
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Raquel Alarcon Rodriguez,
University of Almeria, Spain

REVIEWED BY

Liang-min Fu,
The First Affiliated Hospital of Sun Yat-sen
University, China
Yuquan Chen,
Monash University, Australia
Aimin Jiang,
Fudan University, China
Zhifei Che,
First Affiliated Hospital of Hainan Medical
University, China

*CORRESPONDENCE

Guanhu Yang

guanhuyang@gmail.com

Hao Chi

chihao7511@163.com

Jianhua Qin

2582536740@qq.com

†These authors have contributed equally to
this work

RECEIVED 13 March 2024

ACCEPTED 14 June 2024
PUBLISHED 27 June 2024

CITATION

Jiang L, Ren X, Yang J, Chen H, Zhang S,
Zhou X, Huang J, Jiang C, Gu Y, Tang J,
Yang G, Chi H and Qin J (2024) Mitophagy
and clear cell renal cell carcinoma:
insights from single-cell and spatial
transcriptomics analysis.
Front. Immunol. 15:1400431.
doi: 10.3389/fimmu.2024.1400431

COPYRIGHT

© 2024 Jiang, Ren, Yang, Chen, Zhang, Zhou,
Huang, Jiang, Gu, Tang, Yang, Chi and Qin.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 27 June 2024

DOI 10.3389/fimmu.2024.1400431
Mitophagy and clear cell renal
cell carcinoma: insights from
single-cell and spatial
transcriptomics analysis
Lai Jiang1†, Xing Ren2†, Jinyan Yang3†, Haiqing Chen1,
Shengke Zhang1, Xuancheng Zhou1, Jinbang Huang1,
Chenglu Jiang1, Yuheng Gu1, Jingyi Tang1, Guanhu Yang4*,
Hao Chi1* and Jianhua Qin5,6*†

1Clinical Medical College, Southwest Medical University, Luzhou, China, 2Department of Oncology,
Chongqing General Hospital, Chongqing, China, 3School of Stomatology, Southwest Medical
University, Luzhou, China, 4Department of Specialty Medicine, Ohio University, Athens,
OH, United States, 5Department of Nephrology, Affiliated Hospital of Southwest Medical University,
Luzhou, China, 6Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The
Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type

of kidney cancer, characterized by high heterogeneity and complexity. Recent

studies have identified mitochondrial defects and autophagy as key players in the

development of ccRCC. This study aims to delve into the changes in mitophagic

activity within ccRCC and its impact on the tumor microenvironment, revealing

its role in tumor cell metabolism, development, and survival strategies.

Methods: Comprehensive analysis of ccRCC tumor tissues using single cell

sequencing and spatial transcriptomics to reveal the role of mitophagy in

ccRCC. Mitophagy was determined to be altered among renal clear cells by

gene set scoring. Key mitophagy cell populations and key prognostic genes were

identified using NMF analysis and survival analysis approaches. The role of UBB in

ccRCC was also demonstrated by in vitro experiments.

Results: Compared to normal kidney tissue, various cell types within ccRCC

tumor tissues exhibited significantly increased levels of mitophagy, especially

renal clear cells. Key genes associated with increased mitophagy levels, such as

UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their

high expression closely linked to poor patient prognosis. Particularly, the

ubiquitination process involving the UBB gene was found to be crucial for

mitophagy and its quality control.

Conclusion: This study highlights the central role of mitophagy and its regulatory

factors in the development of ccRCC, revealing the significance of the UBB gene

and its associated ubiquitination process in disease progression.
KEYWORDS

clear cell renal cell carcinoma, mitophagy, mitochondrial gene defects, multi-omics

analysis, metabolic reprogramming, prognostic analysis , non-negative
matrix factorization
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1 Introduction

Renal cancer is a common malignant tumor, with its incidence

continuously increasing worldwide (1). Despite some progress in

treatment, many mysteries still remain regarding the pathogenesis of

renal cancer (2). Clear Cell Renal Cell Carcinoma (ccRCC) is one of the

most common types of renal cancer, occupying a major proportion of

malignant kidney tumors (3, 4). This cancer typically originates from

the epithelial cells of renal tubules and is characterized by high

heterogeneity and complexity (5, 6). Compared to other tumor types,

the treatment options for ccRCC are relatively limited, making it crucial

to deepen our understanding of its pathogenesis for developing more

effective treatment plans (7, 8).

Mitochondrial defects refer to structural or functional

abnormalities in mitochondria, which can be caused by various

factors, including genetic mutations, damage induced by

environmental factors, increased oxidative stress, or damage to

mitochondrial DNA (mtDNA) (9, 10). These defects often lead to

an increased frequency of mitophagy. This is because mitochondrial

defects, such as DNA damage, improper protein folding, increased

oxidative stress, or insufficient energy production, can impair the

normal function of mitochondria (11, 12).

In recent years, increasing evidence has suggested that

mitophagy plays a key role in tumors (13, 14). Mitophagy is an

intracellular self-degradation process through which cells can

remove damaged mitochondria , thereby maintaining

mitochondrial health (15). However, when mitophagy is

dysregulated, it can lead to mitochondrial dysfunction, abnormal

cell metabolism, and cell death (16). The anomalies in mitophagy

associated with ccRCC suggest a close link between the two. In

ccRCC, abnormalities in mitophagy may be caused by various

factors, including changes in the intracellular and extracellular

environment, genetic mutations, and dysregulation of regulatory

pathways (17). These abnormalities not only affect the survival and

proliferation of tumor cells but may also impact tumor

development, invasion, and drug resistance (18).

