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The global impact of the SARS-CoV-2 pandemic has been unprecedented, posing

a significant public health challenge. Chronological age has been identified as a key

determinant for severe outcomes associated with SARS-CoV-2 infection.

Epigenetic age acceleration has previously been observed in various diseases

including human immunodeficiency virus (HIV), Cytomegalovirus (CMV),

cardiovascular diseases, and cancer. However, a comprehensive review of this

topic is still missing in the field. In this review, we explore and summarize the

research work focusing on biological aging markers, i.e., epigenetic age and

telomere attrition in COVID-19 patients. From the reviewed articles, we

identified a consistent pattern of epigenetic age dysregulation and shortened

telomere length, revealing the impact of COVID-19 on epigenetic aging and

telomere attrition.
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Introduction

The end of 2019 marked the outbreak of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) in China. The illness caused by the virus was named

COVID-19 by the World Health Organization (WHO), which stands for “coronavirus

disease 2019” (1). As of January 2024, the World Health Organization (WHO) has

attributed over 774,075,242 confirmed cases and 7,012,986 deaths to COVID-19 (https://

covid19.who.int/). SARS-CoV-2 is an encapsulated single-stranded RNA virus belonging

to the genus Betacoronavirus (2). Individuals infected with SARS-CoV-2 may exhibit a

range of symptoms from mild to severe (including fever, cough, difficulty breathing, sore

throat, and loss of taste/smell) that manifest within two to 14 days of viral exposure (3).

Even though COVID-19 can affect people of all ages, middle-aged and older adults have a

higher hospitalization rate and risk of mortality when compared to children (2).

Aging is a time-dependent decline in physiological processes and integrity, manifested

in the gradual loss of function and increased vulnerability to death. Although chronological

age (cAge) is defined as the time elapsed from birth to a specific date, it does not fully reflect

an individual’s physiological, physical, and mental functions (4). Therefore “Biological age”
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(bAge), which takes into account several factors including lifestyle,

comorbidities, telomere attrition, and epigenetic alterations is a

better measure of physiological or functional age (5). Measuring

“bAge” is important for assessing the overall health of an individual

and guiding towards healthy lifestyle habits. One potential

biomarker for measuring bAge is DNA methylation (DNAm)

whereby a methyl group is added to the 5th position of the

cytosine ring to form 5-methylcytosine (6). Certain CpG sites in

the genome show age-related changes in DNAm, which makes

them particularly useful for developing age prediction

biomarkers (7).

Recently, several “epigenetic clocks” have been developed to

measure bAge utilizing regularized linear regression models trained

on cAge and other physiological parameters of aging (8). In this

regard, the first-generation clocks such as Horvath (comprised of

353 CpGs) and Hannum clocks (71 CpGs) were trained to predict

cAge, whereas the second-generation clocks, such as PhenoAge

(513 CpGs) and GrimAge (1113 CpGs) were trained to predict

bAge as well as health outcomes such as likelihood of developing

age-related conditions, including cardiovascular disease, diabetes,

cancer and neurodegenerative diseases (8–12). The outcome of the

epigenetic clocks further allowed measuring epigenetic age

acceleration (EAA), which is calculated as the difference between

cAge and the predicted age via epigenetic clocks. A positive

divergence of bAge from cAge indicates EAA, whereas a negative

deviation denotes epigenetic age deceleration (EAD) (13).

Studies have reported EAA in various diseases including cancer,

cardiovascular disease, and aging-related disease (7, 14). Analysis of

Berardinelli–Seip congenital lipodystrophy type 2 (CGL2), a

segmental progeroid syndrome, revealed significant age

acceleration in blood DNA of CGL2 patients using both first- and

second-generation epigenetic clocks (15). Another study on

individuals affected by Werner syndrome showed an increased

epigenetic age of blood cells which is independent of changes in

blood cell composition (16), this was not detected in Hutchinson-

Gilford Progeria Syndrome (HGPS); a rare genetic disorder

characterized by premature and accelerated aging beginning in

childhood (17, 18). Similarly, EAA has been observed in patients
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su ff e r ing f rom in f ec t ious d i s ea se s such as Human

Immunodeficiency Virus (HIV) (19) and Cytomegalovirus

(CMV) (20).

Another well-studied marker of bAge is telomere length, which

progressively decreases during biological aging resulting in

chromosomal instability and loss of cell viability (21).

