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The roles of cancer stem cell-
derived secretory factors in
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tumor microenvironment in
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Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies

worldwide and has a poor prognosis. Although immune checkpoint inhibitors

have entered a new era of HCC treatment, their response rates are modest,

which can be attributed to the immunosuppressive tumor microenvironment

within HCC tumors. Accumulating evidence has shown that tumor growth is

fueled by cancer stem cells (CSCs), which contribute to therapeutic resistance to

the above treatments. Given that CSCs can regulate cellular and physical factors

within the tumor niche by secreting various soluble factors in a paracrinemanner,

there have been increasing efforts toward understanding the roles of CSC-

derived secretory factors in creating an immunosuppressive tumor

microenvironment. In this review, we provide an update on how these

secretory factors, including growth factors, cytokines, chemokines, and

exosomes, contribute to the immunosuppressive TME, which leads to immune

resistance. In addition, we present current therapeutic strategies targeting CSC-

derived secretory factors and describe future perspectives. In summary, a better

understanding of CSC biology in the TME provides a rational therapeutic basis for

combination therapy with ICIs for effective HCC treatment.
KEYWORDS
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1 Introduction to hepatocellular carcinoma

Cancer has long been a major public health concern, with consistently increasing

incidence and mortality rates worldwide. According to GLOBOCAN estimation data for

2020, a total of 19 million new cancer cases and 10 million cancer-related deaths are

predicted to occur globally (1). Primary liver cancer is the sixth most diagnosed cancer and
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the third leading cause of cancer-related deaths worldwide

according to GLOBOCAN 2020 evaluations (1). Liver cancer has

been established as one of the key contributors to the global cancer

burden, and hepatocellular carcinoma (HCC) is one of the most

commonly diagnosed histological subtypes of liver malignancy,

accounting for approximately 80% of all liver cancer cases

worldwide (2). Despite the significance of HCC cases in

transitioning countries with low and medium resources, the

tumorigenicity of HCC is significantly related to various risk

factors and underlying liver disorders, including chronic hepatitis

B virus (HBV) and hepatitis C virus (HCV) infections, nonalcoholic

fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH),

compulsive alcohol abuse, smoking, aflatoxin exposure, metabolic

syndrome, diabetes, and obesity. Approximately 75% of

documented HCC cases are induced by HBV and HCV,

rendering such infections crucial global risk factors for HCC (2).

Furthermore, the contributions of both NAFLD and NASH to HCC

progression are discernible in the evidence of common occurrences

worldwide. Accumulating evidence has also demonstrated the

causal linkage of risk factors, such as excessive alcohol and

tobacco consumption, as well as underlying metabolic disorders,

including obesity and diabetes, with an increased risk of HCC,

including its precursors, NAFLD and NASH (3–6). HCC is a

complex and heterogeneous malignancy known to have a poor

prognosis, with the life prospects of individuals varying according

to disease progression. More than 50% of HCC patients are

diagnosed at an advanced stage of HCC development (7, 8).

Individuals with advanced-stage HCC progression have an overall

median survival rate of less than a year (8, 9), whereas those with

early-stage HCC have a five-year median survival rate of

approximately 70% with the corresponding treatment options (10).
2 Therapeutic options for
hepatocellular carcinoma patients

The severity of HCC is acknowledged in both clinical and

research settings, where various treatment modalities for this

malignancy continue to be developed. The HCC staging systems,

among which the Barcelona Clinical Liver Cancer (BCLC) is one of

the renowned systems to be adopted, facilitate the selection of

therapeutic options.

Liver transplantation is a highly effective treatment option for

patients with early-stage HCC (BCLC 0/A) because it can remove

tumor lesions and replace a damaged liver to prevent HCC

recurrence (11–13). However, this treatment is recommended

only for early-stage patients. Hepatic resection and ablation are

other options that provide safe and effective outcomes for early-

stage patients. Hepatic resection offers greater clinical benefits in

terms of overall survival and tumor control but at a higher cost and

with more adverse side effects than ablation techniques (14–16).

Chemotherapeutic-based treatments, such as transarterial

chemoembolization (TACE), are typically used for intermediate-

stage HCC patients (BCLC B) with locally unresectable tumors.

The administration of tyrosine kinase inhibitors (TKIs) as a

systemic therapy method is widely adopted to treat patients with
Frontiers in Immunology 02
HCC in both the intermediate and advanced stages (BCLC B/C).

Sorafenib, an FDA-approved oral multikinase inhibitor, is capable

of impeding HCC proliferation through the inhibition of numerous

cell surface and downstream kinases that are involved in

angiogenesis and tumor proliferation, including vascular

endothelial growth factor receptor (VEGFR) 1–3, platelet-derived

growth factor receptor (PDGFR) b, FMS-like tyrosine kinase-3

(FLT3), and c-KIT (17, 18). Additionally, the inhibition of Raf

kinases, including B-Raf and C-Raf, which are implicated in the

Ras/Raf/MEK/ERK signaling pathway, also inhibits HCC

development. Similarly, another multikinase inhibitor, lenvatinib,

was synthesized. This drug is a compelling inhibitor of fibroblast

growth factor receptor (FGFR) 1–4, VEGFR 1–3, PDGFR-a, RET,
and KIT. Unlike sorafenib, lenvatinib is capable of impeding the

fibroblast growth factor (FGF) signaling pathway, which provides a

basis for its antitumor activity (19–22).

Despite numerous therapeutic options, the clinical benefits for

patients with HCC remain limited owing to adverse side effects,

recurrence risk, and therapeutic resistance. TKIs such as sorafenib

and lenvatinib are significant for advanced-stage HCC. However,

primary and acquired resistance are major obstacles, and kinase

inhibitors have become ineffective over time. Genetic diversity

contributes to primary resistance, whereas acquired resistance can

occur during treatment. A substantial body of research has identified

crosstalk between multiple signaling pathways, including the PI3K/

AKT, JAK/STAT, hypoxia-inducible, and epithelial–mesenchymal

transition (EMT) pathways, as one of the primary sources of

acquired resistance to sorafenib in HCC patients, along with other

pathways (23–26). Similarly, some studies have shown that the

signaling pathways that participate in acquired resistance to

lenvatinib in HCC patients include the EGFR/PAK2/ERK5, PI3K/

AKT, and MAPK/ERK pathway (27, 28). Ultimately, a wide range of

additional molecular mechanisms contribute to the complex nature

of therapeutic resistance in HCC patients.