This study aims to explore the connection between ccRCC and

mitophagy genes through multi-omics analyses such as single-cell

sequencing and spatial transcriptomics, revealing the importance of

potential molecular aspects in the progression of renal

cancer disease.
2 Materials and methods

2.1 Source of raw data

The single cell sequencing data of ccRCC used in this study were

sourced from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) dataset GSE210038, which includes

tumor samples from three patients with ccRCC (GSM6415686,

GSM6415687, and GSM6415689) and one sample of normal

adjacent tissue (GSM6415694). Through the analysis of these

single-cell data, the study delves into the heterogeneity differences

at the cellular level between renal cell carcinoma and adjacent
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normal tissues. The spatial transcriptomics data were also obtained

from the GEO database (GSE210041), covering sequencing data for

two formalin-fixed paraffin-embedded (FFPE) ccRCC tumor

samples. This dataset provides a unique perspective for studying

the spatial distribution heterogeneity of ccRCC and its surrounding

environment. Additionally, RNA sequencing data for ccRCC were

downloaded from the UCSC Xena platform (https :/ /

xena.ucsc.edu/), originating from the TCGA (The Cancer

Genome Atlas) cohort, including sequencing information for 607

samples along with corresponding survival data for survival

analysis, thereby enhancing our understanding of prognostic

factors for ccRCC. Furthermore, genes related to mitophagy were

sourced from the GSEA website (https://www.gsea-msigdb.org/

gsea/index.jsp).
2.2 Processing of single-cell
sequencing data

In this study, we analyzed the single-cell RNA-seq data of

ccRCC using the Seurat package (version 4.3.0) in R (19).

Through strict quality control, cells with a gene expression range

of 200–4000 and mitochondrial gene expression ratio below 20%

were selected. After standardization and normalization of the data,

important principal components were determined using RunPCA

and JackStraw analysis, followed by clustering and visualization

with t-SNE to display the similarities and differences among cells.

Differential expression analysis was conducted using the

FindAllMarkers function, and cell types were annotated in

conjunction with the CellMarker database (http://xteam.xbio.top/

CellMarker/index.jsp), providing a data foundation for revealing

the molecular mechanisms and potential therapeutic targets

of ccRCC.

Five gene set scoring methods (AddModuleScore, ssGSEA,

AUCell, UCell, singscore) were employed to score mitophagy-

related genes in single-cell data. The mitophagy-related genes

were obtained from the GSEA website and include 29 genes. The

proteins encoded by these genes are involved in various processes

including autophagosome formation, the composition of protein

kinase CK2, mitochondrial fusion, mitochondrial fission, and

ubiquitination processes. The use of multiple algorithms enhances

the comprehensiveness, robustness, and biological interpretability

of the assessments, allowing for more accurate determination of

mitophagy in ccRCC. Additionally, clusterProfiler (4.6.2) and fgsea

(1.24.0) were applied for enrichment analysis of single-cell

transcriptomic data of ccRCC, precisely assessing gene set

enrichment for cell types such as clear cells, supporting queries to

various biological databases including GO, KEGG, and Reactome

(20, 21). CellChat R package (version 1.6.1) was utilized to analyze

cell communication patterns (22). CellChat simulates cell

communication based on interactions between signaling ligands,

receptors, and auxiliary factors, revealing how cells collaborate. To

compare metabolic state differences between normal and tumor

tissues, this study used the scMetabolism package (version 0.2.1) for

quantitative analysis of single-cell metabolic pathway activity. We
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also used the scFEA package to carry out flux studies to infer

intracellular metabolites.

In this research, unsupervised non-negative matrix factorization

(NMF) analysis of single-cell RNA sequencing data was applied using

the NMF package (version 0.27) in R, aiming to explore the mitophagy

characteristics of clear cell clusters (23). The component number was

set to 10 to balance the granularity of different cell state distinctions and

clustering interpretability. NMF results were integrated into the Seurat

framework for dimensionality reduction clustering to identify different

cell clusters. Key genetic markers were screened using the

FindAllMarkers function, and each NMF cell cluster was categorized

based on scores related to mitophagy-related genes and set thresholds.

This method enhanced understanding of cell heterogeneity and tumor

complexity, especially regarding mitophagy. Importantly, the ggplot2

package (version 3.4.2) served as our core tool for result visualization,

offering a powerful and flexible way to create complex graphics based

on the grammar of graphics.
2.3 Processing of spatial transcriptome
sequencing data

In our study, the Seurat package (version 4.3.0) was used for the

processing and analysis of spatial transcriptomics data, including

normalization and feature selection of UMI counts with

“SCTransform”, and dimensionality reduction with “RunPCA”.

Additionally, the scMetabolism package was employed to assess

metabolic features, while the “Monocle” package revealed cellular

development and differentiation processes. In the Python

environment , the Scanpy package processed spat ia l

transcriptomics data through data preprocessing and

dimensionality reduction with “SCTransform” and “RunPCA”

(24). We also introduced the stLearn package, integrating gene

expression, tissue morphology, and spatial location information to

parse cell types, infer evolutionary paths, and identify cell

interaction areas, providing a comprehensive spatial and

functional perspective to understand tumor complexity (25).
2.4 Integrative analysis of spatial
transcriptomics and single-cell sequencing
data through deconvolution

Through deconvolution analysis, we inferred the proportions of

cell types from mixed samples by combining single-cell and spatial

transcriptomics data, revealing cellular and spatial heterogeneity

within tissues. The “spacerxr” R package was used to perform

RCTD analysis, constructing a reference model based on single-

cell data and loading spatial data to form SpatialRNA objects.

RCTD objects estimated the proportions of cell types in mixed

samples through specific gene expression patterns, providing the

distribution of cell types for each spot in the spatial data. Moreover,

the “mistyR” package was employed to analyze cell interactions,

revealing cellular interactions within tissues, inferring cell

communication networks, and deepening the understanding of

cell communication patterns in the tumor microenvironment (26).
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2.5 Prognostic analysis of mitophagy-
related clear cell subpopulations combined
with bulk data

We explored the potential clinical prognostic value of newly

identified mitophagy-related subpopulations of clear cells. For this

purpose, we conducted an in-depth analysis using bulk sequencing

data. Single-cell sequencing data were processed with the Seurat

package, initially categorizing the identified mitophagy-related clear

cells from patient tumor tissues into high and low expression

subgroups based on their key gene expression levels. Next, the

FindAllMarkers function was utilized to identify marker genes for

these two subgroups. After obtaining the marker genes of key cell

populations, we quantified these genes in bulk sequencing data, thus

constructing high and low-risk groups. Lasso analysis was employed

to filter out key prognostic genes for ccRCC, establishing a

prognostic model based on mitophagy-related genes.
2.6 Cell culture and transient transfection

In our experimental studies, we utilized several cell lines,

including the 786-O and 769-P renal clear cell carcinoma cells.