Telomeres are nucleoprotein structures that cap and protect the

ends of chromosome arms (22). The cap-structure formed by

telomeres maintains chromosome integrity and prevents

chromosomal degradation. Telomere attrition during aging leads

to senescence, apoptosis, or oncogenic transformation of somatic

cells, hence affecting the health and lifespan of an individual.

Telomere length measurement is used as a molecular biomarker

for biological aging (23).

Several studies have investigated telomere biology in relation to

premature aging disorders and found that telomere shortening is

associated with diseases such as HGPS and Down’s Syndrome (24, 25).

Here, it is noteworthy to mention that both Epigenetic

Dysregulation and Telomere Attrition are considered Hallmarks

of Aging. As per our literature search, the extent of the association

between COVID-19 and EAA has not yet been thoroughly

investigated. While certain studies have reported an association

(26), others failed to observe a difference in EAA (27). Hence, this

review aims to explore the current landscape of research on

biological aging in COVID-19 (Figure 1). We examined the

evidence surrounding epigenetic age acceleration and telomere

attrition in COVID-19 patients, understanding the multifaceted

factors influencing susceptibility to severe outcomes and identifying

potential avenues for future research.
COVID-19 and chronological age

Several studies have investigated the association between age and

COVID-19, and evidently, there is a strong effect of age on increased

COVID-19 mortality (28). A single center retrospective cohort study

performed on COVID-19 patients over 65 years found that patients

older than 80 years exhibited higher mortality rates compared to the
FIGURE 1

Schematic summary of the review concept.
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65–80 year-old group (29). This can be explained by two main changes

that occur in the immune system as we age. One is a decline in function

known as immunosenescence which affects the ability to recognize and

respond to pathogens. The other change is an increase in systemic

inflammation called inflammaging. This happens because the alert

system becomes overly active but less effective, at fighting off threats

(30). cAge in humans is known to be associated with a deterioration of

the body’s ability to protect itself against infections, due to the

diminished effectiveness of the adaptive and innate immunity

however this differs between individuals (31, 32). Older age has been

associated with a weaker immune defense against pathogens and more

comorbidities (33, 34). In addition, elderly patients have age-dependent

defects in the function of B and T lymphocytes and a significant decline

in humoral and cell-mediated immune functions. Cytokine and

chemokine signaling is altered in elderly patients, with type 2

cytokine response preferred over type 1 response, which, in turn,

impairs the cell-mediated immune response to infectious challenges. In

addition, the increased production of type 2 cytokines may lead to poor

outcomes, as it may weaken the control of viral replication and cause a

prolonged proinflammatory response (35, 36).

Mortality is elevated among patients with pre-existing health

conditions. Elderly patients with multiple comorbidities such as

cardiovascular, neurological, respiratory, and metabolic diseases are

at an increased risk of death from COVID-19 (37). A study

investigating the population risk factors for COVID-19 mortality

with bivariate and multivariate analyses found that patients with

comorbid illnesses such as Chronic Obstructive Pulmonary Disease,

Alzheimer’s disease, Asthma, and Lung Cancer exhibit high

mortality rates suggesting that comorbid illnesses influence the

mortality rate more than aging alone, which may be the reason why

countries with a higher percentage of older people may witness

more deaths from COVID-19 (38). Therefore, research on aging

and COVID-19 indicates that for symptomatic cases, disease

severity varies with age and other underlying health conditions.

The association between cAge and the high mortality rate of

COVID-19 in elderly patients may be attributed to health

conditions, immunosenescence, or weak immune functions (39).

However, age may be an independent risk factor for COVID-19

severity or mortality, as shown in a population cohort study that

examined the association between age and COVID-19 mortality.

This study found that overall participants aged ≥75 years had a 13-

fold greater mortality risk than those aged <65 years. In addition,

this study revealed that participants older than 75 years had a 4-fold

mortality risk when compared to the group of participants <65

years old and with the same risk factors as the older group (40).

