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Mast cell degranulation and
bradykinin-induced angioedema
- searching for the missing link
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Krakow, Poland, 2Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology,
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Initiation of the bradykinin generation cascade is responsible for the occurrence

of attacks in some types of angioedema without wheals. Hereditary angioedema

due to C1 inhibitor deficiency (HAE-C1-INH) is one such clinical entity. In this

paper, we explore the existing evidence that mast cells (MCs) degranulation may

contribute to the activation of the kallikrein-kinin system cascade, followed by

bradykinin formation and angioedema. We present the multidirectional effects of

MC-derived heparin and other polyanions on the major components of the

kinin-kallikrein system, particularly on the factor XII activation. Although,

bradykinin- and histamine-mediated symptoms are distinct clinical

phenomena, they share some common features, such as some similar triggers

and a predilection to occur at sites where mast cells reside, namely the skin and

mucous membranes. In addition, recent observations indicate a high incidence

of hypersensitivity reactions associated with MC degranulation in the HAE-C1-

INH patient population. However, not all of these can be explained by IgE-

dependent mechanisms. Mast cell-related G protein-coupled receptor-X2

(MRGPRX2), which has recently attracted scientific interest, may be involved in

the activation of MCs through a different pathway. Therefore, we reviewed

MRGPRX2 ligands that HAE-C1-INH patients may be exposed to in their daily

lives and that may affect MCs degranulation. We also discussed the known inter-

and intra-individual variability in the course of HAE-C1-INH in relation to factors

responsible for possible variability in the strength of the response to MRGPRX2

receptor stimulation. The above issues raise several questions for future research.

It is not known towhat extent a prophylactic or therapeutic intervention targeting

the pathways of one mechanism (mast cell degranulation) may affect the other

(bradykinin production), or whether the number of mast cells at a specific body

site and their reactivity to triggers such as pressure, allergens or MRGPRX2

agonists may influence the occurrence of HAE-C1-INH attacks at that site.
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1 Introduction

Despite years of research into angioedema, particularly

hereditary angioedema due to C1-inhibitor deficiency, some

clinical aspects of the disease remain unclear, such as the wide

clinical variation in disease severity between members of the same

family carrying the same causative mutation, or the precise

mechanism that triggers the angioedema at a given site (1, 2).

These issues are still under investigation. In the past, authors

studying the pathomechanisms of HAE-C1-INH have repeatedly

pointed to possible links between the bradykinin-generating

cascade observed in HAE-C1-INH and mast cell degranulation.

Kaplan recently suggested that in cases of anaphylaxis

accompanied by hypotension and laryngeal edema, the activation

of the bradykinin-forming cascade, which is also responsible for the

development of angioedema in HAE-C1-INH, may be the

important contributing factor (3, 4). The same author also

emphasizes the potential significance of mast cell (MC)-derived

heparin in the activation of the factor XII (FXII), which is also

present during HAE-C1-INH attacks (5). Other authors have noted

the connection between bradykinin production and mast cell

activation during allergic reactions. They cite data from animal

models and clinical observations of patients with allergic reactions

induced by food and insect venom (6). However, they emphasize

that the evidence of such a relationship is sparse and that further

research is necessary. The authors of another review paper on the

links between mast cells and the contact system are of a similar

opinion (7). They describe the potential involvement of mast cell

heparin, proteoglycans, polyphosphates, and other active

substances produced in MCs in initiating the activation of the

kallikrein-kinin system cascade, starting with factor XII (Figure 1).

The authors emphasise that under in vivo conditions, mast cells are

the exclusive site of heparin synthesis. Above findings correspond

with recently published observations of Farkas et al. (8), who

showed that hypersensitivity reactions induced primarily by

common allergens occur approximately three times more

frequently in the HAE-C1-INH patient population than in the

general population.