These cell lines were obtained from the cell bank of the Central

Laboratory at the Southwest Medical University Affiliated Hospital.

To ensure the normal growth and maintenance of these cells, we

cultured them in DMEM (HyClone) medium supplemented with

10% fetal bovine serum (HyClone), 100 U/L penicillin, and 100mg/

L streptomycin (Thermo Fisher Scientific). We maintained

standard culture conditions, including a 5% CO2 atmosphere, to

provide an optimal environment for cell viability and experimental

consistency. For the transient transfection experiments, we used

Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States) as the

transfection reagent. Negative control (NC) and UBB siRNA

(RiboBio, Guangzhou, China) were transfected into the renal

clear cell carcinoma cells according to the manufacturer’s

instructions. This involved preparing a transfection mixture

containing the siRNA and transfection reagent and then adding it

to the cells. The transfection process was generally conducted

within the recommended time frame according to the

manufacturer’s protocol. By using Lipofectamine 3000 as the

transfection reagent, our aim was to efficiently introduce the

negative control or UBB siRNA into the renal clear cell

carcinoma cells for subsequent analysis and research on the

effects of gene knockdown or control on cellular processes and

molecular pathways.
2.7 CCK-8 assay

We evaluated cell viability using the Cell Counting Kit-8 (CCK-8)

assay. Twenty-four hours post-transfection, renal clear cell carcinoma

cells were seeded into 96-well plates at a density of 1500 cells per well,

and 200 mL of complete culture medium was added. The cells were

then incubated at 37°C. For the CCK-8 assay, 10 mL of CCK-8
frontiersin.org
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solution (Beyotime, Shanghai, China) was added to each well

containing cells. After incubating for another 4 hours at 37°C,

allowing the reagent to react with the cells, a colorimetric reaction

related to cell viability occurs. At the end of the incubation period, the

optical density (OD450) was measured using a microplate reader.

The OD450 value reflects the absorbance of the formazan product

generated by CCK-8, which is directly proportional to the metabolic

activity and viability of the cells. By quantifying the OD450 values, we

can assess the relative survival rate of the cells and compare them

across different experimental conditions or treatment groups.
2.8 EdU-DAPI double staining assay

After 48 hours of transfection, 10 mM EdU was added and

incubated for 4 hours, followed by fixation of cells with 4%

paraformaldehyde for 10 minutes and permeabilization with 0.5%

Triton X-100 for 5 minutes. EdU staining was performed using the

Click-iT EdU Alexa Fluor 594 Imaging Kit according to the

manufacturer’s instructions, followed by staining of cell nuclei

with 1 mg/mL DAPI for 10 min. Finally, the cells were observed

and images were acquired using fluorescence microscopy. Merge

images were used to analyze cell proliferation.
2.9 Wound healing experiment

To evaluate the migration ability of renal clear cell carcinoma

cells, we employed a wound healing assay. The transfected cells

were cultured in six-well plates and maintained at 37°C until they

reached approximately 80% confluence. A uniform wound was

introduced into the cell monolayer using a 200 ml sterile pipette tip.
After wound formation, the cells were washed twice with PBS to

remove any debris, and then the medium was supplemented with

serum-free culture medium. The process of cell migration into the

damaged area was recorded at 0 hours and 24 hours using an

Olympus inverted microscope.
2.10 Transwell assay

The invasive ability of renal clear cell carcinoma cells was

assessed using a well-established technique in cell biology

research—the Transwell assay. In this assay, a specific number of

renal clear cell carcinoma cells (approximately 1 × 10^5) were

seeded into specialized chambers. To evaluate invasion potential,

chambers coated with Matrigel were used. The upper chamber

contained serum-free culture medium to create a chemotactic

gradient, while the lower chamber was filled with complete

DMEM culture medium, providing a favorable environment for

cell movement. After 24 hours of culture, cells that had successfully

invaded through the membrane were fixed with a 4%

paraformaldehyde solution. To observe and quantify the invaded

cells, they were stained with 0.1% crystal violet. The stained cells
Frontiers in Immunology 04
were then observed and counted under an optical microscope,

allowing for the assessment of cell numbers and invasion capability.
2.11 Statistical analysis

The statistical analyses were conducted using R version 4.2.2,

64-bit, along with its support packages. The pycharm integrated

development environment for Python was also utilized. The non-

parametric Wilcoxon rank sum test was employed to assess the

relationship between two groups for continuous variables.

Spearman correlation analysis was conducted to examine

correlation coefficients. A significance level of P<0.05 was

considered statistically significant for all statistical investigations.
3 Results

3.1 Single-cell transcriptome atlas of clear
cell renal cell carcinoma

In this study, we delved into the cellular heterogeneity and

composition of ccRCC and its adjacent normal kidney tissue

through scRNA-seq. To ensure the quality of data and rigor of

analysis, we first performed meticulous quality control, quantifying

multiple quality metrics including the assessment of the number of

feature genes per cell, UMI counts, and the percentage of

mitochondrial and hemoglobin gene expression, thereby

eliminating the interference of senescent cells and erythrocytes

(Figure 1A). Subsequently, we utilized the Harmony package for

batch effect correction based on PCA analysis, which ensured the

reliability of the analysis results while maximally preserving the

original gene expression information of the cells (Figure 1B). By

using the t-SNE algorithm, we performed a visualization of the cell

clustering results, showing 22 cell clusters (Figure 1C). Based on the

cell marker genes, we plotted bubble plots and feature plots to help

us identify cell types by the expression and expression distribution

of these genes (Figures 1D, E). After completing the cell type

identification, we compared the cell distribution and number in

ccRCC samples and normal kidney tissue samples, and observed

that there was a significant increase in the proportion of T cells in

ccRCC tissues (Figures 1F, G). The expression of cell marker genes

in various cell types of cells is demonstrated by gene expression

heatmap to check the accuracy of cell type identification

(Figure 1H). To gain a preliminary understanding of the

metabolic functionality of various cell types in tumor and normal

tissues, we performed flux estimation analysis to infer intracellular

fluxes of metabolites (Figure 1I).
3.2 Exploring mitophagy levels in ccRCC by
gene scoring