Hence, this study concluded that although comorbidities are a risk

factor; age is an independent risk factor for COVID-19 severity or

mortality. Several additional studies have also shown that the

proportion of infections that progress to severe disease or death

increases with age, especially in individuals above the age of 50 years

(41–44). Similarly, when comparing disease severity and

hospitalization among different age groups, it was observed that

hospitalization rates and disease severity significantly increased

with age. Pediatric patients with COVID-19 have a good

prognosis, whereas adults with underlying conditions and the
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elderly have a higher mortality rate (45). Therefore, age may be a

risk factor for the severity of COVID-19 (44).
COVID-19 and biological aging
(i.e. epigenetic age)

A study conducted by Mongelli et al. determined the bAge of

117 individuals who had recovered from COVID-19 (referred to as

post-COVID-19) and 144 heal thy part ic ipants using

pyrosequencing focusing on CpG islands that have previously

been identified as reliable indicators of bAge developed by

Beckaert et al. The results indicate an increase in bAge among the

post-COVID-19 group with an acceleration of DeltaAge by

approximately 5.25 years, beyond the normal range (26, 46).

These findings suggest that recovering from COVID-19 may lead

to an accelerated aging process at the biological level. In an

alternative study, on 407 COVID-19 samples, a higher Delta age

(or as referred to by the authors as the Youth capital (YC)), which is

the variance between an individual’s bAge and cAge, was

consistently linked to reduced odds of severe symptoms when

assessed using the Gonseth-Nusslé, Hannum, and PhenoAge

clocks (47).

One study used five epigenetic clocks (PhenoAge, GrimAge,

Horvath, Hannum, and Skin&Blood Clock) and a surrogate

telomere length estimator to measure epigenetic age and telomere

length attrition in three groups of patients: uninfected controls,

non-severe COVID-19 patients, and severe patients. The calculated

EAA showed a significant DNAm age acceleration across different

clocks including Horvath, Hannum, PhenoAge, and GrimAge

clocks in severe COVID-19 patients (48). Similarly, non-severe

COVID-19 cases exhibited significant DNAm age acceleration in

the Horvath, Hannum, skin&blood, and GrimAge clocks. Further

analysis of epigenetic age dynamic acceleration across each

COVID-19 disease phase revealed an acceleration from the initial

phase, which was partly reversed in later phase. A similar study by

our group, using the same epigenetic clocks and surrogate telomere

length estimator, observed a significant EAA measured via the

Hannum, PhenoAge, and GrimAge clocks in COVID-19 patients

with acute respiratory distress syndrome (ARDS). Our study also

observed EAA across several phases of the disease (49).

Additionally, comparing DNAmAge in COVID-19 patients who

died to those who recovered at both baseline and final follow-up

revealed EAA only in the GrimAge clock. Interestingly, the

Horvath, Hannum, and PhenoAge clocks showed a significant

decrease in EAA at the last recorded time point before recovery.

This suggests that EAD is associated with recovery from severe

COVID-19 (49), which is consistent with a recent study by Poganik

et al. reporting a significant reversal of biological age in COVID-19

affected females following discharge from the ICU using the

PhenoAge and GrimAge clocks (50).

Additionally, a genome-wide study using the Illumina Infinium

Methylation EPIC BeadChip850K (EPIC array) on 190 COVID-19

patients showed that epigenetic signatures at the time of hospital

admission can significantly predict the risk of severe outcomes from
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COVID-19. By considering a 21CpG site signature, a logistic

regression analysis was performed showing that the two groups,

mild and severe, were distinguishable by 21 CpG epi-signatures. In

addition, this study validated an association between epigenetic age

acceleration and severe prognosis using the GrimAge clock. The

results revealed a significant increase in EAA in severe COVID-19

cases compared to mild cases (51). In contrast to the

aforementioned investigation, this study showed no consistent

acceleration in epigenetic age compared to cAge in COVID-19

samples using Horvath, Skin&blood, Hannum Clock, and their

recently described age-predictor for blood (27). This could be

because epigenetic age changes occur as SARS-CoV-2 infection

persists over time (26). Also, additional factors, such as the small

sample size, the controls, and the patient samples not being

matched by age and gender, may have affected the results. Table 1

summarizes the studies focused on the assessment of bAge in

COVID-19 patients.

The lack of reproducibility in these studies can be attributed to

varying sample severity categorization and differences in

comorbidities in the affected cohorts and controls. As there is no

uniform standard to classify COVID-19, some studies define

severity based on patient hospitalization, oxygen therapy,

mechanical ventilation (26, 47, 48, 51, 52), or deceased status

while other studies rely on the WHO clinical progression or

Charlson severity index (47, 49). In addition, data stratification

between genders can affect the results obtained from the epigenetic

clocks, since it was shown that males are at high risk for severe

disease and mortality by COVID-19 (54). Ethnicity can also

influence the outcome and the severity of the disease and should

be taken into consideration when performing such studies (55, 56).

