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The interplay between immune cells and malignant cells represents an essential

chapter in the eradication of breast cancer. This widely distributed and diverse

form of cancer represents a major threat to women worldwide. The incidence of

breast cancer is related to several risk factors, notably genetic predisposition and

family antecedents. Despite progress in treatment modalities varying from

surgery and chemotherapy to radiotherapy and targeted therapies, persistently

high rates of recurrence, metastasis, and treatment resistance underscore the

urgent need for new therapeutic approaches. Immunotherapy has gained

considerable ground in the treatment of breast cancer, as it takes advantage of

the complex interactions within the tumor microenvironment. This dynamic

interplay between immune and tumor cells has become a key point of focus in

immunological research. This study investigates the role of various cancer

markers, such as neoantigens and immune regulatory genes, in the diagnosis

and treatment of breast tumors. Moreover, it explores the future potential of

immune checkpoint inhibitors as therapeutically effective agents, as well as the

challenges that prevent their efficacy, in particular tumor-induced

immunosuppression and the difficulty of achieving tumor specificity.
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Introduction

Breast cancer ranks as the foremost-diagnosed cancer among

women globally, posing a considerable threat to their health and

well being. In 2020, there were reported 2.26 million new cases, with

predictions indicating a 21% increase over the next decade. In the

United States alone, it accounts for over 40,000 deaths annually (1).

Notably, it stands as not only the most common cancer in

women but also the leading cause of cancer-related mortality

worldwide. The disease resulted in 684,996 deaths globally [95%

UI, 675,493–694,633], showcasing an age-adjusted rate (AAR) of

13.6 per 100,000 (2). Despite the higher incidence rates in developed

regions, 2020 witnessed 63% of breast cancer deaths occurring in

Asia and Africa. The survival rate among women diagnosed with

breast cancer in high-income countries contrasts sharply with that

of women in low- and middle-income countries, where the

prognosis is often less favorable (3). Analysis of gene expression

arrays has led to the recognition of several essentially different

subtypes of breast cancer (4, 5). According to the St. Gallen

Consensus 2011, molecular subtypes of breast cancer can be

classified into Luminal Type A which is characterized by being

progesterone receptor (PR) positive, estrogen receptor (ER)

positive, human epidermal growth factor receptor 2 (HER2)

negative, and lowKi-67; Luminal B is PR positive, ER positive,

may be either HER2 positive or negative, and high Ki-67. HER2-

overexpressing subtypes are ER negative, PR negative, and HER2

positive, while triple-negative breast cancer (TNBC) lacks

expression of ER, PR, and HER2 (6).

Breast cancer subtypes differ according to their degree of

immunogenicity, which is very important with respect to

treatment strategies. It has been reported that luminal A breast

cancer shows usually low immunogenicity, characterized by low

tumor-infiltrating lymphocytes (TILs) T and low PD-L1 expression,
Abbreviations: AAR, age-adjusted rate; PR, Progesterone receptor; ER, estrogen

receptor; HER2, epidermal growth receptor 2; TNBC, Triple Negative Breast

cancer; CSF-1, Macrophage colony-stimulating factor; VEGF, Vascular

endothelial growth factor; Th2, T Helper type 2; DDIR, DNA-damage

immune-response; TAMs, Tumor-associated macrophages; NF-kB, Nuclear

factor kappa-light-chain-enhancer of activated B cells; SOX4, Sex-determining

region Y-related high-mobility group box transcription factor 4; CXCL1, CXC

motif chemokine ligand 1; IL, Interleukin; CD, Cluster of differentiation; NK,

Natural killer; LLT1, Lectin-like transcript 1; TME, Tumor Microenvironnement;

MiR, MicroRNA; ADCC, Antibody-dependent cell-mediated cytotoxicity;

FcgRIIIA, Fc-gamma receptors III a; hTERT, human Telomerase Reverse

Transcriptase; RuPOP, ruthenium Ru polypyridyl; ROS, ros reactive oxygen

species; TNF, Tumor Necrosis Factor; MDSC, myeloid-derived suppressor cells;

DCs, Dendritic cells; pDCs, plasmacytoid DCs; CTL, cytotoxic T lymphocyte;

MHC, major histocompatibility complex; APCs, antigen-presenting cells; IFNg,

interferon-g; OS, overall survival; DFS, disease-free survival; Tregs, Regulatory T

cells; PD-L1, programmed death-ligand 1; TIL, tumor-infiltrating lymphocyte;

nTregs, naturally Tregs; iTregs, inducible Tregs; MRI, Magnetic resonance

imaging; MBI, molecular breast imaging; CTLA-4, cytotoxic-T-lymphocyte

associated antigen 4; FDA, food and Drug administration; CDC, complement-

dependent cytotoxicity; MCC, Merkel cell carcinoma.
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hence suggesting a low immune response (7, 8). In contrast to

luminal A, the luminal B breast cancer subtype seems more

immunogenic and has greater T-cell clonality, but still represents

a medium level of immune response with reduced levels of CD8+

TILs (9, 10). HER2-positive breast cancer also appears more

immunogenic, often expressing high levels of TILs and PD-L1

expression that generally correlated with better immunotherapy

responses and improved survival (11). Additionally, Triple-negative

breast cancer has been noted as the most immunogenic subtype of

breast cancer, distinguished by a high level of TILs and PD-L1

expression. TNBC patients are significantly more responsive to

treatment with immunotherapy (8). Given its high mutational

burden and high immune infiltrate, TNBC represents a promising

target for immunotherapy. Indeed, in both early and advanced

stages of TNBC cases, the high presence of tumor-infiltrating

lymphocytes (TILs) is a predictor of favorable responses to

immunotherapy, contributing to a better outcome in terms of

survival (8). Compared to other forms of breast cancer, TNBC

tends to grow and spread more rapidly. Patients with Luminal A

and B, as well as HER2-enriched subtypes, show responsiveness to

targeted therapies, whereas those with the triple-negative phenotype

typically exhibit a poorer prognosis (12). This sophisticated

categorization aids in tailoring treatment approaches and

enhancing patient outcomes, underscoring the critical nature of

ongoing research and intervention strategies in combating this

pervasive disease (13). In clinical practice, immunohistochemical

analyses of tumors are performed on the basis of ER, PR and HER2

status. This method is simpler and less expensive and provides

similar results for molecular subtypes (14).

Therefore, incorporating molecular subtyping techniques into

clinical practice is crucial as it offers precise information regarding a

patient’s prognosis, relapse risk, and likelihood of achieving a

complete pathological response. This approach facilitates the

identification of patients who would benefit most from

neoadjuvant therapy, thereby improving risk stratification.