To delve into the regulatory mechanisms of mitophagy in ccRCC

and its role in the pathological process, this study quantitatively
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evaluated the activity of mitophagy genes in ccRCC from multiple

perspectives using various scoring algorithms, including AUCell,

UCell, singcore, ssgsea, and AddModuleScore, revealing their

potential role in tumor development. The analysis vividly presented
Frontiers in Immunology 05
the scores of mitophagy gene sets across various cell types through

violin plots and bubble charts (Figures 2A, B). Heatmaps displayed

the final scores for different cell types (Figure 2C). Comparing the

scores of cells from different groups and performingWilcox statistical
B

C D

E

F G

H

I

A

FIGURE 1

Single-cell transcriptomic atlas analysis of renal clear cell carcinoma. (A) Data quality control. Violin plots depict the number of genes per cell
(nFeature_RNA), total transcript counts (nCount_RNA), percentage of mitochondrial genes (percent.mt), and percentage of hemoglobin genes
(percent.HB) to evaluate sample quality. (B) PCA dimensionality reduction of patient samples. Principal component analysis (PCA) results based on
expression profiles show the distribution of cell populations from different patients (ccRCC for tumor tissues of renal clear cell carcinoma patients,
Normal for normal adjacent tissue samples). (C) t-SNE clustering visualization. The t-SNE dimensionality reduction technique reveals 22 distinct cell
populations, each identified by a different color. (D) Marker genes of cell populations. Bubble charts display selected marker genes expressed in
different cell populations. (E) Spatial expression patterns of cell marker genes. The t-SNE plot shows the expression patterns of selected marker
genes. (F) Comparison of cell types between tumor and normal groups. The t-SNE plot shows the distribution of cell populations from the tumor
and normal groups. (G) Stacked bar charts display the proportion of cell type distribution across different patient samples. (H) Heatmap of marker
gene expression. Displays the expression levels of specific marker genes in different cell types. (I) Heatmap of metabolic levels. Shows how active
various cell types are in different metabolic pathways in different samples.
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analysis revealed that the scores of clear cells in the tumor group were

significantly higher than those in the normal group, with statistically

significant differences (p-value < 0.05) (Figure 2D). To further reveal

which mitophagy genes play a key role in the pathogenesis of ccRCC,

differential analysis was conducted between the tumor group and its

normal counterpart, intersecting the resultant differential genes with
Frontiers in Immunology 06
mitophagy-related genes, and obtaining 9 key mitophagy-related

genes with a logFC threshold of 0.5. The results showed that

TOMM20, UBC, UBA52, RPS27A, and other genes were

significantly upregulated in ccRCC cells (Figure 2E). Notably, these

genes were not only universally upregulated in ccRCC cells but also

widely distributed across various cell subpopulations (Figure 2F).
B

C

D

E F

A

FIGURE 2

Analysis of cellular metabolic levels. (A) Violin plots of mitochondrial autophagy gene set scores through five gene set scoring methods and an
integrated score. (B) Bubble chart of mitochondrial autophagy gene set expression scores in different cell types, based on the expression level of
specific gene sets. (C) t-SNE plot showing the distribution of metabolic scores among cells, where the depth of color represents the level of scoring,
revealing the metabolic heterogeneity of different cell types. (D) Violin plots comparing mitochondrial autophagy scores differences between tumor
tissues and adjacent normal tissues for each cell type, showing changes in mitochondrial autophagy states in the tumor microenvironment. (E) Violin
plots of differentially expressed mitochondrial autophagy genes between tumor and normal groups. (F) t-SNE plot showing the heatmap of
differentially expressed mitochondrial autophagy genes expression levels in different cell types. "*" represents p-value less than 0.05, "**" represents
p-value less than 0.01, "***" represents p-value less than 0.001. "****" represents p-value less than 0.0001. "ns" represents not statistically significant
(p ≥ 0.05).
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3.3 Characteristics of renal clear cells in
the high and low mitophagy level group

We first analyzed the metabolic pathway activity in three ccRCC

samples to determine the metabolic characteristics of ccRCC

(Figure 3A). In these three tumor sample data, we divided renal

clear cells into high and low groups according to the median value of

his mitochondrial autophagy score to explore the effect of mitophagy

levels on renal clear cell function and activity. Enrichment analyses

showed a very significant difference in the functional activity of renal

hyalinocytes between the high and low groups (Figure 3B). There

were also differences in cellular communication between the high and

low groups of renal hyalocytes, with the high mitophagy level group

having a higher level of cellular communication than the low level

group, both in terms of signaling efference and signaling reception, as

well as differences in the structure of the communication patterns

between the two groups (Figures 3C–E). The signaling pathways

ligand receptors they involve also differ markedly in type and strength

(Figure 3F). Differences between the two groups of cells were more

clearly demonstrated by GSVA enrichment analyses, with renal

hyalinocytes generally functioning more actively in the high-level

group than in the low-level group (Figure 3G).
3.4 Application of non-negative matrix
factorization (NMF) in revealing
heterogeneity of mitophagy in renal
clear cells

Non-negative matrix factorization (NMF) is a matrix

decomposition method performed under the constraint that all

elements of the output matrices are non-negative. Compared to

principal component analysis (PCA), NMF has a natural advantage

in analyzing tumor cell heterogeneity. By applying NMF technology

and clustering ccRCC cells based on mitochondrial autophagy-

related genes, we successfully identified five distinct subgroups

(C0–4). To elucidate the potential link between the subgroups

obtained by NMF analysis and mitochondrial autophagy, we

performed differential expression analyses of cells in these

subgroups. We obtained the differentially expressed genes for each

subgroup and developed a series of rules to identify cell types:

1.differentially expressed genes were ranked according to logFC

values. 2.If the first gene was a mitochondrial autophagy-related

gene with a logFC value greater than 1 and a P value of less than 0.05,

then the cell population was defined as a cell population marked by

this gene. 3. If the first gene is a mitochondrial autophagy-related

gene but its logFC value is less than 1 or its P value is greater than

0.05, then the cell population cannot be defined. 4. if the first gene is

not a mitochondrial autophagy-related gene, then the cell population

is defined as a non-mitochondrial autophagy cell population (Non-

Mitophagy). With this approach, we were able to identify and

categorize cell populations more clearly. The results yielded four

subgroups: Unclear-ccRCC-C3, Non-Mitophagy-ccRCC-C4,

CSNK2B+ccRCC-C1, MAP1LC3B+ccRCC-C2 (Figure 4A). Among

them, Unclear-ccRCC-C3 was named due to the most significant
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gene logFC not meeting the selection criteria, and the Non-

Mitophagy-ccRCC-C4 subgroup’s most significant gene was not a

mitochondrial autophagy gene. We performed a series of analyses on

the four cell subpopulations of renal clear cells obtained to investigate

differences in functional activity and biological heterogeneity. The

results of the Hallmark enrichment analysis showed that the Non-

Mitophagy cell population (C4) was significantly different from the

remaining three populations, which happen to be the ones that are or

may be related to mitophagy (Figure 4B). GSVA enrichment analysis

also demonstrated concordant results, which further demonstrated

the accuracy of the NMF analysis in identifying the mitophagy renal

hyalinocyte subpopulation (Figure 4E). For the two identified

populations of mitophagy -associated renal clear cells (CSNK2B

+ccRCC-C1 and MAP1LC3B+ccRCC-C2), we performed separate

GO enrichment analyses for further exploration of these two key cell

types (Figures 4C, D). In the transcription factor analysis, opposite

results were presented, with a stronger relationship between the Non-

Mitophagy cell population and the transcription factors (Figure 4F).

The cellular metabolic profiles in the four cell subpopulations

demonstrated very clear differences between Non-Mitophagy

and mitophagy -associated renal hyalinocytes, with mitophagy

-associated renal hyalinocytes being much more advanced than the

Non-Mitophagy cell population in a variety of metabolic

pathways (Figure 4G).
3.5 Analysis of metabolic features in spatial
transcriptomics data

Spatial transcriptomics data provided HE stained slice images of

two ccRCC tumor tissue samples (Figures 5A, F). After

dimensionality reduction clustering of spatial transcriptomics data,

we mapped the clustering information onto the HE stained slices,

obtaining dimensionality reduction clustering maps on the slices

(Figures 5B, G). The differential expression of mitochondrial

autophagy genes between tumor and normal groups in single-cell

data was displayed on spatial transcriptomics data through bubble

charts (Figures 5C, H). By using the scMetabolism package for

metabolic analysis of spatial transcriptomics data, we showed the

specific metabolic levels of each cell cluster in the two tumor samples

(Figures 5D, I) and also mapped certain key metabolisms onto the

slices. The heatmap colors allowed us to clearly see the high and low

states of metabolism at different locations on the slices (Figures 5E, J).
3.6 Pseudotime analysis of
spatial transcriptomics

In Figures 5E, J, we observed high metabolic areas on the slices

of two tumor samples, with clusters 2 and 1 being the main high

metabolic areas on the first slice, and clusters 10 and 4 on the

second slice. Therefore, we selected the high metabolic areas and

their surrounding cells for pseudotime analysis using the Monocle

package. For the first slice, we conducted pseudotime analysis on

cell clusters 2, 1, and 12 (Figure 6A). The heatmap showed the

expression changes of mitochondrial autophagy-related genes over
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pseudotime (Figure 6B). Cluster 1 occupied the earliest branch in

the pseudotime analysis, while cluster 2 was on a later branch,

which might indicate the developmental sequence of tumor cells

(Figure 6C). The cell density map also hinted at the timing of cell

appearances (Figure 6D). For the second slice, we analyzed cell
Frontiers in Immunology 08
clusters 10, 4, and 2, with the heatmap showing the expression

changes of mitochondrial autophagy-related genes over pseudotime

(Figures 6E, F). Cell clusters 10 and 4 were primarily in the early

stages of the pseudotime sequence, while cluster 2 was mainly in the

later stages (Figures 6G, H).
B
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A

FIGURE 3

Multidimensional analysis of renal clear cells. (A) Heatmap of metabolic activity in renal clear cells from different sample sources, analyzed using the
scMetabolism package, showing their expression patterns across different metabolic pathways. (B) HALLMARK gene set enrichment analysis.
Individual cell types (including high and low group ccRCC) are shown to be up- and down-regulated in various pathways. (C) String diagram of
cellular communication networks. Demonstrates the strength of cellular communication in tumor tissues. (D) Scatter plot demonstrating the average
strength of signals received and sent by cells in each cell type. (E) Structural diagram demonstrating the communication patterns of various cell
types in the cellular communication network, comparing the high and low groups of ccRCC. (F) Ligand receptor activation involved in cellular
communication between high and low groups of ccRCC and other cell types. (G) GSVA enrichment analysis of evanescent bar graphs. Pathways
with significant differences between the high-level group ccRCC and the low-level group are demonstrated.
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3.7 Developmental trajectories revealed by
spatial transcriptomics data

Spatial transcriptomics data provide transcriptional

information on the precise location of cells within tissues. Using

the stLearn toolkit, we conducted an in-depth analysis of spatial
Frontiers in Immunology 09
transcriptomics data to explore the developmental processes of

tumors, including invasion and metastasis issues. By combining

data quality control and dimensionality reduction with NumPy, and

clustering with stLearn’s Louvain method, we identified different

cell clusters in ccRCC samples (Figures 7A, D). For cell clusters

identified in the early stages of pseudotime sequence in the
B
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A

