand for efficacious

treatments. These diseases were specifically chosen to exemplify

IL-6’s role in the neuroinflammation process.

In Alzheimer’s disease (AD), characterized by amyloid beta

(Ab) plaque accumulation and tau pathology, IL-6 influences Ab
production and clearance. Dysregulated IL-6 signaling disrupts the

delicate balance between Ab production and clearance mechanisms,

leading to toxic Ab species accumulation and neurotoxic plaque

formation (79). Another hallmark of AD is the abnormal

phosphorylat ion and aggregation of tau protein into

neurofibrillary tangles. IL-6 has also been implicated in tau

pathology, affecting tau phosphorylation and aggregation

processes (80). Dysregulated IL-6 signaling can contribute to tau

pathology by promoting aberrant tau phosphorylation and

impairing tau clearance mechanisms, which ultimately exacerbate

neuronal dysfunction and degeneration (81).

Moreover, AD is characterized by chronic neuroinflammation,

marked by sustained activation of microglia and astrocytes (82). IL-6

exacerbates chronic neuroinflammation, affecting the blood-brain

barrier (BBB) and influencing neuronal survival. Dysregulated IL-6

signaling contributes to neuroinflammation, releasing pro-

inflammatory cytokines and reactive oxygen species, further

damaging neurons, and impairing cognitive function in AD (83).

Additionally, IL-6 can affect the integrity of the BBB, which

regulates the passage of molecules and immune cells between

the bloodstream and the brain. Dysregulated IL-6 signaling

compromises BBB integrity, allowing peripheral immune cells and

inflammatory mediators to infiltrate the brain, further amplifying

neuroinflammation and neuronal damage in AD (42, 84, 85).

Furthermore, IL-6 plays a complex role in regulating neuronal

survival and synaptic plasticity in the brain. While acute IL-6

signaling may promote neuroprotection and synaptic plasticity,

chronic or dysregulated IL-6 signaling can lead to neuronal

dysfunction and synaptic loss. This imbalance in IL-6 signaling

disrupts the delicate equilibrium between neuronal survival and

death, contributing to neurodegeneration in AD (86–89).

In Huntington’s disease (HD), marked by motor dysfunction,

cognitive decline, and psychiatric symptoms (90), IL-6

dysregulation (30, 73) leads to several detrimental effects. First, it

contributes to excitotoxicity, an overwhelming stimulation of

glutamate receptors resulting in neuronal damage. IL-6 enhances

glutamate release while impairing its reuptake, exacerbating

excitotoxicity in HD (91, 92). Additionally, IL-6 is implicated in

the dysregulation of intracellular calcium signaling, further

contributing to neuronal dysfunction and cell death (93).

Astrocyte dysfunction, increasingly recognized in HD pathology,

is also influenced by IL-6 signaling. Dysregulated IL-6 signaling

disrupts astrocyte function, impairing their ability to support

neuronal health and regulate synaptic activity. This disruption in
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astrocyte-neuron interactions contributes to neuronal dysfunction

and degeneration (94, 95). While acute IL-6 signaling may have

neuroprotective and tissue repair roles, chronic or dysregulated IL-6

signaling has detrimental effects. It impairs the brain’s ability to

mount effective neuroprotective and repair responses, exacerbating

neuronal damage and disease progression in HD (74).

Furthermore, HD presents psychiatric symptoms like depression

and anxiety, and IL-6 dysregulation has been implicated in their

pathophysiology. Elevated IL-6 levels are associated with depressive

symptoms in HD patients, suggesting a potential role for IL-6 in the

psychiatric manifestations of the disease (73). Therefore, dysregulated

IL-6 signaling plays a significant role in HD progression by fostering

neuroinflammation, enhancing excitotoxicity, disrupting astrocyte

function, impairing neuroprotective mechanisms, and potentially

exacerbating psychiatric symptoms (96–100).

IL-6 has attracted considerable interest within the context of

Parkinson’s disease (PD), a progressive neurodegenerative disorder

characterized by motor manifestations such as tremors, rigidity, and

bradykinesia, coupled with non-motor symptoms encompassing

cognitive decline and mood disturbances (80, 101–105).

Furthermore, IL-6-induced Chronic Inflammatory Response (CISR)

Syndrome precipitates toxic neuronal iron accumulation, thereby

contributing to synuclein-induced neurodegeneration (106).