Moreover, by identifying specific molecular subtypes and breast

cancer markers, clinicians can tailor treatment modalities that

target the underlying biological characteristics of the tumor,

leading to more effective therapies. This not only enhances

treatment outcomes but also minimizes exposure to treatments

that may not be beneficial for certain subtypes. Additionally,

molecular subtyping allows for the development of more

aggressive treatment strategies or enhanced surveillance for

patients with a higher risk of relapse (15). Additionally, it allows

for the development of more aggressive treatment strategies or

enhanced surveillance for patients with a higher risk of relapse (16,

17). The latest edition of the Tumor–Node–Metastasis (TNM)

classification introduces an updated staging methodology that

considers not only the anatomical features of breast cancer but

also its biological attributes (18).

Breast cancer treatment is comprehensive, embracing various

modalities such as surgery, radiation therapy, chemotherapy,

hormonal therapy, and biological therapies. These treatments are

applied in different sequences, tailored to the individual patient’s

condition (19).
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This review article aims to shed light on the immune

microenvironment within breast cancer, emphasizing novel

therapeutic strategies that may enhance the efficacy of

immunotherapy and address resistance issues.
Immune response in breast cancer

In the initial phases of tumor development, components of the

host’s immune system, especially cells of the innate immune system,

play a pivotal role in eradicating tumor cells, including those

associated with breast cancer (20).

The innate immune response, triggered by various innate

immune cells without the need for prior sensitization, possesses

the capacity to promptly neutralize cancer cells (21–23). Moreover,

this response can precipitate the activation of enduring adaptive

immune responses, thereby enhancing the efficacy of tumor cell

destruction (24, 25). Given these dynamics, targeting the

modulation of innate immunity emerges as a compelling strategy

for cancer therapy. This chapter will focus on the role of innate

immune cells, alongside identifying therapeutic targets and

pathways, with the aim of advancing the development of

translational anticancer therapies.
Macrophages

Macrophages are a key cellular component of innate immunity,

primarily recognized for their phagocytic capabilities (26). In

addition to tumor cells, the tumor microenvironment comprises

various immune cells, including macrophages. Macrophages exist in

different activation states, with M1 and M2 representing two

distinct phenotypes (26). In non-pathological state, macrophages

present within tissues are tissue-resident macrophages and/or

monocyte-derived macrophages. These macrophages maintain

tissue homeostasis by performing numerous functions like

immunosurveillance, clearance of senescent and apoptotic cells,

and maintenance of tissue architecture (27).

Macrophages polarize and develop diverse properties in

response to a variety of signals. Exposure of macrophages to

Interferon-gamma IFN-g and lipopolysaccharide (LPS) induces

M1 polarization, with cytotoxic and antitumor properties

potentiated, in contrast to M2 macrophages that are more likely

to have immunoregulatory and protumor activities. In particularly,

M2a macrophages (‘ induced by exposure to Interleukin-4 (IL-4)

and Interleukin-13 (IL-13)) and M2b macrophages (‘ induced by

combined immune complex exposure and toll-like receptors (TLR)

or IL-1R agonists) exert immunoregulatory functions and induce

type II responses, whereas M2c macrophages (‘ induced by

Interleukin-10 (IL-10)) are more associated with suppression of

immune responses and tissue remodeling (28).

In the context of breast cancer, macrophages are found in greater

numbers within cancerous tissues compared to adjacent non-cancerous

tissues. They are associated with epithelial-to-mesenchymal transition

markers, which are implicated in the progression and metastasis of

breast cancer (26, 29). The colony stimulating factor 1 (CSF-1), a
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critical regulator of macrophages, is linked with a poor prognosis in

breast cancer patients (30). Furthermore, an increase in M2

macrophages correlates with a decrease in survival rates among these

patients (31, 32). Macrophages also play a role in neovascularization.

Studies have shown that the secretion of vascular endothelial growth

factor (VEGF) bymacrophages is two to three times higher than that of

breast cancer cells themselves (33). M2 macrophages, in particular,

contribute to pro-tumorigenic Th2/humoral responses and

immunosuppression (Figure 1A). Conversely, stimulation of human

macrophages towards an M1 phenotype exhibits an antitumor effect

(34). A high presence of M2-type macrophages has been observed in

DNA-damage immune-response (DDIR)-negative tumors, which are

characterized by an immunosuppressive TME, unlike DDIR-positive

tumors (35). Additionally, the macrophage receptor tyrosine kinase, c-

Mer (Mertk), is associated with poor prognosis due to its role in

fostering an immunosuppressive environment (36, 37). However,

interventions using Mertk-knockout mice or neutralizing anti-Mertk

antibodies have been shown to alter the immune response profile,

leading to an increase in inflammatory factors, greater T-cell

infiltration into tumors, and enhanced cytotoxicity (37). Recently,

there have been many studies about the involvement of macrophages

in tumors. Among the main concerns in this area is the origin and

function of Tumor Associated macrophages (TAMs). TAMs can

increase the growth, invasion and metastasis of tumor cells, as well

as stimulate angiogenesis and suppress the T cell-mediated immune

response against tumors, thereby promoting tumor progression (38,

39). Much clinical data show that more accumulation of TAMs in the

tumor tissue indicates a poor prognosis for cancer patients (40).

However, there are conflicting reports on the cellular origin of

TAMs that accumulate in the tumor microenvironment. In a

subsequent issue of Science, Franklin et al. showed that TAMs in

mouse models of breast cancer are phenotypically and functionally

distinct from traditional M2 TAMs. Otherwise, TAMs differentiate

from CCR2+ inflammatory monocytes and their differentiation

relies on the Notch signaling pathway (41).

TAMs contribute to tumor progression by promoting

angiogenesis, inhibiting T cells, and increasing the secretion

of immunosuppressive cytokines (36) (Figure 1C). Overexpression

of B7-H3 in TAMs plays a significant pro-metastatic and

immunosuppressive role by remodeling the extracellular matrix and

enhancing tumor angiogenesis, thereby facilitating tumor cell

dissemination and reducing T-cell infiltration into the TME (42).

Additionally, TAMs activate the nuclear factor kappa B (NF-kB)/
SOX4 signaling pathway through the release of CXCmotif chemokine

ligand 1 (CXCL1), promoting epithelial-to-mesenchymal transition

(EMT) and lung metastasis in breast cancer (43, 44).
NK cells

The innate immune system plays a pivotal role in cancer

defense, with effector lymphocytes such as natural killer (NK)

cells providing critical, albeit transient, protection against

malignancies. NK cells are adept at identifying and neutralizing

target cells that express major histocompatibility complex I (MHC

I) or MHC I-like molecules (45).
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In breast cancer patients, the concentration of NK cells within

tumor tissue is significantly reduced compared to their prevalence

in the bloodstream (46), and a decrease in patient survival correlates

with an increase in activated NK cells (31, 32). Activation of NK

cells has proven effective in eradicating breast tumors (47), whereas

suppression of these cells facilitates immune evasion and metastasis

(48). Interleukin-22 (IL-22), for instance, upregulates CD155
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expression. This interaction with the activating receptor CD226