Recent years have brought new insights into the structure and

function of mast cell. The work by McNeil et al. has generated great

interest in the Mas-related G protein-coupled receptor-X2

(MRGPRX2) (9). Using a knockout mouse model and cell lines,

they demonstrated that MRGPRX2 represents an alternative

pathway to the classical IgE-dependent MC activation pathway

and can be stimulated not only by its natural endogenous ligands,

but also by a large group of exogenous compounds. This has drawn

attention to IgE-independent mechanisms of mast cell activation,

particularly in drug hypersensitivity reactions (10) and chronic

spontaneous urticaria, where MRGPRX2 was found to be

upregulated in skin mast cells of patients with severe course of

disease (11). This in turn led to clinical trials of an oral synthetic

MRGPRX2 antagonist (12). Although data on the clinical

significance of MRGPRX2 are still relatively sparse, it has already

been mentioned in a new classification of hypersensitivity reaction

types (13). Depending on the activation pathway, mast cells respond

by secreting different sets of mediators (14), which may result in a
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distinct effector response to their stimulation. In the case of

MRGPRX2-dependent activation, degranulation is rapid and

occurs through small single granules as demonstrated by

Gaudenzio et al. (15).

In this article, we explore the potential links between mast cell

degranulation and bradykinin-induced angioedema, both as

observed in the clinic and in laboratory and molecular studies.
2 Interactions between MC
degranulation and
bradykinin formation

Research on in vitro contact system activation processes dates

back many years. Such studies have shown that heparin

glycosaminoglycans and proteoglycans from some natural

sources, such as rat mast cells and porcine mucosa, activate the

conversion of prekallikrein to plasma kallikrein, and that the

reaction is determined by the negative charge of these

macromolecules (16). Subsequent studies using mast cell heparin

proteoglycan (MC-HepPG) and other glycosaminoglycans have

shown that, like dextran sulphate, they cause activation of the

FXII ultimately leading to the cleavage of high molecular weight

kininogen (HMWK) (17). Moreover, the addition of heparinase I

and II to the experimental system inhibited such a MC-HepPG-

dependent reaction. However, some other substances tested (from

the group of sulfated polysaccharides) did not exhibit similar
FIGURE 1

Bradykinin-forming cascade. Created with Motifolio (Motifolio Inc.,
Elliocott City, MD, USA) BDKRB2, Bradykinin receptor B2; BK,
bradykinin; cHMWK, cleaved HMWK; FXII, factor XII; FXIIa, activated
FXII; HMWK, high molecular weight kininogen; MC, mast cells; pKal,
plasma kallikrein; preKal, prekallikrein.
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activity. The authors suggest that their results may explain the

occurrence of activation of the contact system after exposure to an

allergen. This phenomenon has been observed in a subsequent

study of patients allergic to insect venom, who underwent

anaphylaxis after stinging (18). In most of these patients, the

increases in plasma levels of C1-inhibitor with the factor XIIa

(FXIIa) and with kallikrein complexes, and levels of cleaved

HMWK were observed after in-hospital venom challenge. The

increases were particularly pronounced in patients with

angioedema, whereas they did not occur in healthy controls and

in patients who did not develop symptoms after venom challenge.