Despite the intricate and multifaceted nature of IL-6’s precise

contribution to PD, recent insights suggest its involvement in various

facets of the disorder’s pathophysiology. Neuroinflammation plays a

pivotal role in PD, with dysregulated IL-6 signaling contributing to

the chronic inflammatory state observed in this condition. This is

substantiated by elevated levels of IL-6 detected in the cerebrospinal

fluid and brain tissue of PD patients (107–110).

Additionally, studies indicate that IL-6 can initiate the demise of

dopaminergic neurons through inflammatory pathways and

oxidative stress mechanisms, potentially contributing to the

progressive loss of these neurons in PD. Furthermore, IL-6’s

impact on the integrity of the blood-brain barrier (BBB) is

noteworthy, facilitating the entry of peripheral immune cells and

inflammatory molecules into the brain (111–115), thereby

exacerbating neuroinflammation and neuronal damage in PD, as

well as motor and cognitive impairment, and an increased risk of

dementia in PD patients (107, 108, 116, 117).

Dysregulated IL-6 signaling significantly contributes to the

pathogenesis of neurodegenerative diseases (AD, HD, and PD) by

promoting neuroinflammation, exacerbating Ab accumulation and

tau pathology in AD, compromising BBB integrity, and impairing

neuronal survival and synaptic plasticity. Targeted interventions

aimed at IL-6 signaling pathways offer-promising strategies for

managing these cond i t ions and potent ia l ly s lowing

disease progression.
5 Mesenchymal stem cells in
IL-6 regulation

Mesenchymal stem cells (MSCs) represent a versatile type of

multipotent adult stem cell with the ability to differentiate into

osteoblasts, chondrocytes, and adipocytes. Widely distributed in
Frontiers in Immunology 05
tissues like bone marrow, adipose tissue, umbilical cord blood, and

dental pulp, MSCs are valued for their self-renewal capacity, making

them promise in regenerative medicine and tissue engineering

applications (90, 118).

While MSCs can express and secrete various cytokines,

including IL-6, their IL-6 production is generally lower compared

to immune cells like macrophages or T cells. However, under

specific conditions, such as exposure to inflammatory stimuli or

interactions with immune cells, MSCs can produce IL-6. The extent

of IL-6 secretion by MSCs depends on factors like their source,

culture conditions, and microenvironmental cues, emphasizing a

context-dependent regulation of IL-6 production (36–38, 119–122).

MSCs have been extensively studied in clinical trials across various

medical conditions, demonstrating potential from musculoskeletal

disorders to autoimmune diseases and inflammatory ailments

(123, 124). In the context of neuroinflammation, MSCs exhibit

promise in modulating IL-6 expression. The downregulation of IL-6

by MSCs involves autocrine and paracrine signaling loops, as well as

feedback regulation within the immune system (125–128).

In autocrine regulation, cells producing IL-6 respond to their

own secretion, amplifying IL-6 production in response to stimuli.

Paracrine signaling involves IL-6 influencing neighboring cells,

leading to coordinated IL-6 expression among different cell types.

Feedback mechanisms within the immune system, influenced by IL-

6 signaling, further regulate IL-6 production (129–133).

Additionally, IL-6 expression can be regulated by feedback

mechanisms within the immune system, where IL-6 signaling

influences the differentiation and activation of immune cells,

thereby modulating IL-6 production (134–136).

The intricate influence of MSCs on endogenous IL-6 production

is contingent upon cellular interactions and experimental parameters

(36). Gu et al. (119) delineated that MSC-induced endogenous IL-6

release resulted in upregulating of IL-6R and p-STAT3 levels in

astrocytes subjected to oxygen and glucose deprivation. Notably, a

conspicuous elevation in the Bcl-2 to Bax ratio, pivotal downstream

factors of the STAT3 signaling pathway, was observed. This

investigation elucidated the neuroprotective impact of MSCs

transplantation in neonatal hypoxic-ischemic brain damage rats,

partly mediated by IL-6, enhancing the anti-apoptotic profile of

injured astrocytes via the IL-6/STAT3 signaling pathway. While

MSCs have demonstrated their capability to suppress IL-6

production by immune cells such as macrophages and T cells

through paracrine signaling and immunomodulatory mechanisms

(137, 138), MSC-derived IL-6 has also been shown to stimulate or

modulate the activity of other immune cells, thereby influencing

endogenous IL-6 levels (139, 140).