on NK cells results in inhibition, thereby exacerbating the

metastatic burden (49). To combat cancer cells, NK cells exhibit a

CD3-CD56+CD16+ phenotype and secrete granules filled with

perforins and granzymes (50, 51). Granzyme B, in particular,

serves as a vital effector for NK cells, facilitating the elimination

of breast cancer cells by reactivating p53 (52, 53). Moreover, NK
FIGURE 1

The interplay between the immune system and breast cancer microenvironment (TME). (A) Role of innate immune cells in breast cancer
microenvironment. M1 macrophages and Natural killer cells act as anti-tumor cells by releasing stimulatory molecules such as TNFa, IFNg, IL-12 and
cytotoxic granules such as Perforin, Granzyme B that destroy cancer cells. M2 macrophages promote resistance, immunosuppression and tumor
progression by angiogenesis via VEGF production. (B) Adaptive anti-tumor response in the breast cancer microenvironment. Maturation and
activation of CD8+ and CD4+ T cells can occur through uptake and presentation of tumor antigens by dendritic cells, B cells, via MHC I/II, but also
through the interaction between the NKG2D receptor on NK cells and the NKG2D ligand on T cells. Activated effector T cells destroy cancer cells by
secreting Perforin, Granzyme, TNFa and IFNg. B cells can exert direct cytotoxicity after recognition of tumor antigen or antibody-dependent cell-
mediated cytotoxicity. (C) Adaptive pro-tumor response in the breast cancer microenvironment. Inhibition and exhaustion of CD8+ and CD4+ T
cells can occur through the secretion of anti-inflammatory cytokines such as TGF-b and IL-10 by M2 macrophages and T-reg and also through the
high expression of PD-1, CTLA-4 on NK and T cells.
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cells can promote T cell maturation and activation through various

cell surface receptors and cytokines (54). Interferon (IFN) also

exhibits antitumor activity by stimulating both innate and adaptive

immune responses, including enhancing NK cell activity (55, 56).

Targeting Induction of Lectin-like Transcript 1 (LLT1), a ligand on

breast tumors that interacts with NK cell receptors, through

antibody blocking or gene knockdown disrupts this interaction,

thereby augmenting the destruction of breast cancer cells by NK

cells (36, 57). Additionally, Interleukin-18 (IL-18) within the TME

can elevate programmed cell death 1 (PD-1) expression on NK cells,

leading to a significant immunosuppressive effect (58). The

microRNA miR-519a-3p shields breast cancer cells from NK cell-

mediated destruction and augments resistance to apoptotic death,

further contributing to immune evasion (59). Certain

chemotherapy agents directly influence NK cells. In vitro studies

have shown that pretreatment with epirubicin significantly

enhances NK cell-mediated cytotoxicity against tumor cells. This

suggests that combining anthracycline-based chemotherapy with

NK cell-based immunotherapy could be a potent strategy for breast

cancer treatment (60). Initially, cytotoxic chemotherapeutics were

found to impair NK cell responses in breast cancer patients (61, 62),

though NK cell counts (CD56) typically normalize post-adjuvant

chemotherapy (63). Similar observations have been reported in

mouse models of solid tumors, including breast cancer, where there

is a reduction in peripheral and tumor-infiltrating mature NK cells

essential for antibody-dependent cell-mediated cytotoxicity

(ADCC) and an increase in the expression of inhibitory receptors

on tumor cells that block ADCC (64). Other mechanisms of

suppression involve the expression of CD39 on breast cancer

cells, which interacts with regulatory NK cells expressing CD73

infiltrating the tumor. Through the activation of signal transducer

and activator of transcription-3, CD73+ NK cells induce IL-10

production, which hampers the proliferation of CD4+ T cells and

IFN-g production, leading to immune tolerance (65). Breast cancer

cells expressing the epithelial cell adhesion molecule are more

effectively eliminated by IL-15 CAR NK cells compared to NK-

resistant types (66). The enhanced ADCC activity of human NK

cells is attributed to increased binding affinity to Fc gamma receptor

IIIa (FcRIIIA), inhibiting cell proliferation (67). Margetuximab’s

modified binding characteristics significantly enhance ADCC and

anti-tumor effects, especially against cells with low HER2 levels or

those resistant to trastuzumab (68). Furthermore, telomerase

inhibition (hTERT) has been demonstrated to augment the

sensitivity of breast cancer cells to NK cell therapy, enhancing

NK cell cytotoxicity (69). Additional research indicates that NK

cells, when combined with the RuPOP (ruthenium (Ru)

polypyridyl) molecule, can produce significant amounts of

reactive oxygen species (ROS), activate apoptosis-related receptors

such as TNF-R1, DR5, and Fas, and improve interactions between

NK and tumor cells by upregulating The Natural Killer Group 2D

(NKG2D) and its numerous ligands, leading to caspase 3-

dependent apoptosis (70). This combination therapy not only

increases NK cell infiltration but also reduces the pro-tumoral

capacity of myeloid-derived suppressor cells (MDSC), thereby

achieving high therapeutic efficacy against breast tumors

in vivo (70).
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Dendritic cells

Dendritic cells (DCs) serve as pivotal antigen-presenting cells that

bridge innate and adaptive immunity. They play a crucial role in the

TME immunosurveillance, exhibiting a marked propensity to

infiltrate TNBCs more than other subtypes, which correlates with

favorable clinical outcomes in breast cancer (71–75). However, an

increased presence of plasmacytoid DCs (pDCs) within breast cancer

has been linked to poor clinical prognosis (76, 77). The maturation

of DCs significantly enhances cytotoxic T lymphocyte (CTL)

responses, positively influencing tumor suppression efforts (78).

Immunotherapy leveraging mature DCs has been shown to

augment the populations of CD8+ and CD4+ T cells, curb the

growth of breast tumors through the induction of apoptosis and

anti-mitotic mechanisms, and thwart metastasis by reducing the

expression of the transcription factors Snail, Slug, and Twist (79).

Furthermore, the maturation of dendritic cells induced by a

compound known as shikonin notably improved CTL responses,

offering substantial benefits in tumor control. This suggests that DC-

based vaccines could represent a promising treatment modality for

breast cancer (BC) patients who have become resistant to

chemotherapy. The use of tumor lysate from individuals with

locally advanced BC has proven effective in consistently activating

CD8+ CTLs, targeting and eliminating cancer cells (80). Additionally,

the combination of doxorubicin and cyclophosphamide with

autologous DCs has been successful in prolonging T cell longevity

and revitalizing immune functionality (81, 82).
Adaptive immune responses

The adaptive immune response plays a pivotal role in the

immune system, orchestrating targeted and specific recognition

and elimination of pathogens and foreign substances, as well as

modulating responses to treatment. Recent studies have illuminated

the adaptive immune response’s potential influence on the

development and progression of cancer, with a particular focus

on breast cancer. This research suggests that the adaptive immune

response can have dual outcomes—either beneficial or detrimental

—contingent upon various factors, such as the cancer’s type and

stage (83). Distinct from the innate immune system, the adaptive

immune system is characterized by its capacity to remember

previous encounters, providing both humoral and cellular

immunity via B and T cells, respectively. In the context of

oncology, the adaptive immune system is heralded for its

potential to elicit long-term and efficacious responses (84).