FIGURE 4

Non-negative matrix factorization (NMF) analysis of renal clear cells. (A) UMAP plot annotating renal clear cell types post-NMF, identifying two
subtypes closely related to mitochondrial autophagy. (B) HALLMARK gene set enrichment analysis. The up- and down-regulation of the four ccRCC
subgroups obtained from NMF analysis in various pathways is shown. (C) GO enrichment analysis of cell population C1. results of GO enrichment
analysis of CSNK2B+ccRCC-C1 cell population demonstrating properties in BP, CC, and MF. (D) GO enrichment analysis of cell population C2.
results of GO enrichment analysis of MAP1LC3B+ccRCC-C2 cell population, demonstrating the properties in three aspects: BP, CC, and MF.
(E) GSVA enrichment analysis. The heatmap demonstrates the differences between the four ccRCC subpopulations in various pathways. (F) Heatmap
of the transcription factor regulatory network in mitochondrial autophagy-related subtypes of renal clear cells. (G) Bubble chart analyzing the activity
levels of renal clear cell subgroups in different metabolic pathways, where bubble size and color depth reflect the relative levels of metabolic activity.
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FIGURE 5

Spatial transcriptomics analysis revealing changes in metabolic activity. (A) H&E-stained section of renal clear cell carcinoma tumor tissue. (B) Spatial
transcriptomics data of a renal clear cell carcinoma tumor tissue section, with cell clustering results obtained by dimensionality reduction clustering
analysis using the Seurat package. (C) Expression of differentially expressed mitochondrial autophagy-related genes in the section data. (D) Bubble
chart showing metabolic activity levels of different cell clusters in the renal clear cell carcinoma tumor tissue section analyzed with the scMetabolism
package, highlighting each cluster’s performance in various metabolic pathways. (E) Display of various metabolic levels on the section, including
glycolysis, oxidative phosphorylation, purine metabolism, pyrimidine metabolism, and the metabolism of amino sugar and nucleotide sugar.
(F) Second H&E-stained section of renal clear cell carcinoma tumor tissue. (G) Spatial transcriptomics data of a second renal clear cell carcinoma
tumor tissue section, with cell clustering results obtained by dimensionality reduction clustering analysis using the Seurat package. (H) Expression of
differentially expressed mitochondrial autophagy-related genes in the second section data. (I) Bubble chart showing metabolic activity levels of
different cell clusters in the second renal clear cell carcinoma tumor tissue section analyzed with the scMetabolism package, highlighting each
cluster’s performance in various metabolic pathways. (J) Display of various metabolic levels on the second section, including glycolysis, oxidative
phosphorylation, purine metabolism, pyrimidine metabolism, and the metabolism of amino sugar and nucleotide sugar.
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pseudotime analysis, we reconstructed the developmental

trajectories using the Diffusion Pseudotime (DPT) algorithm,

combined with spatial coordinates information, revealing the

gradual invasion and metastasis process of tumor cells in the

pseudotime sequence, consistent with Monocle pseudotime

analysis (Figures 7B, E). The diverging bar charts of

developmental trajectory analysis revealed gene expression

changes based on trajectory differences, showing genes that were

upregulated and downregulated throughout the tumor

development process from start to end (Figures 7C, F).
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3.8 Deconvolution and cell interaction
analysis combining spatial transcriptomics
with single-cell data

Due to the limitations of spatial transcriptomics sequencing

technology, current spatial transcriptomics data do not achieve the

same single-cell resolution as single-cell sequencing data. To address

the limitations of spatial transcriptomics sequencing data, we employed

deconvolution analysis methods to compensate for its lack of

resolution. This analysis inferred the possible cell types and their
B
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FIGURE 6

Pseudotime analysis of cells in local areas of tumor tissue sections. (A) Display of local cell populations on the section. (B) Expression of
mitochondrial autophagy-related genes in pseudotime order. (C) Developmental trajectory map, showing the dynamic changes and differentiation
paths of 3 cell populations in pseudotime development. (D) Density map explaining the distribution characteristics of each group of cells on the
pseudotime axis. (E) Display of local cell populations on the section in a second renal clear cell carcinoma tumor slice. (F) Expression of
mitochondrial autophagy-related genes in pseudotime order on the second slice. (G) Developmental trajectory map for the second slice data,
showing the dynamic changes and differentiation paths of 3 cell populations in pseudotime development. (H) Density map explaining the distribution
characteristics of each group of cells on the pseudotime axis for the second slice.
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proportions at each location in the spatial transcriptomics data based

on the gene expression patterns of various cell types in ccRCC single

cell sequencing data. This step allowed us to gain deeper insights into

the spatial structure and function of tissues or cells, revealing

interactions and communications between different cell types, and

discovering spatial heterogeneity and state changes of cells. Through

this method, we were able to provide more detailed information about

cell types and proportions in ccRCC tumor samples, offering new

perspectives and depth to the study (Figures 8A, G). Based on the

deconvolution analysis of two tumor samples, we further applied the

MISTy (Multiview Intercellular SpaTial modeling framework)

framework for spatial transcriptomics cell interaction analysis. This

framework is an interpretable machine learning framework for

analyzing single-cell, highly multiplexed, spatially resolved data,

enabling an in-depth understanding of the internal and intercellular

relationships betweenmarkers.WithMISTy, we could handle a custom

number of views, each describing different spatial contexts such as

intracellular regulation or paracrine regulation, and relationships

between specific cell types. Our analysis results showed the
Frontiers in Immunology 12
contributions of three different views to cell interactions through bar

charts, finding that intraview and paraview15 made the largest

contributions in the two tumor samples (Figures 8B, H). This

revealed the importance of intracellular regulation and paracrine

regulation in tumor samples. Further heatmap and network graph

analyses revealed the specific patterns of these two views in tumor

samples, highlighting the significant interactions between two groups

of clear cells with high and low mitochondrial autophagy states and

other cell types (such as mast cells and fibroblasts) (Figures 8C–F, I–L).
3.9 Prognostic study of mitochondrial
autophagy-related genes