The findings from the above reports were later supported by an

analysis of adverse reactions that occurred in patients treated with

heparin in hemodialysis facilities. It should be noted that heparin

used as an anticoagulant differs from heparin derived directly from

mast cells. The former has little or no effect on FXII-dependent

bradykinin formation, whereas mast cell heparin, due to a relative

excess of sulphation, has properties that can activate the

bradykinin-forming cascade. It turned out that patients who

received heparin contaminated with oversulfated chondroitin

sulfate (OSCS) developed typical symptoms consistent with

hypersensitivity, including a drop in blood pressure, nausea,

shortness of breath, but also swellings, most often of the lips,

eyelids, and throat (19). An explanation for this phenomenon has

been provided by a study which demonstrated that OSCS found in

contaminated heparin, as well as OSCS obtained synthetically,

showed the ability to activate the kinin-kallikrein system in vitro,

leading to bradykinin production (20). Moreover, this effect was

also confirmed by in vivo experiments in pigs, which responded

with kallikrein activation and hypotension after intravenous

administration of OSCS. Shortly after, another group showed that

reduced levels of C1-inhibitor are associated with an increased risk

of the above-mentioned reactions after OSCS (21). On the other

hand, some authors have reported that negatively charged heparin

can modify the interaction of serine proteases with their inhibitors,

such as kallikrein and C1-inhibitor (22). They suggest that heparin

may enhance kallikrein inhibition by potentiating C1-inhibitor

activity, which could be used for therapeutic purposes in HAE-

C1-INH. However, attempts to use this as a therapeutic

intervention have yielded inconclusive results (23, 24).

A further important contribution to this topic was provided by

the study by Oschatz et al. (25). The authors provided extensive

evidence in a number of experimental settings that mast cell-

derived heparin increases vascular permeability by generating

bradykinin secondary to activation of factor XII. They used both

in vitro experiments with human plasma and animal models, and

finally clinical observations in HAE-C1-INH patients. Another

study in a mouse model found that deficiency or inhibition of the

kinin-kallikrein system (at different levels from factor XII to the

bradykinin B2 receptor) attenuated the mast cell response to

allergen exposure, suggesting that bradykinin is also involved in

the effector response initiated by the IgE-dependent pathway (26).

Subsequently, activation of the contact system was also observed in

the plasma of patients during acute anaphylaxis symptoms,

confirming the findings from the animal model in this study.

Similar observations were made in another study in patients with
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chronic spontaneous urticaria (CSU) (27), in which mast cell

degranulation also occurs, as it happens in anaphylaxis. Cleaved

HMWK levels were significantly elevated in symptomatic patients

with CSU compared to healthy controls, and were similar to levels

observed in patients with HAE-C1-INH. These results indicate that

bradykinin production is increased in urticaria, however the

magnitude is much less then with anaphylaxis and of

questionable clinical relevance.
3 Clinical links between mast cells-
dependent angioedema and
hereditary angioedema

In principle, bradykinin-mediated angioedema (hereditary

angioedema due to C1 inhibitor deficiency) and angioedema

induced by histamine from degranulated mast cells are distinct

clinical phenomena. However, they share some common features,

such as occurring in the skin and mucous membranes (28), so in

areas where mast cells are localized (14, 29). They may also be

triggered by similar factors (Table 1). Many factors that are

considered clinically relevant mast cell activators, such as bacterial

components, physical stimuli, cold, pressure (38) are also known

triggers of HAE-C1-INH attacks. However, it should be noted that

these factors may not be equally important in both situations.

Additionally, when comparing these triggers, it is important to

consider the subjective nature of the information provided by

patients. They may tend to focus on factors they believe are

associated with inducing symptoms, which may result in

overestimation of the importance of certain factors and the

overlooking of others (28). Common features of different types of

angioedema were sought by Schulkes et al. (39). They studied a

group of patients with angioedema, including those with wheals,

idiopathic angioedema, and ACE-I-induced angioedema, focusing
TABLE 1 Common triggers of HAE attacks and corresponding triggers of
different types of urticarial.

Hereditary angioedema Urticaria

physical exertion, prolonged sitting
or standing (30, 31)

physical exercise (cholinergic
urticaria) (32)

psychological stress (30, 33–36) stress (32)

mechanical trauma, nontraumatic
tissue compression, exposure to cold
(30, 31, 33–37)

physical factors (delayed pressure
urticarial, cold urticarial, vibratory
angioedema, others) (32)

infections (30, 31) infections (32, 35)

foodstuffs, food (30, 33, 36, 37) food allergy in sensitized patients,
nonallergen food components (32, 35)

insect bites, Hymenoptera stings
(30, 36)

insect stings, Hymenoptera stings (38)