Moreover, the adaptive immune response to breast cancer

involves a complex interplay among various key entities, each

assuming critical and diverse roles. This ensemble includes T

cells, B cells, natural killer cells, and dendritic cells, collaborating

to identify and eradicate cancerous cells. Research indicates a

positive correlation between the infiltration of T cells within

breast tumors and improved prognoses and treatment outcomes

(85). Additionally, therapeutic interventions that target the adaptive

immune response, such as immune checkpoint inhibitors, have

shown promise in treating breast cancer{Citation}Comprehending
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the multifaceted nature of this response is imperative for the

development of innovative treatments capable of leveraging the

immune system’s robustness against breast cancer.
CD8 T cells

Based on their distinct phenotypes and roles, CD8 T cells

constitute a key subset of T lymphocytes in adaptive immunity,

serving as the primary effector mechanism responsible for initiating

anti-tumor immune responses (Figure 1B). These cells are further

delineated into two subsets (86): Cytotoxic T cells (Tc), which act as

the principal agents of cell-mediated destruction within adaptive

immunity (87). Upon engagement with major histocompatibility

complex class-1 (MHC-1) molecules on antigen-presenting cells

(APCs), these cells release effector cytokines, including interferon-g
(IFNg) and TNF, along with cytotoxic molecules such as granzymes

and perforin. Consequently, they are adept at targeting and

eliminating malignancies, positioning them as formidable

adversaries against tumor cells (88). The other subset, CD8

regulatory T cells (Treg) plays an essential role in moderating

immune responses by dampening Th cell activity and curtailing

immune reactions to infections (87). Recent studies have correlated

the presence or absence of tumor-infiltrating CD8+ T cells within

the TME with various stages of tumor development and prognoses

across numerous cancers (89–92). Specifically in breast cancer,

these T-cell subsets demonstrate highly synchronized roles and

distinct functionalities within the adaptive immune system.

Elevated levels of CD8+ T-cell infiltration have been associated

with favorable prognostic indicators, including enhanced overall

survival (OS) and disease-free survival (DFS) in patients with breast

cancer. Moreover, a significant association was found between

increased CD8+ T-cell infiltration and lower expression levels of

the estrogen and progesterone receptors, alongside heightened

expression of HER2, a recognized oncogenic protein. These

findings underscore the pivotal role of CD8+ T-cells in mounting

an immune response against breast cancer and their potential utility

as prognostic markers for patient outcomes (93). However, the

presence of CD8+ T cells alone does not guarantee tumor

regression, as tumors expressing highly immunogenic neoantigens

can still progress (94). Breast cancer, like other malignancies, can

foster an immunosuppressive TME and develop resistance to the

antitumor activity of CD8+ T cells, thereby diminishing their

therapeutic efficacy (95). The TME promotes the accumulation of

TAMs, Tregs, and MDSCs by secreting immunosuppressive

cytokines, which in turn impairs CD8+ T cell infiltration,

proliferation, and function within the tumor (83). Furthermore,

tumor-infiltrating CD8+ T cells in human breast cancer exhibit

increased programmed death-ligand 1 (PD-L1) expression

(Figure 1C), correlating with compromised immune functionality

and subsequent T cell suppression (96). The upregulation of PD-L1

on breast cancer cells is linked to the inhibition of dendritic cell

maturation and reduced T cell tumor infiltration, facilitated

through the interaction of tumor PD-L1 with PD-1 or B7-1

receptors on T and B cells (97, 98). Previous research has

demonstrated the significance of assessing PD-L1 expression and
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CD8+ lymphocyte infiltration in TNBC, offering valuable

prognostic and predictive insights (99).

The compelling correlation between the proportion of CD8+

lymphocytes and PD-L1 expression suggests that the analysis of

CD8+ T-cell infiltrates could act as a complementary or alternative

biomarker for PD-L1. This potential allows for the improved

identification of patients who are most likely to benefit from

immunotherapy (100).

Nonetheless, the observed lack of tumor specificity by CD8+

tumor-infiltrating lymphocytes (TILs) in breast tumors may account

for the modest clinical responses observed with checkpoint blockade

therapies (101). A recent study has demonstrated that bi-specific

antibodies can enable CD8+ TILs from human breast tumors to

effectively eradicate cancer cells. Reports have indicated that CD8+

TILs in human breast tumors retained their polyfunctionality, even

while expressing PD-1, and propose their significant utility in potent

immunotherapies (102).
CD4 T cells

CD4+ T cells exhibit remarkable versatility and polyfunctionality,

serving as a vital component of adaptive T cell immunity, working in

concert with their CD8+ cytotoxic T cell counterparts (103). These

cells are adept at recognizing antigens in the context of MHC class II

molecules, which are primarily expressed on immune cells. Notably,

conventional T (T_conv) cells predominantly exert their

immunomodulatory effects by recognizing antigens presented on

specialized antigen-presenting cells, such as dendritic cells (DCs)

and macrophages (104).

Upon receiving context-dependent signals, CD4+ T cells can

differentiate into diverse functional subtypes. This differentiation

enables them to play a central role in coordinating the immune

response, assisting appropriate effector immune cells in their

functions (105). The primary function of CD4+ T cells includes

facilitating anti-tumor immunity through various mechanisms.

These mechanisms include supporting CD8+ cytotoxic T cells

and antibody responses, secreting cytokines such as interferon-g
(IFNg) and tumor necrosis factor-a (TNFa), and, under specific

conditions, directly targeting tumor cells with cytotoxic

activity (106).

In the tumor environment and in the circulation of patients,

CD4+ cytotoxic T lymphocytes (CTLs) express cytolytic effector

molecules, including granzymes, perforin, and other granule-

associated proteins such as natural killer cell granule Protein 7

(NKG7) and granulysin (107). It has been consistently documented

that CD4+ T cell help is essential for inducing and maintaining

functional memory CD8+ T cell responses (108). The role of CD4+

T cells in tumor defense has been extensively studied in animal

models prior to clinical trials, as well as in patients with cancer

(109). Further investigations in patients have revealed the

expansion of CD4+ CTLs in various tumor types, including

breast cancer (110). Huang and colleagues have highlighted the

dynamic changes within tumor-infiltrating lymphocyte (TIL)

populations during the progression of breast cancer. Their

research indicates that, during the initial stages of tumor
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development, TILs predominantly consist of Th1 and CD8+ T cells,

potentially performing immunosurveillance to combat malignant

cell growth (Figure 2A). Conversely, in advanced stages of cancer,

there is a notable increase in CD4+ TILs, with a shift in dominance

to Treg and Th17 cells, which may facilitate tumor growth

(Figure 2B) (109). Significantly, the effectiveness of targeted

therapies is markedly improved by the presence of CD4+ T cells,

suggesting that trastuzumab may elicit immune-mediated

cytotoxicity. The increased expression of TNF-a receptors implies

that cytokines may synergize with trastuzumab, enhancing

responsiveness to therapy in HER2+ breast cancer and potentially

reducing tumor burden (111).