Combination therapy that incorporates immunotherapies,

including immune checkpoint inhibitors (ICIs) and chimeric

antigen receptors (CARs), with conventional treatments, such as

TKIs, locoregional and radical treatments, and neoadjuvant

therapy, is ongoing. Immunotherapy, as a multifaceted treatment

approach, has shown promising results in improving the treatment

efficacy and clinical benefits for patients with liver cancer, especially

HCC. However, investigating the molecular mechanisms leading to

therapeutic resistance in patients with HCC is crucial for developing

of effective treatments that provide substantial and consistent

clinical benefits, especially for those in the advanced stages of

the disease.
3 General concept of cancer
stem cells

Tumor-initiating cells (TICs) or cancer stem cells (CSCs) are a

subpopulation of malignant cells within the tumor bulk that can

self-renew, differentiate, and form distinct tumor cell populations,

leading to tumorigenesis, and are known to be involved in the

development of therapeutic resistance in cancer patients. These cells
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are highly resistant to conventional chemotherapeutic therapies,

rendering them resistant to apoptosis, able to survive and

repopulate the tumor bulk with restricted proliferative potential,

and metastasize to give rise to new tumors (29, 30). The intricate

biological characteristics and mechanisms of these conspicuous

cells further drive tumor aggressiveness and survival, which

include but are not limited to metabolic alterations (31–33),

redox stress tolerance (34, 35), prompt restoration of damaged

DNA (36, 37), EMT signaling (38), hyperactivity and

overexpression of ATP-binding cassette (ABC) transporters for

drug efflux (39, 40), and the development of multidrug resistance

(MDR) (40, 41).

The detection of CSCs is feasible due to the presence of

intracellular and extracellular molecules that serve as markers, and

these markers are also used for predictive, diagnostic, and therapeutic

purposes. The adoption of combinations of markers may help to

accurately isolate, enrich, and identify CSCs, as certain markers are

shared by all types of malignant and nonmalignant cells (42).

Transcription factors such as SOX2, OCT4, and NANOG, as well

as surface markers such as CD24, CD34, CD44, CD90, CD123, and

CD133, are commonly used to help distinguish CSC populations (43–

45). For years, the presence of liver CSCs has been continuously

investigated as one of the prominent mechanisms behind inefficient

treatment outcomes and tumor relapse in liver cancer patients.

Owing to extensive research performed throughout the years,

numerous markers for isolating and characterizing CSCs in liver

cancer have been discovered. Through evident xenotransplantation

and fluorescence-activated cell sorting (FACS) experimental outputs,

markers of CSCs in HCC can be classified into intracellular markers,

such as cytokeratin 19 (CK19) and surface markers, including CD13,

CD24, CD44, CD47, CD90, CD133, and epithelial cellular adhesion

molecule (EpCAM) (46). These reported markers have been

evaluated with regard to CSCs in HCC, which is known to be

associated with poor patient survival and aggressive tumor

development. However, the purpose of biomarkers is widely

applied to characterize or label the CSC phenotype of various

malignancies; for example, CD133 can be used as a CSC marker

for liver, breast, lung, pancreatic, and prostate cancers (29). The

combinatory use of several intracellular and extracellular markers has

served as the foundation for the identification and isolation of

CSC populations.

CK19 is a known intracellular marker for premature

hepatoblasts, hepatic progenitor cells, and cholangiocytes, where

it can serve as a biomarker for CSCs in HCC and is involved in the

SMAD/transforming growth factor (TGF)-b signaling pathway (46,

47). Previous research has shown that CK19+ cells in HCC are

associated with metastasis, drug resistance, poor prognosis, tumor

differentiation, and tumor relapse (47–50). A research group

reported that CK19 may be a predictive biomarker for tumor

relapse following surgery and adjuvant therapy in patients with

HBV-induced HCC (51). A similar study examined the association

between the benefits of adjuvant TACE and CK19 expression and

reported that CK19+ HCC patients with an elevated risk of tumor

relapse may benefit from TACE in terms of recurrence-free survival
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(52). Moreover, it has been suggested that HCC patients with

CK19+ cells could be treated with regorafenib, a dual-targeted

VEGFR2-TIE2 TKI, for individualized therapeutic purposes (53).

The expression of CSC surface markers, including CD13, CD24,

CD44, CD47, CD90, and CD133, is reported to be related to self-

renewal, metastasis, proliferation, angiogenesis, poor prognosis,

tumor recurrence, and drug resistance in HCC. These markers

are also functional markers which regulate a number of signaling

pathways (46, 54, 55). Recent studies have shown novel insights

based on discoveries related to HCC cell surface markers, which are

summarized in Table 1. Research groups have shown that CD13

expression is correlated with chemoresistance induction and

sorafenib resistance through the p38/Hsp27/CREB/ATG7 and

HDAC5/LSD1/NF-kB pathways, respectively (56, 57). Moreover,

the suppression of CD13 expression by ubenimex, a CD13 inhibitor,

may reverse chemoresistance in HCC, suggesting that combination

therapy involving chemotherapeutic agents and ubenimex may be

another treatment option to counter therapeutic resistance (58).

Additionally, recent research demonstrated a novel method to

impede CD24 expression through the use of RNAi technology

that attenuated Salmonella and harnessed its ability to bind to

oxaliplatin chemotherapeutic drugs (59). The application of this

novel approach led to a decrease in stemness properties and an

increase in T-cell infiltration, which increased antitumor immune

responses. Moreover, a discovery revealed that CD24-related

sorafenib resistance in patients with HCC is associated with the

activation of autophagy, and the overexpression of CD24 leads to

increased production of PP2A and promotes the downregulation of

the mTOR/AKT pathway, which sustains autophagy (60). CD44

promotes HCC progression, metastasis, migration, and invasion

through YAP (61), a downstream regulator of the Hippo pathway,

the C-X-C motif chemokine receptor (CXCR) 4/Wnt/b-catenin
pathway (62), and the CXCR4/AKT/ERK pathway (63). The

obstruction of CD47 expression in a murine model has been

shown to promote antitumor immunity through the CD103+

dendritic cell (DC)/natural killer (NK) cell axis (64). Moreover, a

novel approach that incorporates a bispecific antibody that targets

glypican-3 (GPC3) and CD47 has been shown to outperform

combination therapy with anti-GPC3 and anti-CD47 in a

xenograft HCC model (65). The involvement of CD90 in the

biological functions of HCC remained unknown until a recent

study revealed that CD90 participates in migrative, viability, and

sphere-forming capabilities in HCC, indicating that CD90 may

serve as a candidate for diagnostic and therapeutic approaches (66).

Furthermore, a research group has targeted CD90 expression via

miR-125a/b, which impedes tumor-associated macrophages

(TAMs) mediated by CSCs in HCC (67). Recently, several

research groups have made innovations in therapeutic strategies

targeting CD133 for tumor development and preservation.

Novel applications of therapeutic compounds, including

chromenopyrimidinone (CPO), oxytetracycline, a CD133-specific

aptamer conjugated with doxorubicin, and actinomycin D (ActD),

were found to suppress the expression of CD133, which leads to a

positive regulation of the stemness of HCC cells (68–71).
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Aside from the expression of CSCmarkers in HCC, several intrinsic

regulatory molecules have also been reported to play a role in tumor

initiation and self-renewal capabilities in HCC (46). These molecules

include long noncoding RNAs (lncRNAs), microRNAs (miRNAs),

epigenetic regulators, kinases and phosphatases, metabolic regulators,

transcription factors, and secretory molecules. Generally, these elements

congregate into common renowned signaling pathways, including the

MAPK, JAK/STAT, IL-6/STAT3, TGF-b, NF-kB, JNK, Sonic Hedgehog
(SHH),Wnt/b-catenin, andNotch pathways. Ultimately, these signaling

pathways are associated with the HCC tumor microenvironment

(TME), which regulates CSCs, along with other elements, including

cancer-associated fibroblasts (CAFs) and TAMs (54, 55). As reciprocal

interactions between CSCs and their niches allow the formation of an

immunosuppressive microenvironment, the preceding intrinsic

regulators of CSC properties may also contribute. Several lncRNAs

and miRNAs can exert immunosuppressive influence to facilitate HCC

progression, such as lncMALAT1 (72), lncHULC (73), lncHOTAIR

(74), lncLINC01132 (75), lncPVT1 (76), lncLINC00662 (77), lncb-
Catm (78), miR-23a-3p (79), and miR-146a-5p (80). Dysregulated

expression of epigenetic regulators, including DNMT3a (81),

KDM1A (82, 83), YTHDF2 (84), and RALYL (85), as well as kinases

and phosphatases such as IRAK1 (86) and SHP2 (87), may also

contribute to the formation of an immunosuppressive TME in HCC.