drugs: ACE-I (30, 33), others* (36) drugs: NSAIDs (32), others (NMBAs,
FQ, opioids)* (35)
*rare or poorly documented; ACE-I, angiotensin-converting enzyme inhibitors; NSAIDs,
non-steroidal anti-inflammatory drugs; NMBA, neuromuscular-blocking agents;
FQ, fluoroquinolones.
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on clinical characteristics, location, and potential triggers of

symptoms. The authors summarized their findings by stating that

the similarities in the clinical picture observed between the analyzed

groups of angioedema suggest the presence of common

pathomechanisms. However, it should be noted that angioedema

in patients with CSU never includes laryngeal edema, which can be

present when bradykinin is involved, for example in HAE-C1-

INH (40).

It is estimated that HAE-C1-INH attack triggers are reported by

about 1/3 to 90% of patients (35). Therefore, direct triggers for

the remaining HAE-C1-INH attacks are unknown. Reported

triggers for HAE-C1-INH attacks include such factors as foods,

foodstuff and insect venoms (Table 1). Typically, effects of these

triggers are associated with IgE-mediated mechanisms inducing

hypersensitivity reactions. In the case of HAE-C1-INH, IgE

dependence often cannot be confirmed, as described by Steiner

et al. in their cohort of patients (36). Grumach et al. note that the

mechanism underlying activation of the kinin-kallikrein system is

not clear in cases of such triggers, and the absence of an IgE-specific

response in HAE-C1-INH patients reporting these triggers

suggests that another, non-IgE-dependent mechanism induces

symptoms (35). One possible explanation for these observations is

the presence of substances in food or insect venoms that induce

mast cells degranulation via an IgE-independent pathway, such as

MRGPRX2. Activated mast cells would then be expected to release

heparin and other mediators, thereby contributing to the activation

of the kinin-kallikrein system and, consequently, to the induction of

angioedema. However, not all patients exposed to potential triggers

develop symptoms. In the following section, we address the

question of whether HAE-C1-INH patients are exposed to

MRGPRX2 ligands, if they are related to triggers of HAE-C1-INH

attacks, and what may account for the variability in response to

potential stimulation with them.
4 MRGPRX2 triggering and its
individual variability as an example of
a factor influencing mast
cells degranulation

MRGPRX2 has been shown to be activated by a wide range of

exogenous ligands including insect venoms and host defence

peptides, molecules and toxins released by bacteria, a wide range

of plant-derived organic compounds and commonly used

substances (41). Currently, the ever-increasing number of plant

constituents (comprising mostly ingredients of herbal medicines

and dietary substances) have been widely identified as MRGPRX2

agonists or antagonists (Table 2). However, evidence for

interactions between MRGPRX2 and these ligands is mostly

based on in vitro studies in cell lines, in vivo mouse models of

anaphylaxis, and in silico molecular docking (41, 77).

There are many reasons for the individual variability in the

expression or structure of MRGPRX2. Genetic factors have been

widely discussed, primarily focusing on single nucleotide

polymorphisms (SNPs) located within the protein coding region
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of the MRGPRX2 gene (41, 78). Dozens of SNPs located within the

coding region of the human MRGPRX2 locus are known (79).

Notably, both loss-of-function (75, 80, 81) and gain-of-function

SNPs have been identified in the MRGPRX2 gene, with the latter

resulting in enhanced degranulation upon stimulation with the

receptor ligand (82). Importantly, small insertion/deletion

polymorphisms and SNPs located outside of the protein coding

region have not yet been investigated. SNPs located within the

promoter region of a gene may influence the binding of

transcription factors and affect promoter activity, DNA

methylation, and histone modifications (83–90). SNPs in the

introns can affect RNA splicing and can promote or disrupt the

binding and function of long non-coding RNAs (lncRNAs) (91–93).