Importantly, Th2 cell immunity, facilitated by the release of

interleukin 3 (IL-3), interleukin 5 (IL-5), and granulocyte-

macrophage colony-stimulating factor (GM-CSF), induces

terminal differentiation in developing breast cancer. This process

leads to the reversal of high-grade breast cancers into low-grade,

fibrocystic-like structures. These findings underscore the critical

role of CD4+ Th2 cells in immune response against breast cancer,

highlighting terminal differentiation as a distinct mechanism for

cancer immunoprevention and therapy (112).

Moreover, Lhuillier et al. have demonstrated that radiation

therapy (RT) increases the expression of genes responsible for the

generation of immunogenic neoepitopes and stimulates CD4+ T

cell responses in a mouse model of triple-negative breast cancer.

Importantly, neoantigen-specific CD4+ T cells are capable of

producing Th1 cytokines, eradicating irradiated tumor cells, and

facilitating epitope spreading. These findings highlight the pivotal

role of RT as a complementary approach to neoantigen vaccination,

enhancing vaccine efficacy (113).

The activation of CD4+ T cells for cancer immunoprevention

and therapy offers several distinct advantages over conventional
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immunotherapies that target CD8+ T cells. As upstream activators

of adaptive immunity, CD4+ T cells can directly activate and target

tumor antigens, initiating a robust anti-tumor immune response in

“cold” tumors, which include early-stage epithelial cancers and

precancerous lesions (105). In summary, cytotoxic CD4+ T cells

emerge as a promising prognostic biomarker within the immune

microenvironment of breast cancer. A detailed exploration of the

activities of CD4+ cytotoxic T lymphocytes could provide a

predictive marker for immunotherapy in breast cancer patients.
B-cells

After activation in the germinal centers of lymphoid organs, B

cells that express high-affinity antibodies differentiate into plasma

cells, which secrete antibodies, and memory B cells, which are

crucial for driving humoral immunity against pathogens (114).

Notably, B cell activation occurs specifically within the germinal

centers of lymphoid organs (115).

In addition to their ability to produce cytokines and

differentiate into plasmablasts, B cells also function as antigen-

presenting cells (APCs) by presenting antigens to T cells

(Figure 1B). As APCs, B cells typically show increased expression

of costimulatory proteins essential for T cell activation (116).

Within the TME, B cells exhibit distinct surface marker

expression profiles compared to those circulating in peripheral

blood. There is a marked upregulation of costimulatory proteins,

such as CD86, and a reduction in CD23 expression, indicating

higher activation levels of B cells within the TME (117).

In breast cancer patients, tumor-infiltrating B cells (TIL-B) have

been identified in up to 60% of cases (116). Furthermore, B cell

infiltration has been consistently associated with a favorable
FIGURE 2

Illustration depicting changes in immune cell populations during breast cancer progression. (A) At the initial stage of tumor development, TILs
predominantly consist of Th1 and CD8+ T cells which are involved in immunosurveillance and combating malignant cell growth. (B) In advanced
stages of cancer, there is a notable increase in CD4+ TILs, with a shift towards the predominance of Treg and Th17 cells. These changes contribute
to tumor growth by modulating the immune environment within the tumor.
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prognosis in breast cancer, as evidenced by various studies

(118, 119).

Significantly, memory B cells exhibit a markedly higher

prevalence in breast cancer tissues compared to healthy tissues.

Their presence consistently correlates with positive outcomes and

enhanced responses to chemotherapy, especially in highly

proliferative breast cancer subtypes, such as triple-negative breast

cancer (116, 120). Notably, through the application of

immunohistochemistry for B cell detection or immunogenomics

for identifying B cell metagene signatures, researchers have

established a link between improved prognosis and increased B

cell infiltration in breast cancer patients (121). Recent preclinical

studies on triple-negative breast cancer models have highlighted the

critical role of B cell-mediated T cell activation and antibody

production in the response to immune checkpoint inhibitors

(ICI) in murine models with high-mutational-burden triple-

negative breast cancer. Moreover, the effectiveness of dual

checkpoint blockade significantly decreases following B cell

depletion or in murine models lacking the ability to produce

antibodies (122). Emerging evidence points to a unique subset of

B cells, known as regulatory B cells (Bregs), which play a pivotal role

in modulating the anti-tumor immune response. Bregs,

characterized as CD1d+ CD5+ CD19+ immunoregulatory B cells

producing IL-10, are analogous to Tregs in maintaining a balance

between self-tolerance and immune activation (120).

In murine models, the 4T1 breast cancer line triggers the

proliferation of tumor-associated Bregs (123), which suppress

immune responses by secreting anti-inflammatory mediators

such as interleukin 10 (IL-10), interleukin 35 (IL-35), and

transforming growth factor beta (TGF-b). These mediators

facilitate the conversion of T cells into Tregs, further illustrating

the intricate interplay between Bregs and the immune system’s

regulation (124).

In 2019, a study examining breast cancer patients revealed that

the presence of IL-10+ Bregs was augmented in parallel with Tregs

within primary tumors, correlating with shorter relapse-free intervals

(125). Another study demonstrated that the accumulation of Bregs

was linked to the infiltration and regulation by CD33+ MDSCs,

contributing to an immunosuppressive TME (126). Furthermore,

researchers have discovered an increase in Bregs expressing CD19+,

CD24+, and CD38+ and producing IL-10 in breast cancer patients.

Additionally, this population of Bregs was found to overexpress PD-

L1, a ligand for the PD-1 receptor (127).

The coexistence of PD-L1+CD19+CD24+CD38+ Bregs

exhibited a significant association with CD4+FoxP3+CD127low/-

Tregs and a lower clinical survival rate. This suggests a possible

feedback mechanism in which IL-10 production by Bregs promotes

the generation of innate immune cells that enhance the persistence

or quantity of Tregs in the TME (128).

Overall, a series of recent clinical studies suggests that the

infiltration of B cells and plasma cells, as well as the isotype

antibodies produced by these cells in the TME, are consistently

associated with better outcomes and superior responses to existing

immunotherapies. In fact, the predictive value of T cell infiltration is

only significant when it is concurrently associated with an

accumulation of B cells in certain tumors (129).
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T regulatory cells

The presence of Treg cells within tumors is associated with both

beneficial and detrimental outcomes for cancer patients. The

increase in Treg cells within a tumor may suggest a sustained

anti-tumor T-cell response, which could ultimately be suppressed.

Treg cells utilize various mechanisms of immunosuppression to

maintain control over these responses (130).

In breast cancer patients, Tregs with immunosuppressive

capabilities are significantly concentrated, and higher levels of

intratumoral Tregs correlate with increased tumor grade and

decreased survival rates (131, 132).