MSCs exhibit anti-inflammatory effects, affecting IL-6 levels

across various contexts and can downregulate IL-6 production by

suppressing the activation of immune cells. This was evident in a

study involving inflammatory bowel disease (IBD) in mice, where

MSC administration led to diminished levels of pro-inflammatory

cytokines, including IL-6, in inflamed colon tissue (141, 142).

Mechanistically, MSCs manifest their anti-inflammatory effects

through the secretion of factors such as transforming growth

factor-beta (TGF-b) and prostaglandin E2 (PGE2), as well as by

fostering the generation of regulatory T cells (Tregs) (143, 144).
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6 MSCs and IL-6 in
neuroinflammation
and neuroprotection

In the intricate landscape of neuroinflammation, both MSCs

and IL-6 wield substantial influence, jointly shaping the

pathophysiology of diverse neurological disorders.

When introduced into neuroinflammatory conditions, MSCs

exhibit the capacity to downregulate the expression of IL-6 by

activated microglia, astrocytes, and infiltrating immune cells within

the central nervous system (CNS), as illustrated in Figure 2. This

regulatory effect is achieved through the secretion of anti-

inflammatory factors such as IL-10 and TGF-b, which effectively

inhibit the synthesis and release of IL-6 by immune cells.

Additionally, MSCs foster the generation of Tregs, contributing to

an additional layer of suppression on IL-6 production and the

attenuation of neuroinflammation (145–147).

In the complex realm of immunomodulation, MSCs play a

crucial role in balancing pro-inflammatory and anti-inflammatory

forces by regulating cytokine production, notably IL-6 (Figure 2).

Both the suppression and enhancement of IL-6 production by MSCs

influence the secretion of anti-inflammatory cytokines. When MSCs

suppress IL-6 production, they create a favorable environment for

anti-inflammatory cytokine secretion by dampening the pro-

inflammatory response. This displays MSCs’ multifaceted

immunomodulatory capabilities, where reduced IL-6 levels pave the

way for anti-inflammatory mediators. Conversely, when MSCs

enhance IL-6 production, they introduce complexity to immune
Frontiers in Immunology 06
regulation. Despite IL-6’s pro-inflammatory reputation, it can

exhibit anti-inflammatory effects in certain contexts. By increasing

IL-6 levels, MSCs may trigger a regulatory response, leading to the

secretion of anti-inflammatory cytokines to counteract inflammation.

In both scenarios, achieving the desired outcome relies on a delicate

balance influenced by cellular signals and contextual cues. MSCs act

as pivotal orchestrators in this intricate dance of immunomodulation,

guiding the secretion of anti-inflammatory cytokines amidst the

dynamic landscape of inflammation and immune response.

Recent research underscores that endogenous MSCs transplantation

significantly enhances cognitive function and sustains brain health in

neonatal rats with hypoxic-ischemic brain damage (HIBD), owing to the

immune-regulating abilities of MSCs (119). Notably, this study reveals a

substantial boost in IL-6 release compared to other cytokines uponMSC

transplantation. When MSCs with reduced IL-6 expression were used,

positive effects on behavior and brain activity were notably diminished

correlating with decreased IL-6 levels in the hippocampus. This study

sheds light onMSCs enhancing the survival of injured astrocytes through

the IL-6/STAT3 signaling pathway, indicating IL-6 as a key mediator in

the neuroprotective effects, emphasizing the critical role of IL-6 in the

neuroprotective effects of MSCs transplantation in neonatal HIBD rats

partly rely on IL-6, promoting the survival of injured astrocytes via the

IL-6/STAT3 signaling pathway (119).