Furthermore, the majority of epigenetic clocks exhibited

variability and conflicting results across the different studies,

however a notable consistency of increased bAge measured via

the GrimAge clock was evident across numerous studies. This may
Frontiers in Immunology 04
be attributed to the fact that GrimAge was trained on factors closely

related to the risk of respiratory diseases such as mortality and

smoking, which may explain its effectiveness as an epigenetic

marker for aging, particularly in the context of respiratory

diseases (48, 49, 51, 52).
COVID-19 and telomere length

Multiple studies reported an association between severe

COVID-19 infection and shorter telomeres. Telomere shortening

results from the incomplete synthesis of the lagging strand during

DNA replication due to the inability of DNA polymerase to

completely replicate the ends of chromosomal DNA usually as a

consequence of either oxidative stress or inflammation (57, 58). In a

prospective study, telomere length in hospitalized COVID-19

patients revealed a significantly higher proportion of COVID-19

patients with shorter telomeres when compared to the control

cohort. Telomere attrition was associated with a higher risk of

critical disease, defined as admission to the intensive care unit

(ICU) or death without ICU (59). In another study on COVID-19

survivors, significant telomere shortening was observed following

absolute human telomere length measurement (26). A similar

finding was reported by Sanchez-Vazquez et al. where telomeres

in severe COVID-19 cases were observed to be shorter than those in

patients with mild COVID-19 symptoms (53, 60). Furthermore, a

decrease in age-adjusted leukocyte telomere length was associated

with 1.35 higher odds of fibrotic-like patterns four months after

hospitalization. Hence, longer telomere length may be protective

against post-COVID lung fibrosis, and shorter telomere length may

lead to more severe pathologies due to the impaired regenerative

abilities of cells post-SARS-CoV-2 infection (61). Telomerase

enzymes can elongate shortened telomeres; hence, telomerase

activation-based therapies can be used to improve the
TABLE 1 Comprehensive overview of studies assessing biological age in COVID-19 Patients.

Study aim Sample
size of

Covid-19

Method Study outcome Reference

Determine a DeltaAge acceleration in
COVID-19 survivors

117 Pyrosequencing of defined CpGs to
measure biological aging using
Bekaert’s algorithm (46)

bAge acceleration in COVID-19 survivors (26)

Evaluate epigenetic age acceleration in
severe COVID-19 infections that
require hospitalization

47 Targeted bisulfite amplicon
sequencing of 3 age-associated region
(FHL2,CCDC102B, PDE4C)

No evidence of accelerated bAge in severe COVID-
19 patients

(27)

Estimate the epigenetic age of
COVID-19 patients using
epigenetic clocks

407 EPIC array EEA in the COVID-19 patients using Horvath,
Hannum, skinHorvath and GrimAge clocks
compared to healthy controls.

(48)

Analyze the epigenetic landscape of
immune cells during severe SARS-
CoV-2 infection

9 EPIC array Severe COVID-19 is associated with increased
DNAm age and mortality risk according to
GrimAge clock.

(52)

Assess the causal relationship between
aging and COVID-19

34710 Mendelian Randomization No causal relationship between epigenetic age and
COVID-10 susceptibility

(53)

(Continued)
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complications of severe COVID-19 however, further investigation is

needed to confirm the safety of this therapy. (62). It was also shown

that leukocyte relative telomere length measured in patients at two

different time points (at admission and one year after discharge),

revealed significant telomere shortening associated with fibrotic

pulmonary sequelae (63).

DNAmTL measurements revealed telomere attrition

acceleration in deceased COVID-19 patients between inclusion

and end of follow-up and a significant change in dynamic

telomere attrition acceleration when comparing patients who

recovered versus those who died (49). It was in line with another

study where they showed that individuals with severe COVID-19

displayed significant DNAmTL attrition acceleration compared to

individuals with non-severe COVID-19 (48).

A recent study with 89 patients, including 61 females, and 28

males, observed that telomere length is consistently longer in
Frontiers in Immunology 05
females than in men across all age ranges (60). This is consistent

with other findings reporting female COVID-19 patients to have a

lower mortality rate than male patients (54, 64, 65). Hence, shorter

telomere length may be fatal following SARS-CoV-2 infection since

infections in individuals with shorter lymphocyte telomere length

are more severe and patients associated with lymphopenia (62, 66).