SNPs located in the 5’- and 3’- untranslated regions (UTRs) may

affect protein translation and miRNA-dependent gene silencing (94,

95). These aforementioned mechanisms may potentially impact the

expression level of MRGPRX2 and lead to the production of

variants with different properties. However, to date, only two

transcript variants of MRGPRX2 have been described (96), both

of which encode the same protein. Epigenetic processes, including

DNA methylation, histone modification, and various RNA-

mediated processes, represent another potential source of

variability in MRGPRX2 expression (97). Methylation status, even

at a single CpG locus, can modulate protein expression (98).

However, this area remains largely unexplored in terms of its

influence on MRGPRX2.

Alternatively, MRGPRX2 expression may vary between

individuals or within a single individual due to changes in the

local tissue microenvironment. Mast cells, the primary cells

expressing MRGPRX2, located in different layers or zones within

a tissue, may encounter unique microenvironmental cues, such as

variations in oxygen tension, nutrient availability, or interactions

with neighbouring cells, which may impact their phenotype. The

variability of MRGPRX2 mRNA expression in the skin samples

from healthy individuals is pronounced, with a high coefficient of

variation (102.9%) (99). Our preliminary studies have shown that

MRGPRX2 expression in mast cells is dynamically regulated by

factors released from both healthy and psoriatic skin tissues (100). It

has also been demonstrated that patients with chronic urticaria

have a significantly higher number of MRGPRX2 positive skin mast

cells and a higher percentage of MRGPRX2 positive mast cells

compared to control subjects (101). In addition, codeine acts

through MRGPRX2 (102) and response to codeine is accentuated

in patients with CSU (103).

Interestingly, icatibant, which is used in the on-demand

treatment of acute HAE-C1-INH attacks due to its blockade of

the bradykinin B2 (BDKRB2) receptor, has been also demonstrated

to trigger MRGPRX2 (9, 104). Both receptors belong to the family of

G protein-coupled receptors (GPCRs) and share common

structural features with other class A GPCRs, such as canonical

seven-transmembrane (TM) helices, a conserved disulfide bond

between TM3, and extracellular loop 2 (ECL2) and helix 8 lying

parallel to the plasma membrane (105–109). The extracellular

regions and their closest transmembrane regions are responsible

for ligand binding, while the intracellular regions and their closest

TM regions are involved in G protein coupling and downstream
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1399459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Porebski et al. 10.3389/fimmu.2024.1399459
TABLE 2 Examples of exogenous MRGPRX2 ligands.

Ligand Chemical structure Source Activity towards MRGPRX2 References

INSECT-DERIVED COMPOUNDS

Mastoparan peptide wasp venom agonist (42, 43)

P17 peptide ant venom agonist (44)

Mast cell degranulating peptide peptide bee venom agonist (45)

Automeris zaruma venom not identified caterpillar venom agonist (46)

IP defensin 1 peptide tick salivary agonist (47)

BACTERIA-DERIVED COMPOUNDS

Staphylococcus d-toxin peptide Staphylococcus aureus agonist (48)

Competence stimulating
peptide-1

peptide Streptococcus pneumoniae agonist (49)

FOODSTUFFS and DIETARY SUPPLEMENTS

Quercetin flavonoid fruits and vegetables antagonist (50)

Genistein flavonoid legumes antagonist (51)

Liquiritin flavonoid licorice (sweets) antagonist (52)

Licorice chalcone A chalconoid licorice (sweets) antagonist (53)

Isoliquiritigenin chalconoid licorice (sweets) antagonist (54)

Fisetin flavonoid fruits and vegetables antagonist (55)

Kaempferol flavonoid fruits and vegetables antagonist (56)

Caffeic acid phenethyl ester polyphenol coffee, wine antagonist (57)

Curcumin polyphenol Curcuma longa antagonist (58)

Rosmarinic acid polyphenol
Perilla frutescens,

Rosmarinus officinalis
antagonist (57, 59, 60)

Piperine alkaloid
Piper longum,
Piper nigrum

antagonist (61)

HERBAL MEDICINES

Baicain flavonoid Scutellaria baicalensis agonist (62)