In our study, nine key mitochondrial autophagy-related genes

were significantly higher expressed in tumor tissues compared to

normal tissues. We analyzed data of ccRCC from the TCGA

database, first selecting positive cells with high expression of these

nine genes, and compared them with negative cells with low
B C

D E F

A

FIGURE 7

Spatial developmental trajectory analysis of renal clear cell carcinoma tumor tissue. (A) Clustering of renal clear cell carcinoma tumor tissue section
sequencing data using the louvain method in the stLearn package, with the clustering map showing the spatial distribution of different cell populations.
(B) Spatial developmental trajectory map of high metabolic area cells in the tumor tissue section, drawn using the stLearn package. (C) Diverging bar
chart of developmental trajectory-related differentially expressed genes in the tumor tissue, performed statistical analysis using numpy, revealing key
regulatory genes associated with the developmental trajectory. (D) Clustering map of the second slice data. (E) Spatial developmental trajectory map of
high metabolic area cells. (F) Diverging bar chart of developmental trajectory-related differentially expressed genes in the tumor tissue.
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expression to identify unique marker genes of the positive cells.

Subsequently, based on the expression levels of these marker genes,

we divided patients into high and low expression groups and

performed survival analysis. The results showed that patients with
Frontiers in Immunology 13
high expression of UBC, UBA52, TOMM7, UBB, MAP1LC3B, and

CSNK2B had a poorer prognosis, with statistical significance

(Figure 9A). Using LASSO regression model analysis, UBB and

TOMM7 were identified as important prognostic factors for ccRCC
B
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FIGURE 8

Deconvolution and cell interaction analysis based on spatial transcriptomics data. (A) Analysis of renal clear cell carcinoma tumor tissue section data
using the RCTD deconvolution method, showing the spatial distribution probabilities of various cell types, including cells with high and low levels of
mitochondrial autophagy. (B) Bar chart showing the contribution of different views to cell interactions assessed by the Mistyr package, demonstrating the
relative importance of different views in cell interactions. (C, D) Heatmap and network diagram of cell interactions within the same view (intraview),
revealing the interaction strength and patterns within the same cell type. (E, F) Heatmap and network diagram of cell interactions in the paraview15 view,
showing the interaction strength and communication networks across cell types. (G) RCTD deconvolution analysis results of the second slice data,
showing the probabilities and spatial distribution of different cell types, including cells with high and low levels of mitochondrial autophagy. (H) Bar chart
showing the contribution of different views to cell interactions in prostate adenocarcinoma with infiltrating carcinoma tissue, assessing the relative
contributions of each view. (I, J) Heatmap and network diagram of cell interactions (intraview) for the second slice data, showing the interaction
relationships among the same cell type in the tumor environment. (K, L) Heatmap and network diagram of cell interactions in the paraview15 view of the
same tissue, revealing the interaction strength and network structures across different cell types.
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FIGURE 9

Analysis of the association between mitochondrial autophagy-related subtypes of renal clear cells and the clinical prognosis of patients with renal
clear cell carcinoma. (A) Kaplan-Meier survival curve analysis showing the survival probability differences among renal clear cell subtypes with high
and low expression of key mitochondrial autophagy genes in patients with renal clear cell carcinoma. (B) LASSO coefficient path graph. It illustrates
how the LASSO coefficients of renal clear cell carcinoma prognosis-related genes change as the regularization strength (L1 norm) of the model
increases. Selected genes maintain non-zero coefficients at high regularization levels, indicating their importance to the model. (C) Deviance plot of
ten-fold cross-validation. Displays the performance of the LASSO model at different lambda values to determine the optimal lambda selection. The
red dot identifies the lambda value providing the optimal prognosis model, determined by minimizing the validation error. (D) Risk score and survival
status chart of patients with renal clear cell carcinoma based on the LASSO model. (E) Kaplan-Meier survival analysis curve of high and low-risk
patient groups with renal clear cell carcinoma. (F) Nomogram model for the prognosis of patients with renal clear cell carcinoma, combining clinical
variables such as age, gender, pathological staging, and the expression levels of UBB and TOMM7 genes. (G) Calibration curve of the nomogram
prognosis model, showing the consistency between the nomogram-predicted 1-year, 3-year, and 5-year survival probabilities (X-axis) and the actual
observed survival probabilities (Y-axis).
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(Figures 9B–D). Kaplan-Meier curves showed that the survival rate

of patients in the high-expression group was significantly lower

than that of the low-expression group (Figure 9E). We also

established a nomogram that includes these genes and clinical

parameters to predict the survival probabilities of patients at 1, 3,

and 5 years, and calibration curves validated the accuracy and

reliability of this prognostic model (Figures 9F, G).
3.10 UBB promotes the proliferation and
migration of renal clear cell
carcinoma cells

To investigate the potential role of UBB in renal clear cell

carcinoma, we conducted in vitro experiments. Initially, the CCK-8

assay indicated that silencing UBB significantly inhibited cell

proliferation (Figure 10A). Silencing of the UBB gene resulted in a

significant reduction in DAPI staining (blue) and EdU staining (red)

signals in the 786 and 769 cell lines, indicating a decrease in both the

number of cells and the number of DNA-synthesizing cells. The

results showed that UBB gene knockdown significantly inhibited the

proliferation of tumor cells (Figure 10B). Furthermore, wound

healing assays, and transwell assays showed that knocking out UBB

significantly reduced the cells’ invasion and migration capabilities

(Figures 10C, D). Taken together, these results suggest that the

upregulation of UBB promotes the proliferation, invasion, and

migration of renal clear cell carcinoma cells.
4 Discussion

Mitochondrial defects, including structural or functional

abnormalities caused by genetic mutations, damage from

environmental factors , increased oxidat ive stress , or

mitochondrial DNA (mtDNA) damage, impact cellular

proliferation, death, and metabolism and are closely linked to the

development and progression of cancer (27, 28). These defects can

trigger mitophagy—a cellular adaptive mechanism that maintains

cell survival by removing dysfunctional mitochondria to prevent

further cellular damage. As a quality control mechanism,

mitophagy aids in the clearance of unhealthy or dysfunctional

mitochondria, averting potential cellular damage caused by

mitochondrial defects (12, 29). With an increase in mitochondrial

defects, autophagy activity correspondingly intensifies to address

these deficiencies. The process of mitophagy includes multiple

steps: recognition of mitochondrial damage, formation of

autophagosomes, fusion with lysosomes, degradation, and

recycling (12). In our research, we observed changes in the levels

of mitochondrial autophagy in various cell types within ccRCC

tumor tissues compared to normal kidney tissue, especially a

significant enhancement of mitochondrial autophagy levels in

clear cells within tumor groups.