As an intricate malignancy, HCC is characterized by metabolic

reprogramming, in which glycolytic and lipid metabolism aberrations

can contribute to an immunosuppressive TME. The implicated

metabolic regulators include XOR (88), SCD1 (89), and ACLY (90).

Finally, transcription factors involved in regulating cancer stemness in

HCC, such as SALL4 (80) and FOXM1 (91), are known to exert

immunosuppressive effects on the TME of HCC.
TABLE 1 Summary of CSC surface markers and their roles in HCC.

Marker
Name

Research Output Study
Design

Reference

CD13 CD13 enhances HCC
chemoresistance through
p38/Hsp27/CREB/
ATG7 pathway

In vitro HCC cell
culture; In vivo
mice model

(56)

CD13 promotes
sorafenib resistance
through HDAC5/LSD1/
NF-kB pathway

In vitro HCC cell
culture; In vivo
mice model

(57)

CD13 inhibitor
(ubenimex) in
combination with
chemotherapeutic
agents combats
HCC chemoresistance

In vitro HCC cell
culture; In vivo
mice model;
HCC
patient sample

(58)

CD24 CD24 inhibitor (siRNA-
CD24) based on
attenuated salmonella
enhances oxaliplatin
effectiveness on HCC

In vitro HCC cell
culture; In vivo
mice model

(59)

CD24 regulates
sorafenib resistance
through PP2A
production and
deactivates mTOR/
AKT pathway

In vitro HCC cell
culture; In vivo
mice model;
HCC
patient sample

(60)

CD44 CD44 promotes
hepatocarcinogenesis
through Hippo/
YAP signaling

In vitro HCC
cell culture

(61)

CD44 regulates HCC
stemness through
CXCR4/Wnt/b-
catenin axis

In vitro HCC
cell culture

(62)

CD44 modulates HCC
stemness through AKT/
ERK signaling
CXCR4 axis

In vitro HCC cell
culture; In vivo
mice model;
HCC
patient sample

(63)

CD47 CD47 inhibition
promotes anti-tumor
immune response
through CD103+ DC-
derived IL-12 and
CXCL9 and
NK activation

In vivo
mice model

(64)

CD47/GPC3 bispecific
antibody promotes anti-
tumor efficacy

In vitro HCC cell
culture; In vivo
mice model

(65)

CD90 CD90 regulates cancer
stemness properties of
HCC cells

In vitro HCC cell
culture; HCC
patient sample

(66)

CD90 impediment by
miR-125a/b decreases
stemness properties of
HCC cells

In vitro HCC
cell culture

(67)

(Continued)
TABLE 1 Continued

Marker
Name

Research Output Study
Design

Reference

CD133 CD133 suppression by
chromenopyrimidinone
(CPO) reduces stemness
properties of HCC cells

In vitro HCC cell
culture; In vivo
mice model;
Molecular
docking

(68)

CD133 inhibition by
oxytetracycline through
protein destabilization
suppresses
HCC stemness

In vitro HCC cell
culture; In vivo
mice model

(69)

CD133-specific aptamer
conjugated with
doxorubicin
inhibits
hepatocarcinogenesis

In vitro HCC cell
culture; In vivo
mice model

(70)

CD133 repression by
actinomycin D (ActD)
reduces stemness and
malignant properties of
HCC cells

In vitro HCC
cell culture

(71)
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4 Concept of secretome and
secretory factors within the TME

The secretome can be defined as a biological factor, either soluble

or insoluble, that is secreted or released into the extracellular space by

cells, tissues, organs, and organisms. The secretome consists of

growth and coagulation factors, chemokines, cytokines, hormones,

glycoproteins, miRNAs, and enzymes (92, 93). These molecular or

biological factors are secreted through mechanisms involving

constitutive and regulated secretory organelles at any given time. In

healthy cells, a subtly regulated secretome is crucial for the

maintenance of physiological tissue homeostasis and corresponds

to a large proportion of synthesized proteins in secretory tissues,

along with their associated receptors, which operate as the key

mechanism in cell-to-tissue communication (92, 94). The dynamic

composition of the secretome is usually based on the cell type and

stimulus from the microenvironment, where it possesses therapeutic

benefits that are valuable for repairing impaired tissue (94, 95).

Numerous biologically active molecules within the secretome exert

therapeutic benefits, ranging from anti-inflammatory and

immunomodulation (e.g., interleukin (IL)-6, IL-8, hepatocyte

growth factor (HGF), prostaglandin E2 (PGE2), TGF-b),
antifibrotic (e.g., VEGF, HGF, TIMP-1, TIMP-4, FGF-2),

antiapoptotic (VEGF, HGF, TGF-b, stanniocalcin (STC)-1, FGF)

and proangiogenic effects (e.g., VEGF, HGF, FGF-2, IL-6, IL-8,

TGF-b, monocyte chemoattractant protein (MCP)-1) (95). Similar

to healthy tissues, the tumor secretome is composed of an abundant

number of elements, including growth factors (e.g., TGF-b, VEGF,
HGF), immunosuppressive cytokines (e.g., IL-4, IL-10, CCL22,

CCL28, CXCL12, CCL5), and other components, such as enzymes

[e.g., indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2 (COX-

2)], glycoproteins [e.g., galectin (GAL)1, GAL3, alpha-fetoprotein

(AFP)] and EVs (e.g., tumor-derived EVs carrying PGE2, TGF-b,
adenosine, IDO, GALs) (92–94). These factors are important

intermediaries of cell-to-cell interactions, where augmented

patterns of secretion are associated with the regulation of cancer

hallmarks such as metastasis, drug resistance, tumor development,

and angiogenesis. There are various pathways and mechanisms that

are implicated in maintaining the tumor secretome, including genetic

mutations (e.g., c-Myc, p53, PTEN), the regulation of miRNAs, and

the influence of the cellular microenvironment (e.g., hypoxic

conditions) (96).

Normal adult stem cell tissues are primarily located within or

adjacent to an in vivomicroenvironment known as a “niche,” which

comprises an assortment of cell types ranging from immune,

endothelial, perivascular, and fibroblastic cells, along with the

presence of extracellular matrix (ECM) components, growth

factors, and cytokines. The interplay of components that exist in

the niche maintains the stemness of stem cells, and the niche itself

also facilitates the reception of extrinsic signals to induce stem cell

performance (92). Similarly, within the TME, CSCs dwell and adapt

to structurally distinct niches with components that favor CSC

phenotypic properties of self-renewal and differentiation, as well as

their metastatic potential and therapeutic resistance. CSCs may

contribute to the secretion of various factors, either directly or by
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other means of crosstalk, recruitment, and stimulation of various

cellular components, such as CAFs, MSCs, and immune cells.