Furthermore, clinical evidence suggests that primary breast

tumors influence Tregs beyond the TME, with an observed

increase in Tregs in the peripheral blood of breast cancer patients

(133). The responsiveness of these cells to cytokines is indicative of

the likelihood of breast cancer recurrence (134). Additionally,

recent studies have demonstrated the accumulation of Tregs in

the sentinel lymph nodes of breast cancer patients, a factor

associated with the spread of cancer to these nodes, suggesting a

potential role for Tregs in the metastatic process (134, 135).

The TME redirects T cells capable of destroying tumors towards

a regulatory function and promotes interleukin 17 (IL-17)

production by Tregs through the secretion of various molecules,

including microRNAs, cytokines, and extracellular vesicles,

comprising the TME secretome. This secretome significantly

influences the recruitment, differentiation, and polarization of

Tregs through complex interactions (136).

Breast cancer patients exhibit at least two types of Tregs,

differentiated by their site of maturation: naturally occurring

CD4+CD25+ Tregs (nTregs) in the thymus and inducible Tregs

(iTregs) in peripheral tissues. Additionally, IL-17-producing Tregs

represent a transitional phase between Tregs and Th17 cells. While

nTregs modulate other effector and immune cells through direct

contact, iTregs do so by releasing anti-inflammatory cytokines such

as TGF-b and IL-10. IL-17-producing Tregs suppress the immune

system by secreting IL-10 and pro-inflammatory cytokines like

interleukin 6 (IL-6) and IL-17. A small subset of CD4+CD25+

FOXP3+ nTregs developed in the thymus plays a critical role in

preventing autoimmunity. iTregs are pivotal in protecting against

chronic inflammatory conditions and are believed to regulate

immune responses to commensal microorganisms, maintaining

peripheral tolerance and preventing local inflammation in

response to external antigens (136).

In a mouse model replicating human metastatic breast cancer,

recent research has documented the systemic activation and

accumulation of highly immunosuppressive Tregs during the

growth of primary tumors. These Tregs undergo transcriptional

modifications in response to mammary carcinogenesis, exhibiting

tissue-specific alterations. Furthermore, Tregs have been shown to

modulate the activation of NK cells within lymph nodes, thereby

promoting lymph node metastasis. This research demonstrates a

heightened Treg/NK cell ratio in the sentinel lymph nodes of breast

cancer patients as opposed to healthy individuals (135).

The elevation of Treg levels correlates with the absence of

hormone receptor expression, lymph node metastases, and the
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presence of p53 and Ki-67 immunopositivity. In TNBC, a notable

association exists between the extensive infiltration of

immunosuppressive Tregs and the mutation of BRCA1.

Moreover, the presence of Tregs within the TME is related to the

histologic subtype and tumor grade, both recognized prognostic

indicators. Consequently, targeting Tregs may offer a therapeutic

advantage in improving the prognosis of TNBC treatment (137).

Significantly, following neoadjuvant chemotherapy, a complete

pathological response is associated with a reduced abundance of

Tregs, while a high abundance of Tregs correlates with elevated

expression of checkpoint inhibitor genes in TNBC (138).
Immunotherapy in breast cancer

Current breast cancer treatments include chemotherapy,

hormonal therapy, radiotherapy, and tumor removal. Despite

these methods, the pressing need for innovative treatment

approaches is underscored by recent data. Recent advances

in targeted therapies and immunotherapies offer promise,

demonstrating effectiveness in treatment (139). Immunotherapy

aims to stimulate the patient’s immune system or target specific

components, including cytokines and monoclonal antibodies. The

two most prevalent immunotherapies are checkpoint inhibitors and

vaccines (140).
Frontiers in Immunology 09
For decades, breast cancer was perceived as non-immunogenic.

However, recent intensive research has firmly established the

immune system’s dual role in breast cancer: it plays a crucial part

in both suppressing tumor growth and promoting tumor

progression (141). The complex and evolving relationship

between the immune system and breast cancer has posed both

challenges and successes. Recent focus has shifted towards

immunotherapy in breast cancer, spurred by its success in

improving survival rates in advanced cancers such as lung cancer,

renal cancer, and melanoma. Consequently, immunotherapy for

breast cancer has specifically targeted the immune checkpoint

proteins PD-1 and cytotoxic T-lymphocyte associated antigen 4

(CTLA-4) (142).

The immune system’s core principle is to protect the body

against infections and distinguish self from non-self. To prevent

autoimmunity, checkpoints exist during the development of immune

cells to identify and induce apoptosis in cells that may react against

self-antigens. CTLA-4 and PD-1 are regulatory pathways expressed

on many immune cells (Figure 3), which regulate the immune

system by preventing excessive stimulation to self-antigens

through inhibiting T-cell response. These pathways function at

different stages of an immune response: CTLA-4 acts during the

initial stages of T-cell development to eliminate potentially

autoreactive T-cells, while PD-1, expressed on T-cells, B-cells,

natural killer cells, and dendritic cells, functions during the effector
FIGURE 3

Concept of immunotherapy. T cells become exhausted after prolonged antigen stimulation and interaction with inhibitory ligands (PD-L1,L2; CD80,
CD86) related to immune-checkpoint pathways. Immunotherapy involves inhibiting these immune checkpoint pathways using antibodies, with the
goal of restoring T-cell functions. Most breast cancer immunotherapies focus mainly on anti-PD-1 drugs, which stop the interaction between PD-1,
PD-L1, and PD-L2, such as pembrolizumab, avelumab, and atezolizumab.
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phase at a later stage, primarily in peripheral tissues. Binding of PD-1

to its ligand PD-L1 activates downstream inhibition pathways,

ultimately inhibiting T-cell activation. Therefore, PD-1 plays a

critical role in preventing excessive immune stimulation by

negatively regulating the immune response. However, it has been

observed that abnormally high levels of PD-L1 expression on certain

tumor cells, including those in breast and lung cancers, can lead to

the downregulation of immune cells, aiding tumor cells in evading

the immune system (143, 144).

Recent years have seen promising developments in cancer

immunotherapy. The core principle of this approach is the

inhibition of immune checkpoints, leading to PD-L1 dimerization

and the dissociation of the PD-1/PD-L1 complex. This reactivates

exhausted T-cells, enabling them to more effectively eliminate

cancer cells. Consequently, the inhibition of these immune

checkpoint pathways has resulted in the approval of several new

drugs (141–146) (Table 1) and has proven to be successful in

treating several types of cancers (90).

Pembrolizumab, a humanized IgG4 monoclonal antibody, has

demonstrated high selectivity and affinity for PD-1 (Table 1),

effectively inhibiting the interaction between PD-1 and its ligands,
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PD-L1 and PD-L2. In 2015, the U.S. Food and Drug Administration

(FDA) approved pembrolizumab for the treatment of advanced

melanoma. Subsequent clinical studies have validated its efficacy in

various other cancer types, including gastric cancer, head and neck

cancer, non-small cell lung cancer, and urothelial cancer (164).