The enhancement of mitochondrial autophagy in ccRCC tissues

can be understood from multiple perspectives: Firstly, tumor cells

undergo metabolic reprogramming to adapt to the tumor

microenvironment and promote survival and proliferation,
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activating more frequent mitochondrial autophagy to maintain

intracellular metabolic balance. Secondly, ccRCC cells may

experience increased oxidative stress, leading to mitochondrial

damage, and enhance mitochondrial autophagy to clear damaged

mitochondria, preventing the accumulation of oxidative damage

that could lead to cell death. Additionally, mitochondrial autophagy

may serve as a self-regulatory mechanism, helping tumor cells

optimize survival strategies to adapt to stress conditions in the

microenvironment (30, 31).

Through the analysis of multiple transcriptomic data, we

identified several key genes closely related to mitochondrial

autophagy, suggesting that these genes may be the main factors

driving the changes in mitochondrial autophagy function in clear

cells of renal cell carcinoma, especially in the prognostic analyses

the high expression of six mitochondrial autophagy-related genes,

namely, UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B

was closely associated with poor patient prognosis. Among these

genes, UBC (Ubiquitin C), UBA52 (Ubiquitin A-52 Residue

Ribosomal Protein Fusion Product 1), and UBB (Ubiquitin B) are

involved in the ubiquitination process—a critical protein

modification mechanism that tags proteins for degradation or

other fates (32). The ubiquitin-proteasome system plays a central

role in regulating protein levels, maintaining protein homeostasis,

and participating in cellular stress responses. TOMM7 (Translocase

Of Outer Mitochondrial Membrane 7) is part of the mitochondrial

protein import complex, responsible for transporting proteins from

the cytosol into the mitochondria (33). MAP1LC3B (Microtubule

Associated Protein 1 Light Chain 3 Beta) is a key protein in the

autophagy process, involved in the formation of autophagosomes

(34). CSNK2B (Casein Kinase 2 Beta), as part of the protein kinase

CK2, is involved in various cellular processes including cell cycle

regulation, cell survival, and DNA repair (35). Further analyses

identified UBB and TOMM7 as important prognostic factors

for ccRCC.

UBB is a protein-coding gene involved in the process of

ubiquitination and is also associated with mitochondrial

autophagy. The ubiquitination process plays a critical and

widespread regulatory role within the cell, maintaining the

stability of the intracellular environment and responding to

environmental changes by controlling the fate of proteins. In

mitochondrial autophagy, ubiquitination plays a central role,

primarily by covalently attaching ubiquitin proteins to specific

proteins on the surface of damaged or dysfunctional

mitochondria, thereby marking these mitochondria for

recognition and clearance by autophagosomes. The involvement

of specific receptor proteins such as p62/SQSTM1, OPTN, and

NBR1 allows these ubiquitinated mitochondria to interact with LC3

proteins on the autophagosome membrane, promoting the

formation and expansion of autophagosomes to encapsulate and

ultimately digest the damaged mitochondria (12, 29). Specifically,

the ubiquitin B protein encoded by the UBB gene plays a core role

in marking damaged or obsolete proteins for recognition and

degradation by the 26S proteasome. By regulating the selective

degradation of mitochondria, the UBB gene and its encoded

ubiquitin B protein are crucial for maintaining mitochondrial

quality control and intracellular environmental stability. High
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expression of the UBB gene may enhance the ubiquitination

marking and rapid clearance of damaged mitochondria, helping

tumor cells effectively remove damaged mitochondria to prevent

cellular stress and death, thereby increasing the tumor cells’

adaptability to adverse conditions. Furthermore, high expression

of the UBB gene may also strengthen the adaptive response of the

autophagy pathway under stress conditions such as nutrient

deprivation or hypoxia, providing a survival advantage for tumor

cells, especially in the challenging tumor microenvironment.

We have demonstrated through in vitro experiments that the

proliferation, invasion and migration of tumor cells can be inhibited

by decreasing the expression of the UBB gene in tumor cells. The

results based on transcriptome data analysis and in vitro experiments

demonstrated that UBB, a mitochondrial autophagy-related gene, has

a very important role in renal clear cell carcinoma, which provides a

new direction for potential clinical treatment. We can envisage the

development of siRNA drugs or small molecule inhibitors based on

the UBB gene, thereby reducing its expression level in tumor cells to

inhibit tumor adaptability and growth. In conclusion, through in-

depth research and clinical application of the UBB gene, we can

provide more precise and effective therapeutic options for ccRCC

patients and significantly improve their prognosis.
5 Conclusion

This study highlights the importance of increased

mitochondrial autophagy in ccRCC and its impact on tumor

behavior. By advanced analysis, key genes such as TOMM7 and
Frontiers in Immunology 16
UBB were associated with autophagy and prognosis, with the role of

UBB in ubiquitination emphasizing its therapeutic potential. These

findings highlight the central role of mitochondrial autophagy in

ccRCC, suggesting new therapeutic targets and improving

personalized treatment for ccRCC patients.
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FIGURE 10

UBB has been demonstrated to promote the proliferation, invasion, and migration of renal clear cell carcinoma cells, as determined by a series of
analytical results: (A) CCK-8 assay. (B) EdU-DAPI Double Staining Assay. (C) wound healing assay. (D) Transwell assay. * Indicates p-value < 0.05.
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