Ultimately, these secretory factors are components of the CSC

niche. The reciprocal interactions between CSCs and such

components contribute to the regulation of cancer hallmarks and

alter the immune regulatory system, leading to the formation of an

immunosuppressive TME. Previous studies have revealed that in

HCC, the interplay of TME components with cancerous cells can

induce liver fibrosis and promote HCC progression. Therefore,

understanding how CSC-related secretory factors influence and

help shape an immunosuppressive TME in HCC may ultimately

benefit the development of effective and safe treatment options

for HCC. Several studies have provided evidence related to

immunosuppressive factors, ranging from cytokines, growth

factors, and exosomes, which are secreted and/or mediated by

CSCs and other components within the TME (Figure 1).
5 Effects of CSC-associated
cytokines in shaping an
immunosuppressive TME

Cytokines are a superfamily of proteins that are mainly

produced by leukocytes during phases of naturally acquired

immunity and have the ability to modulate inflammatory

responses and the immune system. Cytokines are also involved in

the positive and negative regulation of cellular activities, including

growth, apoptosis, differentiation, and migration. These small

glycoproteins are also secreted from different sources and may

not regulate nonimmune-related events in various tissues. In the

context of cancer, the function and mode of action of cytokines

have been extensively studied in an attempt to exploit their

antitumorigenic abilities for immunotherapeutic advancements.

Cytokines normally operate by alerting the immune system to

tissue injury and infection, although constant stimulation of

cytokine production and secretion by immune cells may result in

long-lasting inflammatory conditions and tumor development (97).

Malignant cells are capable of secreting cytokines during cancer

development to establish an immunosuppressive TME, where these

cytokines act synergistically with other cell types to inhibit

antitumorigenic responses and stimulate protumorigenic signals.

Cytokines can be categorized as proinflammatory, anti-

inflammatory, or immunosuppressive cytokines, the latter of

which can impede the synthesis and control-related cellular

activities of proinflammatory cytokines. However, owing to the

pleiotropic actions of several cytokines, which promote an array of

functional reactions from various cell subtypes, they are not

categorized as either pro- or anti-inflammatory cytokines (98).

The impact of cytokines on the development of cancer is

influenced by several factors, including the concentration of

cytokines, the tumor microenvironment (TME), the expression of

receptors, and the balance between pro- and antitumorigenic

cytokines. Different categories of cytokines, such as interleukins,

chemokines, interferons (IFNs), and tumor necrosis factor (TNF),

are considered in this discussion.
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5.1 Interleukins

Interleukins, a subtype of cytokines, play an essential role in the

activation and differentiation of immune cells and regulate growth

and activation during immune responses and inflammation. In

cancer, ILs play a role in fostering a conducive TME that promotes

tumor development, self-renewal, survival, and immunosurveillance

modulation. HCC is a malignancy closely associated with

inflammation; however, the systemic interplay between ILs and

HCC is still not well defined. Moreover, ILs play an essential role

in facilitating crosstalk between CSCs and TME components. Certain
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ILs, such as IL-1, IL-6, and IL-8, are known to regulate the growth of

CSC populations in various malignancies through bidirectional

communication (99, 100).

The secretion of IL-6 by HCC cells with a chemoresistant

phenotype, allegedly CSCs, has been reported to increase the

development and activity of immunosuppressive MDSCs, in

which high levels of immunosuppressive factors, namely,

arginase, nitric oxide (NO), and reactive oxygen species (ROS),

were observed (101). This finding highlights the pleiotropic nature

of IL-6, which may contribute to the formation of an

immunosuppressive TME. Furthermore, it was reported that
FIGURE 1

Immunosuppressive secretory factors that are secreted and/or mediated by cancer stem cells and other stromal and immune cells within the TME of
HCC. Various cell types secrete and mediate the secretion of various secretory factors within the TME through direct and indirect method, where
possible crosstalk and recruitment amongst secretory factors and cell types occur. Aside from exerting immunosuppressive capabilities, secretory
factors also lead to an increase in stemness properties and hepatocarcinogenesis through activated signaling pathways and altered expression of
various factors.
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CD133+ CSCs of HCC cells favorably secrete IL-8, which affects

surrounding cells within the CSC niche, resulting in angiogenic

effects (102). It was discovered that IL-8 is likely secreted by liver

CSCs, as a report demonstrated a positive correlation between the

CSC enrichment ratio and NANOG expression with IL-8 secretion

(103). The inhibition of IL-8 repressed the properties of HCC CSCs

and greatly improved cell sensitivity to sorafenib treatment (104).

Although there is a lack of convincing evidence that IL-8 acts as an

immunosuppressive cytokine, this chemoattractant may be capable

of conditioning the TME to become immunosuppressive through

the recruitment of myeloid-derived suppressor cells (MDSCs) to the

TME. Studies have also revealed that IL-4 and IL-13 may contribute

to the creation of an immunosuppressive TME, as they recruit and

activate TAMs and MDSCs. A study, which used cell line models

that originated from the AKT1/NRAS-induced HCC mouse model,

revealed that IL-4/IL-13 signaling plays a crucial role in cancer

development and that these cells exhibit strong CSC and CD44+ and

CD133+ signatures (104). There is a lack of evidence that CSCs in

HCC are involved in the secretion of both IL-4 and IL-13, although

some studies have shown that CSCs in other malignancies can

secrete these immunosuppressive cytokines (105).
5.2 Chemokines

Chemokines are secreted proteins that play essential roles in

organ development and immune responses by binding to their

corresponding receptors. Chemokines are involved in the

coordination and recruitment of immune cells from and toward

tissues, as well as in modulating interactions among immune cells.

In the TME, chemokines regulate the growth, invasiveness, and

stemness of tumor cells, and, simultaneously with their production

by tumor cells, chemokines attract leukocytes, modulate

neurogenesis and fibrogenesis, and induce the formation of blood

vessels (106). Nevertheless, how chemokines operate within the

TME to modulate several elements of immune cell initiation and

phenotypic distinction remains unclear. The expression of

numerous types of chemokines and their receptors has been

characterized and studied in HCC cells (107).

From a previously described study, elevated expressions of

chemokines, including CXCL2, CXCL3, CXCL15, CXCL17,

CXCR2, and CXCR4, within the TME of established cell lines

models that derived from AKT1/NRAS-induced HCC mouse

model has also been reported (104). Studies have shown that the

CXCR4/CXCL12 axis has an essential biological function and

contributes to tumor metastasis and angiogenesis in various

malignancies, including HCC (108). Because CSCs can promote

metastasis and tumor recurrence, the CXCR4/CXCL12 axis may

indirectly influence the properties of CSCs. After a series of

subcutaneous implantations involving NOD/SCID mice, it was

revealed that circulating HCC cells in the presence of CXCR4

along with CD90 and matrix metalloproteinase (MMP) 26 exhibit

the CSC properties of tumor formation and metastatic potential

(109, 110). The immunosuppressive effect of CXCR4 on the TME

is known to be due to its high expression in a subset of
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immunosuppressive regulatory T cells (Tregs). It has also been

shown that the inhibition of CXCR4 results in a reversal of Treg

suppression, hence enhancing antitumor immune responses (111).