A clinical trial involving 602 patients revealed that 64%

exhibited a complete pathological response to pembrolizumab.

Notably, patients who received pembrolizumab in conjunction

with neoadjuvant therapy showed significantly improved

responses compared to those who received a placebo with

neoadjuvant therapy (128).

In the KEYNOTE-086 clinical study, which included 170

patients with metastatic triple-negative breast cancer (mTNBC)

and a 68.1% PD-L1 positivity rate, pembrolizumab monotherapy

was administered at a dose of 200 mg intravenously (IV) every three

weeks for up to two years. The study reported an overall response

rate of 5.7% in PD-L1 positive patients, with treatment-related

adverse effects observed but no treatment-related deaths (165).

Avelumab, a fully human IgG1 monoclonal antibody, differs

from other monoclonal antibodies in its selective inhibition of PD-

1/PD-L1 interactions, while preserving PD-1/PD-L2 interactions. It
TABLE 1 Summary of Immunotherapy Approaches and trials results enrolling patient with Breast Cancer.

Drug Name
Mechanism
of action

Target
Immune
Molecule

Breast cancer type/
combined drug

Clinical trial results

Pembrolizumab -Humanized monoclonal
IgG4 antibody binds to the
PD-1 receptor and prevents
its communication with
PD-L1 (147)
-Increase T cell cytotoxicity
against tumors by blocking
PD-1 (147)

PD-1

Early TNBC+ + carboplatin
+ docetaxe

Phase III randomized KEYNOTE-522 clinical trial:
-Pathological complete response
-Approval of Neoadjuvant and adjuvant
pembrolizumab (148)

Advanced TNBC Phase Ib KEYNOTE-012(NCT01848834) Antitumor
efficacy in monotherapy (101)

PD-L1-positive Metastatic TNBC In the phase II KEYNOTE-086 trial: (NCT02447003),
- ORR: 5.7%
- Antitumor efficacy with a manageable safety
profile (149)

Cemiplimab High risk or progressive HR+ and
HER2- breast cancer negative PD-
L1+ or TNBC

A phase II clinical trial (NCT04243616) is ongoing to
check therapeutic responses upon neoadjuvant
chemotherapy and cemiplimab treatment (150)

Early-stage BC
+ paclitaxel +anthracycline
+cyclophospha-mide

NCT01042379 (ISPY): Pathological complete response
(pCR) (150)

Nivolumab Metastatic TNBC
Anti-PD-1/L1 immunotherapy,
alone or in combination
with chemotherapy

Phase II study TONIC trial (NCT02499367):
Upregulation of immune-related genes
ORR: 20%
2 CRs and 11PRs (151)

Avelumab - Human anti-PD-L1 IgG1
monoclonal antibody
inhibiting the interaction
between PD-1 and PD-L1
but not PD-1/PD-L2 (152)
-Displays some antibody-
dependent cell-mediated
cytotoxicity (ADCC) (151)

PDL-1

Metastatic TNBC JAVELIN (NCT01772004):
-Antitumor activity was modest.
-Objective response rate (ORR) was 5.2% (153)

Metastatic breast cancer (MBC)
with PD-L1+ or PD-L1−
tumor-associated

JAVELIN phase Ib: -A trend toward higher ORR and
stable disease.
-Acceptable safety profile and clinical activity (153)

(Continued)
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features a functional crystallizable (Fc) fragment domain that

engages Fc-g receptors, thereby inducing antibody-dependent

cellular cytotoxicity (ADCC) and complement-dependent

cytotoxicity (CDC) in tumor cell lines during preclinical studies
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(152, 166). The FDA has approved avelumab for treating metastatic

Merkel cell carcinoma (MCC) and locally advanced or metastatic

urothelial carcinoma following progression after platinum-

containing chemotherapy (167).
TABLE 1 Continued

Drug Name
Mechanism
of action

Target
Immune
Molecule

Breast cancer type/
combined drug

Clinical trial results

High-risk TNBC after neoadjuvant
(non pCR) or adjuvant (stage IIB–
III) CT

A-Brave (NCT02926196): Ongoing study which
compares 1 year of treatment with the anti PD-L1
avelumab vs observation for patients who completed
treatment with radical intent for primary TNBC
including surgery and chemotherapy (154)

Atezolizumab Metastatic TNBC Phase 1 study at US and European academic medical
centers:
- Manageable safety and tolerability
-A high-level of infiltrating immune cells (>10%)
which was associated with a better survival (155)

Metastatic TNBC + nab-paclitaxel Phase1b study (NCT01633970) in the GP28328
multicenter:
-Manageable safety and tolerability
-Increase in activated proliferating CD8+ T cells in the
peripheral blood promising anti-tumor activity and
also better survival (156)

High risk ductal TNBC
+neoadjuvant chemotherapyNACT

NeoTRIPaPDL1 (NCT02620280) trial:
-No significant increase of the rate of pCR (157).

Durvalumab Germline BRCA-mutated
metastatic breast cancer
+ Olaparib

Phase I/II trial (NCT02734004):
Antitumor activity and safety similar (158)

Early TNBC patients Improved pathological complete response (159).

Metastatic breast cancer patients In the SAFIR02-BREAST IMMUNO trial
(NCT02299999):
-Disease remained stable after 6–8 rounds of
chemotherapy
- In the overall population, durvalumab did not
improve progression-free survival or overall
survival (160)

Tremelimumab Humanized IgG2
monoclonal antibody,
which inhibits tumor
growth by preventing the
interaction between CTLA-
4 and B7 and thereby
allowing T-cell
activation (161)

CTLA-4

TNBC patients+ durvalumab Immune activation by enhancing inducible co-
stimulator activation on CD8 + and CD4 + T-cells

(147)
Better therapeutic responses stimulated local immune

response and likely induce activated T cells to
recognize cancer-specific antigens (161)

mTNBC with brain metastasis and
non-CNS measurable disease
+brain radiotherapy (RT)

NCT02563925 clinical trial:
-Modest clinical activity was observed in the HER2-
efficacy cohort (162)
- One patient with HER2+ disease experienced a
durable partial response with evidence of peripheral T-
cell activation (162)