Apigenin flavonoid Perilla frutescens antagonist (59)

Imperatorin coumarin Angelicae Dahuricae antagonist (63)

Osthole coumarin Cnidium monnieri antagonist (64)

Hydroxysafflor yellow A alkaloid Carthamus tinctorius antagonist (65)

Isosalvianolic acid C polyphenol Salvia miltiorrhi agonist (66, 67)

Peoniflorin glycoside Paeoniae alba antagonist (68)

Saikosaponin A glycoside (saponin) Perilla frutescens antagonist (59, 69)

Ginsenosides glycoside (saponin) Schisandra chinensis agonist (70)

Celastrol quercetin galactoside Tripterygium wilfordii antagonist (71)

Mucunain cysteine protease Mucuna pruriens agonist (72)

OTHER

Sinomenine alkaloid Caulis sinomenii agonist (73–75)

Thebaine alkaloid
Pupuver

somniferurn
agonist (73)

Thiomersal preservative e.g. vaccines, cosmetics, tattoo inks agonist (76)
F
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signalling (106, 109). Ligands for BDKRB2 include bradykinin and

Lys-bradykinin (110), as MRGPRX2 can be activated by numerous

ligands with cationic properties, which are endogenous and

exogenous compounds with diverse chemical features (77).

However, it remains unclear to what extent the other MRGPRX2

ligands, in addition to icatibant, can trigger or inhibit BDKRB2.
5 Mast cell heparin and other
polyanions as a modulators of the
major components of the kinin-
kallikrein system

Mast cell heparin and other polyanions act as a modulators of

the major components of the contact system. The modification of

the activity of the components of the contact system occurs through

a charge neutralisation mechanism (111). Mast cell heparin is able

to bind a wide variety of proteins (112). However, the effects of mast

cell heparin binding vary significantly between proteins that form

contact system. In this way, mast cell heparin and other polyanions

can provide a balance between activation and inhibition of certain

pathways within the contact system (111, 113). For instance, when

mast cell heparin potentiates the activity of C1-inhibitor, which acts

as a major negative regulator of FXIIa and plasma kallikrein, it leads

to the inhibition of the kallikrein-kinin system and reduction of

bradykinin release (111). Conversely, activation of factor XII by

mast cell heparin and other polyanions (113) initiates a cascade of

bradykinin release, as discussed below.

FXII is secreted into the bloodstream in its inactive (zymogen)

form and constitutes a single-chain glycoprotein of 596 amino acid

residues (∼80 kDa). The zymogen is converted to its active form,

termed a-FXIIa, by proteolytic cleavage of the R353-V354 peptide

bond, resulting in the formation of two separate protein chains that

remain connected by a disulfide bond. The cleavage occurs either in

a process of autoactivation or, more efficiently, upon interaction

with plasma kallikrein (114). However, it is known, that in order for

this conversion to occur, FXII must first be bound to a negatively

charged surface or molecule. A variety of agents have been

identified that allow FXII activation, ranging from exogenous

substances such as glass and kaolin clay to organic molecules

such as dextran sulphate (115), oversulfated chondroitin sulfate

(OSCS) (20), extracellular RNA (116), or endogenous
Frontiers in Immunology 06
polyphosphate ions released by activated platelets (117). Although

the critical role of these negatively-charged polyanionic molecules

or surfaces is clear, the exact mechanism by which FXII activation

occurs is still under debate.

FXII is a multi-domain protein and does not appear to have an

exclusive site for polyanion binding. Apart from its catalytic domain

(called the light chain upon conversion to FXIIa), which is formed

by the C-terminal sequence, six major domains can be identified

towards the N-terminus; a proline-rich region, a kringle domain,

two fibronectin and two EGF-like domains (118). Upon activation

of FXII, these domains form what is known as the heavy chain. A

strong argument for the crucial role of the N-terminal domains in

polyanion binding was provided by Citarella and colleagues (119),

who determined that recombinant FXII lacking either three or five

of the heavy chain domains had a significantly lower affinity

towards glass and dextran sulphate.