Conversely, IL-6 secreted by exogenous cells can influence the

immunomodulatory properties of MSCs and influence their behavior

within the CNS. Studies suggest that IL-6 enhances the

immunosuppressive function of exogenous MSCs and facilitates their

migration to inflammatory sites in the CNS (148, 149). However,

prolonged exposure to high levels of IL-6 may jeopardize the
FIGURE 2

Schematic illustration describing the IL-6 role in neurodegeneration and how the MSC-secreted IL-6 can promote immunomodulation.
Neuroinflammatory process caused by the bioaccumulation of misfolded proteins promotes the activation of microglia and astrocytes. Once
activated, these cells produce and secrete IL-6, which attracts monocytes to be differentiated into macrophages. However, the MSC transplantation
increases the IL-6 levels, leading to the production of IL-10 and TGF-b by macrophages, which suppress the microglia/astrocyte activation.
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therapeutic potential of MSCs and compromise their regenerative

capacity. IL-6 signaling has the potential to disrupt the equilibrium

between pro-inflammatory and anti-inflammatory factors secreted by

exogenous MSCs, leading to dysregulated immune responses and

persistent neuroinflammation (150).

The modulation of IL-6 signaling pathways, coupled with

leveraging the immunomodulatory prowess of MSCs, emerges as a

compelling avenue for developing therapeutic strategies aimed at

alleviating neuroinflammation and fostering neurological recovery in

neurodegenerative diseases and neurological injuries. Current research

endeavors, as highlighted by Gu et al. (119), Wang et al. (151), and

Kitzberger et al. (122) are diligently exploring the efficacy of MSC-

based therapies and IL-6 inhibitors in the realm of neuroinflammatory

disorders. These studies seek not only to unravel the therapeutic

potential of such interventions but also to refine treatment strategies

for patients grappling with these complex conditions.

The therapeutic promise extends to MSC-derived IL-6, operating

synergistically with other bioactive factors secreted by MSCs. This

collaborative action holds substantial potential for amplifying the

effectiveness of MSC-based treatments in neurological disorders.

Through mechanisms involving neuroprotection, neuroregeneration,

and immunomodulation within the CNS, IL-6 plays a crucial role in

enhancing the overall efficacy of MSC therapies. Strategic targeting of

IL-6 signaling pathways, as already demonstrated (152–155),

introduces innovative dimensions in neuroprotection and neurorepair.

In specific contexts, IL-6 derived from MSCs showcases

neuroprotective properties by fortifying neuronal survival and

providing a shield against various insults, including oxidative

stress, excitotoxicity, and inflammatory cytokines (156, 157).

Through intricate intracellular signaling cascades, particularly via

the Janus kinase (JAK)-signal transducer and activator of

transcription (STAT) pathway, IL-6 actively reinforces neuronal

resilience and viability (158, 159).

Beyond these fundamental roles, IL-6 assumes a crucial position

in modulating synaptic plasticity, a process essential for learning and

memory consolidation. Its regulatory influence on the expression and

functionality of neurotransmitter receptors, synaptic proteins, and

signaling molecules (160, 161). Additionally, IL-6 actively promotes

neurite outgrowth and axonal regeneration, facilitating crucial

neuronal connectivity and repair within the injured or diseased

CNS (162–164). Furthermore, IL-6 modulates neurotransmitter

release and neuronal excitability, underscoring its multifaceted role

in neurological function and pathology (165–167).

Thus, IL-6, and MSC-derived IL-6 emerges as a key player in

both the pathophysiology of neurological disorders and potential

therapeutic interventions. Its involvement in immunomodulation,

tissue repair, and neuroprotection emphasizes its therapeutic

potential in conditions such as stroke, traumatic brain injury, and

neurodegenerative diseases.
7 Conclusions

The collaborative interaction between MSCs and IL-6 in

neuroinflammation is crucial for understanding the pathophysiology
Frontiers in Immunology 07
of neurological disorders and developing therapeutic strategies to

mitigate neuroinflammation and promote neurological recovery in

various neurodegenerative diseases and neurological injuries.

The diverse roles of IL-6 in immunomodulation, tissue repair,

neuroprotection, and synaptic plasticity highlight its promising

application in neurological conditions ranging from stroke to

traumatic brain injury and neurodegenerative diseases.

Current studies on the efficacy of MSC-based therapies and IL-6

inhibitors aim to elucidate their therapeutic potential and optimize

treatment strategies for patients with these conditions.

IL-6 derived from MSCs, along with other bioactive factors

secreted by them, promises to enhance the therapeutic efficacy of

MSC-based treatments in neurological disorders, contributing to

neuroprotection, neuroregeneration, and immunomodulation in

the CNS. In this regards, strategic targeting of IL-6 signaling

pathways can further amplify the effectiveness of MSC-based

interventions, paving the way for innovative approaches in

neuroprotection and neurorepair.
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