Ipilimumab Early-stage HER2−negative BC+
nivolumab +
talimogene laherparepvec

T-VEC (NCT04185311):
-One patient had a pathologic complete response, 3
patients had pathologic partial responses, 1 showed no
significant response, and 1 had disease progression
(163)
-Biopsies demonstrated increased immune cell
infiltration in samples from patients who responded to
therapy (163)
PD-1, programmed cell death 1; PD-L1, programmed cell death-ligand; CTLA-4, cytotoxic T-Lymphocyte-associated-protein 4; IgG4, Immunoglobulin G4; IgG2, Immunoglobulin G2; ORR,
objective response rate; BC, breast cancer; pCR, Pathological complete response; TNBC, triple negative breast cancer; mTNBC, metatstatic triple negative breast cancer; CR, complete response;
ORR, objective response rate; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; CR, complete response; PR, partial response; IgG1, Immunoglobulin G1; ADCC,
antibody-dependent cell-mediated cytotoxicity; MBC, Metastatic breast cancer; RT, radiotherapy; CNS, central nervous system; CT, chemotherapy; NACT, neoadjuvant chemotherapy.
Bold values represent key immune checkpoint markers: PD-1 (Programmed Death-1), PD-L1 (Programmed Death-Ligand 1), and CTLA-4 (Cytotoxic T-Lymphocyte Associated Protein 4).
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In the phase Ia/Ib JAVELIN study, 168 patients with metastatic

breast cancer, including 58 with triple-negative breast cancer

(TNBC), were treated with avelumab for durations ranging from

2 to 50 weeks and followed for 6 to 15 months. The overall response

rate was 3.0%, with a 5.2% response rate in TNBC patients,

suggesting that clinical responses may be heightened in PD-L1

expressing tumors. Avelumab demonstrated an acceptable safety

profile in this cohort (168, 169).

Atezolizumab, a humanized, non-glycosylated monoclonal

immunoglobulin G1 antibody, selectively targets and inhibits the

interaction between PD-L1 and its receptor. This blockade

indirectly lifts T-cell suppression, fostering an anti-tumor

immune response. The efficacy of atezolizumab as a single agent

was evaluated across various tumor types in a Phase I study. This

cohort comprised 115 patients, of whom 33% exhibited PD-L1

positivity. The overall response rate among these patients was 10%,

with a slightly higher rate of 13% observed in PD-L1 positive

individuals (149, 170).

In a subsequent Phase Ib study (NCT01633970), 33 patients

with either metastatic or locally recurrent Triple-Negative Breast

Cancer (TNBC) were enrolled to assess the combined effect of

atezolizumab and chemotherapy. Treatment protocol entailed

administering 800mg of atezolizumab on the first and fifteenth

days of each 28-day cycle, followed by nab-paclitaxel administration

on days 1, 8, and 15 of the cycle. This regimen yielded an overall

response rate of 39.4%, with superior outcomes noted in patients

harboring PD-L1 positive tumors (156).

A Phase III clinical trial engaged a cohort of 902 patients, 90%

of whom were diagnosed with metastatic disease. This study

explored the efficacy of combining nab-paclitaxel with

atezolizumab compared to nab-paclitaxel alone. Participants were

evenly divided into two groups: one received a placebo plus nab-

paclitaxel, and the other, atezolizumab plus nab-paclitaxel. Among

these, 40.9% had PD-L1 positive tumors. Findings revealed that the

median overall survival for patients treated with the placebo

combination was 17.6 months, contrasted with 21.3 months for

those receiving atezolizumab and nab-paclitaxel. Moreover, in the

subset of patients with PD-L1 positive tumors, the overall survival

spanned 15.5 months versus 25 months, respectively. These results

conclusively demonstrate that combining atezolizumab with nab-

paclitaxel significantly extends survival in affected patients (170).
Novel therapeutic targets
and perspectives

Recent research advances in breast cancer have identified many

new therapeutic targets, offering promising approaches to

treatment, particularly for aggressive subtypes such as TNBC.

High-throughput approaches have identified critical molecules

such as cyclin D-dependent kinases (CDK4/6 (171). Palbociclib is

a novel, orally active pyridopyrimidine compound, which is highly

selective reversible inhibitor of CDK4/6 (171). By inhibiting CDK4/

6, palbociclib suppresses tumor cell entry into S-phase and reduces

expression of the proliferation marker Ki67 (172). In preclinical

studies, endocrine-resistant ER+ breast cancer cells were found to
Frontiers in Immunology 12
be extremely sensitive to palbociclib, with or even in the absence of

antihormonal therapy (173).

Additionally, the PI3K/AKT/mTOR pathway is also being

evaluated in clinical trials. It has been shown in various studies

that the PI3K/AKT/mTOR pathway is activated in TNBC, due to

loss of pTEN or INPP4B, or mutations in PIK3CA or AKT (174).

A clinical trial testing the effectiveness of the weekly

combination of paclitaxel, doxorubicin and cyclophosphamide

with the AKT inhibitor MK-2206 as a preoperative treatment for

breast cancer revealed a significantly improved rate of complete

tumor disappearance (40%) when compared with chemotherapy

alone (22%) (175). In addition, several other molecular targets are

under exploration to overcome the diversity of breast cancer. Such

targets involve poly (ADP-ribose) polymerase (PARP). The BRCA

mutations usually found in TNBC, are crucial in detecting and

repairing DNA damage. Importantly when BRCA function is lost, it

results in inducing cancer cell proliferation and progression (176).

By using PARP inhibitors, the tumor cells undergo cell death,

resulting in a highly effective therapeutic outcomes (177).

Circular RNA (CircRNA) has also been involved in

tumorigenesis and drug resistance, offering promising targets for

therapeutic approaches (178).

This highlights the importance of conducting further research into

the molecular mechanisms of breast cancer in the interest of developing

more efficient targeted therapies. The strategies currently used to deliver

precision treatment are based essentially on the molecular subtyping of

breast cancer. Future treatment concepts will focus more on

individualizing therapy for each patient and tumor biology and early

predictivemarkers will determine treatment. In addition, future research

would have to focus on enhancing the safety, specificity and longevity of

these therapies, as also on finding synergies between these new agents

and their combination with already existing treatments.
Conclusion

This article comprehensively reviews significant advancements in

the field of breast cancer immunotherapy, underscoring the pivotal

role of the immune system in both tumor suppression and

progression. This increased understanding has catalyzed the

development of targeted therapies and immunotherapeutic strategies.

Particularly, immune checkpoint inhibitors, including

pembrolizumab, nivolumab, and atezolizumab, have yielded

encouraging outcomes in clinical trials, showcasing enhanced

response rates and prolonged survival. These therapies function by

inhibiting pathways that limit the immune system’s ability to combat

tumors, thereby intensifying the anti-tumor immune response.

Despite these advancements, challenges persist in counteracting the

immune evasion mechanisms employed by breast cancer cells, such as

PD-L1 overexpression and the recruitment of immunosuppressive cells

into the TME. Current research is heavily focused on identifying

predictive biomarkers and refining combination approaches with

chemotherapy and other targeted treatments.

In conclusion, immunotherapy presents substantial promise,

particularly for treating advanced and metastatic breast cancer.

Ongoing research aimed at deepening our comprehension of the
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immune microenvironment is expected to facilitate the development

of more efficacious and individualized therapies, ultimately enhancing

patient outcomes in breast cancer treatment. Overall, especially in

advanced and metastatic breast cancer, immunotherapy holds great

promise. Continued research and advances in understanding the

immune microenvironment will contribute to the development of

more effective and personalized therapies, ultimately improving

outcomes for breast cancer patients.
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