CXCL5 expression is induced by Sox9+ HCC CSCs, which triggers

HCC migration, invasion, and proliferation through the PI3K-AKT

and ERK1/2 signaling pathways (112). CXCL5, a well-known

chemokine, is assumed to contribute to the establishment of an

immunosuppressive TME and tumor stimulation through the

recruitment and activation of MDSCs (113). A recent study

revealed that CD133+ HCC CSCs secrete high levels of CXCL8,

which is preferentially induced by IFN-a and leads to the induction

of immunosuppressive effects (114).
5.3 Interferons

IFNs are a family of pleiotropic cytokines that possess

antitumor, antiviral, and immunoregulatory effects and are

generally categorized into three groups, namely, alpha, beta, and

gamma, corresponding to their cellular source. Type 1 IFNs include

IFN-a and IFN-b, which are commonly secreted by virus-infected

cells, and type 2 IFNs include IFN-g, which mainly originates from

immune cells, such as macrophages, NK cells, and T cells. In the

context of cancer, IFN-g has a dual role as an antitumorigenic factor

and protumorigenic factor, where it can promote immune evasion

and the establishment of an immunosuppressive TME (115). In

HCC, a positive association between CD133+ CSCs and IFN-g was
established, where CD133+ CSCs were able to selectively resist IFN-

g-mediated apoptosis and autophagy (116). In a recent study, IFN-g
was also found to increase the CSC ratio and properties in HCC

cells, as well as increase CSC resistance to sorafenib treatment

through ferroptosis inhibition (117). Moreover, sensitization to

sorafenib-mediated ferroptosis by PD-L1 knockdown led to the

inhibition of IFN-g-related CSCs in HCC (117). These findings

demonstrate the ability of IFN-g to promote an immunosuppressive

TME in HCC.
5.4 Tumor necrosis factors

Tumor necrosis factors are versatile cytokines that exist in two

forms, TNF-alpha (TNF-a) and TNF-beta (TNF-b), which are

involved in various cellular processes, including immune modulation,

inflammatory responses, and cell death. TNF-a is a widely studied

cytokine due to its crucial role in inflammation-associated

tumorigenesis, during which its release primarily involves a variety of

immune cells, such as macrophages, dendritic cells (DCs), and T cells.

Like other cytokines, TNF-a exhibits pleiotropic effects, which can have

both antitumor and protumorigenic effects, as observed in HCC. TNF-

a is implicated in hepatocarcinogenesis and HCC tumor relapse by

activating hepatic progenitor cells (118) but also contributes to

sorafenib resistance through the induction of EMT (119). To date,

there is no research indicating the direct secretion of TNF-a by CSCs in

the HCC TME; however, the crosstalk between CSCs and TAMs may

cause TNF-a release.
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6 CSC-mediated immunosuppressive
growth factors

As secreted biologically active elements, growth factors act on

specific cell receptors that successively transmit their growth signals

to other intracellular molecules, eventually resulting in modified gene

expression. The tumorigenic role of growth factors in various cancers,

including HCC, continues to be explored, and these factors are

known to stimulate major signaling pathways involved in

promoting tumor development, angiogenesis, and therapeutic

resistance. Both TGF-b and vascular endothelial growth factor

(VEGF) are major growth factors with immune-suppression

capabilities that can regulate the TME in HCC. Robust evidence

has demonstrated the hepatocarcinogenic role of TGF-b, which is

secreted by HCC cells in general; however, there is no direct evidence

indicating that HCC CSCs are responsible for TGF-b release (120). In
contrast, VEGF is likely secreted by CSC-like HCC cells, which

exhibit high expression of the stemness markers CD44, CD133,

and EpCAM following sublethal heat treatment to mimic

incomplete radiofrequency ablation treatment (121). In the same

study, VEGFR-1 promoted the stemness of treated HCC cells, which

exhibited enhanced metastatic and migratory potential (121).

Moreover, activation of insulin-like growth factor (IGF) and FGF

signaling cascades was correlated with the development of CSC-

enriched sorafenib-resistant HCC cells (122). It has been

demonstrated that members of the IGFs and FGFs can potentially

possess immunosuppressive capabilities, despite having contextual

proinflammatory effects (123–126), which in this case may contribute

to the formation of an immunosuppressive TME in HCC.
7 Immunosuppressive role of CSC-
derived exosomes

A subset of extracellular vesicles (EVs), known as exosomes, are

nanoscale particles that are actively released by various cell types,

such as epithelial cells, immune cells, neuronal cells, and tumor

cells. Biomolecular components of exosomes, namely, lipids,

proteins, nucleic acids, and metabolites, are transferred between

cells either locally or in distant microenvironments. During cancer

development, this process mediates cell-to-cell communication,

which is correlated with cancer hallmarks (127). Correspondingly,

exosomes that originate from CSCs are secreted by malignant cells

and act as mediators to permit communication with the TME. The

biological features of these exosomes allow them to participate in

cancer progression, proliferation, angiogenesis, metastasis,

chemoresistance, and recurrence, suggesting that cancer-derived

exosomes are potential biomarkers for various malignancies (127,

128). Moreover, these exosomes can modulate and alter the

establishment of an immunosuppressive TME, facilitating the

exchange of information from CSCs and promoting immune

evasion mechanisms.

As a member of the small GTPase superfamily and Rab family,

RAB27A is known to regulate the discharge of exosomes from cells.

It was demonstrated that HCC cells with high metastatic capability
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can release exosomes that are reliant on RAB27A, which ultimately

trigger EMT in low metastatic cells (129). RAB27A-mediated

exosome secretion from liver CSCs cells leads to an increase

in NANOG expression and resistance to regorafenib (129). An

elevated signature of NANOG may increase the expansion of Tregs,

which contributes to the formation of an immunosuppressive TME

(130) and facilitates immune escape, particularly from NK cells

(131). In another study, exosomes derived from CD133+ CSCs that

contained ALKBH5 were found to be related to SOX4 and to

activate the SHH signaling pathway, possibly leading to an

immunosuppressive TME in HCC (132). An extensive in vivo

study involving an HCC albino rat model revealed that CSC-

derived exosomes enhanced tumor metastasis and growth

through elevated expression of immunosuppressive factors,

including TGF-b1, VEGF, miR-21, and the PI3K pathway (133).

RAB3B-induced exosome secretion by HCC cells exhibiting

stemness properties may indirectly contribute to the formation of

an immunosuppressive TME, as indicated by a positive correlation

with the expression of apolipoprotein E, which bears immune

suppression capabilities. Further elucidation is required to

validate such association (134).