A unique insight into the possible mechanism of FXII activation

was offered by de Maat (120), who hypothesised that several distinct

binding sites for different subtypes of anionic surfaces exist among

the above-mentioned domains. This claim was supported by the

observation that the binding of polyanions does not always result in

FXII activation, and a specific binding mode, and thus, a specific

protein conformation is needed for FXII to perform its biological

function. In particular, binding to EGF-like and kringle domains

has been described as a strong requirement for the activation of

FXII, which is a binding mode exhibited by dextran sulphate

according to Citarella (119). This led de Maat to formulate a

conformation-dependent FXII activity model, according to which

the conversion to the active a-FXIIa form is only attainable upon

binding of some N-terminal domains to a polyanionic surface or

polymer, forcing a conformational change that exposes the crucial

R353-V354 cleavage site (see Figure 2). It is important to note,

however, that while the binding of most sulfate-rich polysaccharides

seems to make FXII susceptible to cleavage by plasma kallikrein, the

long-chain saccharides are capable of inducing autoactivation upon

binding. This claim is based on a study by Silverberg et al. (121) who

showed that FXII undergo autoactivation in the presence of dextran

sulphate of molar ratio 500,000, whereas fractions with lower molar

ratio values give very low rates of autoactivation. Heparin, having

typically between 3,000 and 30,000 Da (122), can promote cleavage

by plasma kallikrein, which falls in line with the experimental data

(123). As suggested by the conformation-dependent activity model,

full extension of the FXII heavy chain, facilitated by long anionic
FIGURE 2

The hypothesized mechanism of heparin/OSCS-mediated FXII activation. The negatively charged polysaccharide binds to kringle and EGF-like
domains, inducing a conformational charge that exposes the R353-V354 cleavage site (116). Created with BioRender.com. OSCS, oversulphated
chondroitin sulphate.
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polysaccharides or solid surfaces, may be crucial for the

autoactivation to occur.

The interactions between FXII and sulfate-rich polysaccharides

appear to be primarily electrostatic in nature. The heavy, polyanion-

binding chain (residues 1-353) contains an unbalanced excess of

lysine and arginine residues, and is therefore positively charged,

with a theoretical isoelectric point of 8.82 as determined by the

Expasy ProtParam tool (124). It is tempting to hypothesize that

polysaccharides with greater negative charge density will form

tighter bonds with the heavy chain, and that oversulfated

chondroitin sulfate will therefore activate factor XII more

efficiently than heparin. There is also evidence that OSCS have an

affinity for FXIIa (125). Activated FXII can then cleave its substrates

and initiate a cascade of bradykinin release. As OSCS also bind to

HMWK (125), it is conceivable that the affinity of OSCS for both a-
FXIIa and HMWK may increase the rate of this reaction by

directing the two proteins together.
6 Summary

Above, we discussed the abundant evidence demonstrating a link

between mast cell degranulation and activation of the bradykinin

generation cascade. We presented the multidirectional effects of mast

cell heparin and other polyanions on the major components of the

kinin-kallikrein system and pointed out some clinical similarities

between HAE-C1-INH and mast cell degranulation in urticaria, with

regard to the triggers of symptoms. We also recalled a publication

that found that patients with HAE-C1-INH are more likely to report

hypersensitivity reactions and have more swelling attacks during the

pollen season (8). These are not the only such observations, as similar

ones were made by Swedish authors studying the prevalence of

allergy, asthma and atopic dermatitis in the HAE-C1-INH patient

population (126). However, further in-depth studies are needed to

verify these observations, as planned by Horváth et al. in a

continuation of their work (8). Assuming the existence of a link

between mast cell degranulation and HAE-C1-INH symptoms, one

might expect that manifestations of hypersensitivity reactions favor

angioedema attacks, and therefore HAE-C1-INH is more easily

diagnosed in these patients than in C1-inhibitor deficient patients

without hypersensitivity reactions. In this context, we addressed the

issue of inter- and intra-individual causes of variability in the course

of HAE-C1-INH.