However, a few studies (49, 52) presented no evidence of significant

telomere shortening in severe COVID-19 cases. For example,

fluorescence in-situ hybridization (Flow-FISH) analysis performed

on COVID-19 lymphocytes did not reveal significantly accelerated

telomere attrition in the studied patients (27). In Table 2, we

provide a summary of the studies assessing telomere length in

COVID-19 Patients.

Although different methods and sample sizes were used to

measure telomere length, we can observe a consistency across

most studies indicating telomere length shortening. Therefore,
TABLE 2 Comprehensive overview of studies assessing telomere length in COVID-19 Patients.

Study aim Sample
size

Method Study outcome Reference

Determine changes in the epigenetic landscape of
immune cells during severe COVID-19

9 DNAm telomere length
estimator (140 CpG sites)

No significant telomere shortening in severe cases (52)

Identify independent risk factors for the
development of post-COVID fibrosis

76 Quantitative PCR
assay(qPCR)

Telomere length is an independent risk factor for
the development of fibrotic-like abnormalities

(61)

Investigate for telomere length alteration in
COVID-19 survivors

117 qPCR Assay Significant telomere shortening in post-
COVID cohort

(26)

Evaluate if accelerated epigenetic age increases
susceptibility to severe COVID-19

19 Flow-FISH No significantly accelerated telomere attrition in
severe cases

(27)

Assess if shorter telomere length is correlated with
more severe COVID-19 pathology

89 qPCR Shorter telomeres are associated with greater
severity of COVID-19

(60)

Determine if shorter TL is associated with poor
COVID-19 outcome

70 Flow-FISH Telomere shortening is associated with a higher risk
of ICU admission or death

(59)

Assess the causal relationship between aging and
COVID-19

34,710 Mendelian
Randomization

Severe COVID-19 causes telomere length attrition (53)

Examine the impact of COVID-19 on
Telomere length

87 DNAm telomere length
estimator (140 CpG sites)

Telomere attrition acceleration in deceased patients
but not in severe patients

(49)

Analyze the alteration in telomere length in
COVID-19 patients and association with
fibrotic sequelae

19 qPCR Identified peripheral blood leukocyte telomere
attrition in COVID-19 patients one year
after infection

(63)
TABLE 1 Continued

Study aim Sample
size of

Covid-19

Method Study outcome Reference

Assess the association between
different measures of epigenetic age
and COVID-19 severity

509 EPIC array Higher YC using the Gonseth-Nusslé, Hannum
and PhenoAge measures was associated with
reduced odds of severe symptoms

(47)

Examine epigenetic age acceleration in
COVID-19 patients with ARDS

87 EPIC array Severe COVID-19 is associated with a significant
increase in bAge using Hannum, PhenoAge
and GrimAge.

(49)

Identify epigenetic biomarkers that
could predict the clinical prognosis
of patients

190 EPIC array Significant EAA between the COVID-19 severe
and mild groups using the GrimAge clock

(51)
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despite the differences in methods and approaches used, a true

biological effect is captured, confirming that telomere length can be

used as a possible biomarker for COVID-19 outcome and severity.
Conclusion

In conclusion, this review highlighted the impact of COVID-19

on biological aging and telomere attrition. The review focuses on

how SARS-CoV-2 infection has been reported to perturb epigenetic

age and telomere length. Multiple studies utilizing different

epigenetic clocks unveiled epigenetic age acceleration and

telomere shortening in COVID-19 patients, particularly in severe

cases. However, there are limitations to the existing research, such

as the usage of methylation data from whole blood to estimate

epigenetic age. Most studies focused on mild and severe patient

cohorts, additionally, the lack of standardized severity

categorization and unspecified severity levels poses challenges for

comparison and analysis. To address these limitations, future

studies should explore epigenetic age analysis in alternate tissues

to validate the previous findings. Furthermore, standardizing the

severity classification according to the WHO clinical progress scale

could enhance comparability among studies. As research in this

field progresses, more studies are required to assess the value of

epigenetic clocks as biomarkers or predictors of COVID-19 disease

severity, ultimately advancing our ability in early disease

management. By addressing these challenges and expanding our

knowledge in this field, we can better prepare for future pandemics

and improve overall public health outcomes.
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