Moreover, researchers have also revealed the role of exosomal

biomolecules that may drive the secretion of CSC-derived exosomes

within the TME. CD90+ liver CSCs secrete exosomes that contain

lncRNA H19, which regulates endothelial cells and induces

angiogenic properties that influence the TME (135). Although

unrelated to HCC, lncRNA H19 could have an immunosuppressive

effect on the TME of gastric cancer cells (136). CD133+ liver CSCs

were found to secrete exosomes containing circ-ZEB1 and circ-

AFAP1, which may be involved in the crosstalk between non-CSCs

and CSCs of HCC and can modulate EMT activity (137). In HCC,

EMT is known to participate in the establishment of an

immunosuppressive TME, elevated tumor heterogeneity, drug

resistance, and metastasis.

Several studies have reported that the direct secretion of various

secretory factors from liver CSCs facilitates the formation of an

immunosuppressive TME. However, some findings were correlated

with the influence of TME components on the stemness properties

of HCC cells, which has also been described. The complexity of

HCC and the dynamic nature of the secretion of factors by CSCs

pose additional challenges for further elucidation of the secretion of

factors by CSCs within the HCC TME. For instance, IL-10 is a well-

known immunosuppressive cytokine that is commonly produced by

various immune cells, but direct evidence demonstrating the ability

of CSCs in HCC to secrete IL-10 has not been found. Instead,

immunosuppressive factors may be released by CSC-associated

TME components.
8 Crosstalk and recruitment of TME
components by CSC-derived
secretory factors

Accumulating evidence suggests that, in addition to the

secretion of factors by CSCs into their surroundings, CSCs are
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also involved in the recruitment, activation, and crosstalk of various

cellular components within the CSC niche to modulate the

immunosuppressive TME. Such components may include but are

not limited to CAFs, undifferentiated mesenchymal stem cells

(MSCs), and immune cells, such as TAMs and MDSCs. These

cellular components serve as key players in the TME to preserve

tumor growth; maintain CSCs, angiogenesis, migration, and

metastasis; regulate inflammatory processes; and produce ECM

components (138).
8.1 Cancer-associated fibroblasts

The development of CAFs in the TME originates from

fibroblast modifications via crosstalk with malignant cells and

other stromal cells, which ultimately promotes regional tumor

invasion, progression, and dedifferentiation through the influence

of elements such as chemokines, growth factors, and ECM-

modifying metalloproteases. These highly inflamed cells play a

substantial role in HCC progression, as the majority of patients

with HCC have cirrhosis and a large number of stimulated

fibroblasts. The crosstalk between CD24+ HCC CSCs and CAFs

results in the paracrine secretion of HGF/c-Met and IL-6/IL-6R,

which results in an enhancement of stemness properties through

the phosphorylation of STAT3 (139). In this study, the pleiotropic

nature of HGF and IL-6 was shown to be involved in the activation

of STAT3 signaling, which may facilitate the formation of an

immunosuppressive HCC TME. Similarly, another study

demonstrated that the crosstalk of CAFs with CSCs led to the

significant secretion of CAF-derived HGF and FRA1 activation

(140). The secretion of HGF, which induces the activation of FRA1,

might have an indirect facilitative influence on creating an

immunosuppressive TME in HCC. Moreover, another study

revealed the possible synergistic effect of CAFs with CD73+ CSCs,

which promotes HCC tumorigenesis and chemoresistance through

paracrine secretion of HGF from CAFs (141).
8.2 Mesenchymal stem cells

As one of the precursors of CAFs, undifferentiated MSCs are

associated with the progression of malignancies and metastatic

events, as well as an increase in the abundance and tumorigenic

potential of CSCs. In HCC, accumulating research has revealed the

controversial role of MSCs in the dual characteristics of tumor

induction and suppression via positive regulation of the immune

system. Recently, MSCs of diverse origins have been shown to be

correlated with HCC progression and metastasis. Crosstalk between

CSCs and HCC-associated MSCs may involve a novel lncRNA-

MSC-upregulated factor, which was found to be highly expressed

and associated with HCC tumorigenicity (142). Implicitly, lncRNA-

MSC-upregulated factors, linked with ANXA2 and miR-34a,

resulted in the activation and upregulation of immunosuppressive

signaling pathways, namely, Wnt/b-catenin, Snail1, and EMT,

which may facilitate the formation of an immunosuppressive

TME in HCC (142).
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8.3 Tumor-associated macrophages

In general, macrophages can polarize into two phenotypes,

proinflammatory M1 and anti-inflammatory M2 macrophages, in

which TAMs express M2 properties, leading to immunosuppression

and protumorigenic capabilities. TAMs are immune cells within the

tumor stroma that induce cancer progression and support the CSC

niche. These well-defined cells are recruited by CSCs within the HCC

tumor bulk via chemokine secretion. The crosstalk mechanism between

TAMs and CSCs was shown to be related to the immunosuppressive

EMT process induced by TAM-derived TGF-b1 (143). Moreover, M2

TAMs were found to be related to CD44+/CD133+ sorafenib-resistant

HCC cells, which correlated with potential immunosuppressive CXCR2

signaling (144). Crosstalk between CD133-expressing HCC cells and

TAMs could lead to the promotion of stemness properties, EMT

activity, and the secretion of immunosuppressive TNFa, which are

correlated with the Wnt/b-catenin pathway (145). In addition, two

studies revealed that the interaction of TAMs with HCC CSCs and

various markers led to the secretion of IL-6 by TAMs and subsequently

activated STAT3 signaling (101, 146).
8.4 Myeloid-derived suppressor cells

In addition to TAMs, which are crucial immunomodulators of

the TME, MDSCs play a prominent role in inhibiting T-cell

infiltration into tumor sites. These premature marrow-derived cell

populations contribute to HCC progression through either

modulation of T-cell responses or independent action. MDSCs

exert their immunosuppressive function by suppressing T-cell

immune responses through the production of NO, ROS, arginase

1, IL-10, and TGF-b (147–149). The stimulation of immune

suppressor cells, such as regulatory T-cells, through differentiation

and expansion can further impede T-cell activity (148, 149). In

terms of HCC, MDSCs can impede the cytotoxic function of NK

cells against HCC cells and diminish the production of IFN-g
through membrane-bound TGF-b1 (148). MDSCs are strongly

associated with therapeutic resistance to ICIs. In terms of HCC, a

study revealed that MDSCs might be implicated in anti-PD-L1

resistance, where HCC patient-derived T-cells were found to be

exhausted and that PD-L1+ MDSCs are involved in the suppression

of T-cell function (150). An additional study revealed that MDSC-

induced CCRK/EZH2/NF-kB/IL-6 signaling in HCC facilitates

dampened antitumor T-cell activity and leads to immune evasion

(151). As CCRK depletion resulted in a decrease in the

immunosuppressive effect of MDSCs and led to an increase in

anti-PD-L1 efficacy, this may suggest the influence of MDSCs on

anti-PD-L1 resistance in HCC (151). To date, there is no related

evidence indicating that the recruitment and crosstalk between

MDSCs and CSCs in HCC leads to the secret ion of

immunosuppressive secretory factors. However, several studies

have mentioned the possibility that factors within the TME that

participate in MDSC recruitment may drive tumorigenesis. These

factors include IL-1a (152), HIF-mediated IL-1b (153), HIF-

mediated CCL26 (154), CCL2 (155), CXCL1 (155), CD36+ CAFs

(156), CCL5 (157), HMGB1 (158), and GM-CSF (159).
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9 Therapeutic implications of
targeting secretory factors within the
immunosuppressive TME of HCC

The complex interplay between tumor cells, CSCs, cellular

elements, and immune cells within the TME presents a challenge

for therapeutic intervention. CSCs exert intricate therapeutic

resistance mechanisms, which leads to difficulties in overcoming

the immunosuppressive TME of HCC. The development of

innovative approaches to counter the immunosuppressive TME,

which mostly involves the inhibition of allegedly implicated

secretory factors, is imperative. While most of these inhibitors or

molecules have already been assessed by researchers in the

preclinical stage, some are undergoing clinical trials (Table 2).