Further, we used MRGPRX2 as an example of a factor that has a

modulating effect on mast cell activation. It has recently attracted

considerable interest in the scientific community (9, 41, 77, 78, 99,

105), as it has been recognized as a underlying mechanism for many

mast cell degranulation-related reactions, the mechanism of which

was unclear. Although, as we mentioned above, most of the data on

MRGPRX2 comes from in vitro studies, there are also ongoing

clinical trials using agonist of this receptor in chronic spontaneous

urticaria and atopic dermatitis (12). There are many ligands in the

everyday environment to which HAE-C1-INH patients may be

exposed that can both activate and inhibit MRGPRX2 (Table 2),

which in turn may lower or raise the threshold for triggering mast

cell degranulation, respectively. In addition, there are many
Frontiers in Immunology 07
potential factors responsible for possible variability in the strength

of the response to MRGPRX2 receptor stimulation, ranging from

microenvironmental conditions to SNPs, as discussed above. Mast

cells themselves also exhibit a high degree of heterogeneity in terms

of the distribution and sets of mediators secreted under given

conditions (14, 29), adding to the variability in potential

clinical responses.

This raises several questions for future research. We do not

know the extent to which prophylactic or therapeutic intervention

targeting the pathways of one mechanism (mast cell degranulation)

may affect the other (bradykinin production) (3). Will drugs that

block the action of bradykinin help control anaphylactic reactions

(3), or will drugs that block mast cell degranulation, such as

omalizumab (11) or MRGPRX2 antagonists (12), reduce HAE-

C1-INH attacks? Is the localization of mast cells in subcutaneous

tissue and mucous membranes related to the localization of HAE-

C1-INH attacks? To what extent does the number of mast cells at a

particular site and their responsiveness to triggers such as pressure,

allergens or MRGPRX2 agonists affect the occurrence of HAE-C1-

INH attacks at that site? Although a seminal report by Nusseberg

et al. showed that plasma bradykinin levels were elevated in HAE-

C1-INH and angiotensin-converting enzyme inhibitor-induced

edema, bradykinin was also detected at lower levels in the plasma

of patients with histaminergic angioedema (127). It cannot be

excluded that clinically relevant activation of the contact system

only occurs in very severe reactions associated with mast cell

degranulation, such as anaphylaxis (4, 18), but bradykinin is

already generated with less massive MC degranulation. Such

degranulation may contribute to the induction of angioedema

attacks in individuals with reduced C1-inhibitor activity (21). The

relationship between the clinical course and the pathomechanisms

of HAE-C1-INH requires further research. The hypotheses

discussed in this article suggest some areas for further research,

which are listed in Table 3.
TABLE 3 Implications of the potential link between mast cell
degranulation and activation of the bradykinin generation cascade for
future research questions.

• Clinical picture

✔ Can mast cell degranulation triggers influence the initiation of bradykinin-
dependent angioedema, in particular HAE-C1-INH?
✔ Does bradykinin play a role in anaphylaxis with associated upper airway

angioedema?
✔ Does individual mast cells localisation in the patient’s body correlate with

the localisation of HAE-C1-INH attacks?
✔ Are mast cell-dependent diseases relevant to the course of HAE-C1-INH?

• MRGPRX2 as an example of a potential cause of variability in
the course of HAE-C1-INH outside the kinin-kallikrein system

✔ To what extent does the genetic background of a given factor matter (e.g.
SNPs, epigenetic processes)?
✔ To what extent does the expression of a given factor matter (e.g. individual

variability, changes in the local tissue microenvironment)?

• Therapeutic interventions

✔ Can inhibition of mast cell degranulation affect HAE-C1-INH?
✔ Can bradykinin inhibition improve the outcome of anaphylaxis with

laryngeal oedema?
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