An established IL-6 antagonist known as an anti-Gr-1 antibody

targets immunosuppressive MDSCs, resulting in a decrease in IL-6

levels and related immunosuppressive elements, such as arginase,

NO, and ROS (101). This approach leads to the depletion of MDSCs

and enhances chemotherapeutic efficacy and response. A humanized

IL-8 antagonist known as BMS-986253 is currently in a phase II

clinical trial (NCT04050462) in combination with nivolumab, an

anti-PD-1 antibody (160). This combination therapy approach aims

to improve the objective response rate of patients with advanced

HCC compared with that of patients undergoing nivolumab

monotherapy. Similarly, combination therapy involving BMS-

986253, nivolumab, and BMS-813160 is currently in a phase II

clinical trial (NCT04123379) (161). BMS-813160 is a dual CCR2/

CCR5 antagonist in which these targets are known to be

immunosuppressive. A substantial positive immune response and

long-term survival benefit for HCC patients are expected from this

clinical trial. BMS-986253 or HuMAX-IL8 alone has been tested in a

phase I clinical trial (NCT02536469), with the expectation that

blockade of IL-8 can degrade mesenchymal phenotypes in solid
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tumor cells and diminish treatment resistance (162). However, this

clinical trial does not focus on HCC specifically but rather on all

forms of solid tumors. Moreover, CHS-388, formerly known as SRF-

388, an antagonist of the immunosuppressive agent IL-27, is being

tested in a phase I clinical trial (NCT04374877) focused on

developing a safe, well-tolerated, and effective monotherapeutic

approach for targeting IL-27 in HCC patients (163).

MSC-based therapeutic approaches have also been documented

in preclinical trials. One study investigated the delivery of

norcantharidin, a potential anticancer drug in HCC patients, which

is mediated by MSC-derived exosomes (164). This study

demonstrated the effective delivery of anti-HCC tumor drugs to the

liver, where they persist in damaged liver lesions and inhibit the

tumorigenic capabilities of HCC cells through possible

downregulation of miR expression (164). Moreover, this delivery

system repairs the damaged liver through possible upregulation of

hepatocyte proliferative proteins due to exosomes (164). In another

study, norcantharidin was found to impede IL-6-induced EMT,

leading to suppression of the JAK/STAT/TWIST signaling pathway

(175). Interestingly, a research group successfully devised a

microengineered organoid-on-a-chip through a coculture system of

MSCs and peripheral blood mononuclear cells (PBMCs) in

combination with CAFs and patient-derived organoids (PDOs) that

can mimic the immunosuppressive TME (165). Such an innovation

provides a platform for researchers to predict the outcomes of

patients treated with immunotherapeutic modalities for HCC.

QNZ (EVP4593) is a relatively novel antagonist that inhibits

HCC-induced TNF-a and NF-kB expression, leading to increased

survival, reduced liver nodules, and an improved hepatocyte structure

in the HCC rat model (166). Moreover, galunisertib (LY2157299) is

undergoing a phase I/II clinical trial (NCT02423343) in conjunction

with nivolumab (167). This clinical trial investigated the clinical

efficacy and safety of the combination of galunisertib and nivolumab

in patients with recurrent or refractory HCC. Galunisertib is an
TABLE 2 Therapeutic strategies that target immunosuppressive secretory factors within the TME of HCC.

Molecule/Agent/Inhibitor Therapeutic outcomes / predicted effects Stage
(Pre-Clinical,
Clinical,
Approved)

Reference

Anti-Gr-1 antibody Targets MDSCs and inhibits the levels of IL-6 induced
immunosuppressive elements (Arginase, NO, ROS)

Approved (101)

BMS-986253 + Nivolumab An improved radiographic objective response rate through IL-8
blockade over Nivolumab monotherapy in patients with
advanced HCC

Clinical Trial Phase
II (NCT04050462)

(160)

BMS-813160 (Dual CCR2/CCR5 antagonist) + BMS-986253
+ Nivolumab

Significant immune response against HCC and an improved long
term survival rate in HCC patients through CCR2/CCR5
dual blockade

Clinical Trial Phase
II (NCT04123379)

(161)

HuMAX-IL8 Blockade of IL-8 reduces mesenchymal phenotypes in tumor
cells that may diminish treatment resistant actions

Clinical Trial Phase
I (NCT02536469)

(162)

CHS-388 Safe, well-tolerable, and effective mono-therapeutic approach that
targets IL-27 in HCC patients

Clinical Trial Phase
I (NCT04374877)

(163)

Norcantharidin-carrying MSC-based exosome Effectively delivers anti-HCC tumor drugs to the liver and
persists in damaged liver lesion

Pre-Clinical (164)

(Continued)
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antagonist of the immunosuppressive agent TGF-b, and preliminary

results have shown that galunisertib induces a vigorous antitumor

immune response and mediates the breach of T cells toward the

midpoint of tumors (176).

Plerixafor (AMD3100) is a potential CXCR4 antagonist that

continues to be studied. AMD3100 in combination with sorafenib

was found to delay the progression of HCC and impede the
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infiltration of immunosuppressive cells under persistent hypoxic

conditions (168). Moreover, the same study incorporated

AMD3100, sorafenib, and anti-PD-1 treatment, which mediated

the antitumor immune response through the activation and

infiltration of CD8+ T cells (168). TACE is still used for treating

HCC patients, and a research group investigated the effects of

combination therapy of AMD3100 with TACE in an HCC rat
TABLE 2 Continued

Molecule/Agent/Inhibitor Therapeutic outcomes / predicted effects Stage
(Pre-Clinical,
Clinical,
Approved)

Reference

Inhibits tumorigenic capacity of HCC cells through possible
downregulation of miR expression

Repairs damaged liver through possible upregulation of
hepatocyte proliferative proteins due to exosomes

MSC-based micro engineered HCC organoid Serves as a prediction tool of anti-tumor drug and
immunotherapy efficacy towards HCC patients that mimics the
immunosuppressive TME

Pre-Clinical (165)

QNZ (EVP4593) Blockade of TNF-a and NF-kB HCC-induced expression reduces
the extent of tumorigenicity in HCC rat model

Pre-Clinical (166)

Galunisertib (LY2157299) + Nivolumab Safe, well-tolerable, and effective mono-therapeutic approach that
targets TGF-b in HCC

Clinical Trial Phase
I/II (NCT02423343)

(167)

Plerixafor (AMD3100) + Sorafenib Delays HCC progression and prevents infiltration of
immunosuppressive cells under persistent hypoxic TME

Pre-Clinical (168)

Plerixafor (AMD3100) + Sorafenib + anti-PD-1 treatment Mediates anti-tumor immune response through activation and
infiltration of CD8+ T-cells

Pre-Clinical (168)

Plerixafor (AMD3100) + TACE Substantially impedes HCC development and elevates
apoptotic events

Pre-Clinical (169)

Modulates expression of CD34, HIF-1A, and VEGF that
correlates with HCC progression and formation of microvesicle

BPRCX807 Inhibits CXCR4-mediated metastasis and EMT phenotype under
hypoxic condition

Pre-Clinical (170)

Sensitizes HCC cells to sorafenib treatment

Decreases the immunosuppressive extent of HCC TME through
elevated infiltration of cytotoxic T-cells and reduction of
TAM infiltrations

LFC131 Sensitizes HCC cells to sorafenib treatment Pre-Clinical (171)

PFH@LSLP (PFH-cored liposome nanoparticles conjugated
with LFC131 and PLX3397)

Enhances anti-tumor efficacy through increased infiltration of
CD8+ T-cells and DC cells

Pre-Clinical (171)

Shifts immunosuppressive TME towards tumor
suppressive environment

CXCR4-targeted p53 mRNA nanoparticles + anti-PD-
1 treatment

Reprograms immunosuppressive TME by enhancing potent anti-
tumor immune responses by reducing the expression of
immunosuppressive cytokines

Pre-Clinical (172)

CXCR4-targeted lipid coated PLGA nanoparticles
(AMD3100-based) + Sorafenib

Enhances cytotoxicity towards HCC cells leading to elevation of
apoptotic events

Pre-Clinical (173)

Polarizes immunosuppressive TME towards tumor
suppressive environment

CXCR4-targeted PLGA-PEG nanoparticles conjugated
with LFC131

Co-delivers sorafenib and metapristone into HCC cells Pre-Clinical (174)

Exerts anti-tumor effect towards HCC cells by reducing CXCR4
expression and elevates therapeutic efficacy of sorafenib
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model. The results indicated a substantial hindrance to HCC

development and an increase in apoptotic events, in which such a

therapeutic approach can modulate the expression of CD34, HIF-

1a, and VEGF, which is correlated with HCC progression and the

formation of microvesicles (169). Moreover, another potent CXCR4

inhibitor known as BPRCX807 was found to inhibit CXCR4-

mediated metastasis and the EMT phenotype under hypoxic

conditions, sensitize HCC cells to sorafenib treatment, and

decrease the extent of immunosuppression in the HCC TME

through increased infiltration of cytotoxic T cells and reduced

infiltration of TAMs (170). Similarly, LFC131, a CXCR4 peptide-

based inhibitor, was also found to sensitize HCC cells to sorafenib

treatment (171).

The utilization of a nanoparticle-based treatment approach was

found to facilitate the targeting of a specific protein target, namely

CXCR4. PFH@LSLP, which is a PFH-cored liposome nanoparticle

conjugated with LFC131 and PLX3397, was shown to enhance

antitumor efficacy through increased infiltration of CD8+ T cells and

DCs while also shifting the immunosuppressive TME toward a tumor-

suppressing environment (171). Similar results were also exhibited in a

study that focused on CXCR4-targeted p53 mRNA nanoparticles in

combination with anti-PD-1 treatment (172). Aside from the modified

TME state from being immunosuppressive, this therapeutic approach

elevates the expression of MHC-I and reduces the expression of

immunosuppressive cytokines (172). AMD3100-based lipid-coated

Poly (lactic-co-glycolic acid) (PLGA) nanoparticles in combination

with sorafenib, which was developed by a research group, has been

shown to enhance the cytotoxicity toward HCC, leading to elevated

apoptotic events and polarizing the immunosuppressive TME toward

a tumor-suppressive environment (173). In addition, CXCR4-targeted

PLGA-PEG nanoparticles conjugated with LFC131 allow the

codelivery of sorafenib and metapristone into HCC cells, which

leads to antitumor effects through a decrease in CXCR4 expression

and an increase in the efficacy of sorafenib treatment (174).
10 Conclusion

Liver CSCs have been shown to contribute significantly to

therapeutic resistance and tumor relapse in HCC patients,

suggesting that prevention strategies and the development of

innovative treatment approaches are important. Additionally,

therapeutic resistance becomes even more complex with the

contribution of secretory factors derived from liver CSCs, which

leads to the establishment of an immunosuppressive TME that

debilitates effective antitumor immune responses. As described in
Frontiers in Immunology 12
this review, CSCs may participate in the secretion of

immunosuppressive factors, such as cytokines, growth factors,

and exosomes, which collectively make up anatomically distinct

CSC niches within the TME in HCC. Although there is a lack of

evidence and research on the secretion of immunosuppressive

factors by CSCs, these conspicuous cells can attract and

participate in crosstalk with diverse cellular components within

the TME that ultimately secrete various factors. To address the

immunosuppressive state of the TME, therapeutic approaches

targeting these secretory factors are crucial. An in-depth analysis

of these approaches is needed to provide a better understanding of

how to effectively reduce the immunosuppressive state of the TME

in patients with HCC while still providing beneficial, safe, and well-

tolerated ICI treatment options.
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Glossary

ABC ATP-binding cassette

ActD actinomycin D

AFP alpha-fetoprotein

BCLC Barcelona clinical liver cancer

CAFs cancer-associated fibroblasts

CARs chimeric antigen receptors

CK19 cytokeratin 19

COX cyclooxygenase

CPO chromenopyrimidinone

CSCs cancer stem cells

CXCL C-X-C motif chemokine ligand

CXCR C-X-C motif chemokine receptor

DC dendritic cell

ECM extracellular matrix

EMT epithelial-mesenchymal transition

EpCAM epithelial cellular adhesion molecule

EVs extracellular vesicles

FACS fluorescence-activated cell sorting

FGF fibroblast growth factor

FGFR fibroblast growth factor receptor

FLT3 FMS-like tyrosine kinase-3

GAL galectin

GPC3 glypican-3

HBV hepatitis B virus

HCC hepatocellular carcinoma

HCV hepatitis C virus

ICIs immune checkpoint inhibitors

IDO indoleamine 2,3-dioxygenase

IFN interferon

IGF insulin-like growth factor

IL interleukin

lncRNAs long non-coding RNAs

MCP monocyte chemoattractant protein

MDR multidrug resistance

MDSCs myeloid-derived suppressor cells

miRNAs microRNAs

MMP matrix metalloproteinases

MSCs mesenchymal stem cells

(Continued)
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NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NK natural killer

NO nitric oxide

PBMCs peripheral blood mononuclear cells

PDGFR platelet-derived growth factor receptor

PDO patient-derived organoid

PGE2 prostaglandin E2

PLGA Poly (lactic-co-glycolic acid)

ROS reactive oxygen species

SHH sonic hedgehog

STC stanniocalcin

TACE transarterial chemoembolization

TAMs tumor-associated macrophages

TGF transforming growth factor

TICs tumor-initiating cells

TKIs tyrosine kinase inhibitors

TME tumor microenvironment

TNF tumor necrosis factor

Tregs regulatory T-cells

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor
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