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Prospects for the computational
humanization of antibodies
and nanobodies
Gemma L. Gordon, Matthew I. J. Raybould, Ashley Wong
and Charlotte M. Deane*

Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
To be viable therapeutics, antibodies must be tolerated by the human immune

system. Rational approaches to reduce the risk of unwanted immunogenicity

involve maximizing the ‘humanness’ of the candidate drug. However, despite the

emergence of new discovery technologies, many of which start from entirely

human gene fragments, most antibody therapeutics continue to be derived from

non-human sources with concomitant humanization to increase their human

compatibility. Early experimental humanization strategies that focus on CDR loop

grafting onto human frameworks have been critical to the dominance of this

discovery route but do not consider the context of each antibody sequence,

impacting their success rate. Other challenges include the simultaneous

optimization of other drug-like properties alongside humanness and the

humanization of fundamentally non-human modalities such as nanobodies.

Significant efforts have been made to develop in silico methodologies able to

address these issues, most recently incorporating machine learning techniques.

Here, we outline these recent advancements in antibody and nanobody

humanization, focusing on computational strategies that make use of the

increasing volume of sequence and structural data available and the validation

of these tools. We highlight that structural distinctions between antibodies and

nanobodies make the application of antibody-focused in silico tools to

nanobody humanization non-trivial. Furthermore, we discuss the effects of

humanizing mutations on other essential drug-like properties such as binding

affinity and developability, and methods that aim to tackle this multi-parameter

optimization problem.
KEYWORDS
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Introduction

An immunogenic response against a therapeutic antibody, including the production of

anti-drug antibodies (ADAs), can reduce drug efficacy and negatively impact the patient

(1). It is critical that this risk is minimized ahead of a drug entering human trials.

The earliest experimental approaches to discover target-specific therapeutic antibodies

involved inoculating a non-human organism with the antigen of interest to raise
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complementary antibodies. If these antibody clones were to be

injected directly into a human patient, an anti-drug immune

response would be a very likely outcome, as was found to be the

case for the first monoclonal antibody therapy, Muromonab (2).

Logic would suggest that the immunogenicity of a non-human

biologic might be mitigated by somehow increasing its ‘humanness’,

loosely defined as similarity to antibodies raised naturally and

tolerated by healthy human immune systems. This theory has

sparked the development of an array of technologies to ‘humanize’

non-human antibodies. Though numerous techniques to discover

genetically human antibodies have also been developed, such as

constructing phage/yeast display libraries, using transgenic mice, or

isolating antibodies directly from convalescent humans (3), it is

striking that most recent therapeutics still derive from non-human

organism inoculation followed by humanization (Figure 1; 4).

Therefore, resolving outstanding challenges within this long-

established field remains highly relevant. For example, grafting

strategies that load non-human complementary-determining

regions (CDRs) onto human framework scaffolds are unsuccessful

when the variable loops play a role in immunogenicity and can

compromise other key developability properties. Increasingly,

computational approaches are offering a route toward identifying

and mitigating factors contributing to immunogenicity, as well as

enabling the simultaneous optimization of other drug-like

properties alongside humanness (5).

Additional challenges are posed by nanobodies, a

fundamentally non-human modality deriving from camelids

(VHHs) or cartilaginous fish (VNARs) (6, 7), which are emerging

as a promising therapeutic format. Their smaller size facilitates

expression, improves tumor penetration, and increases solubility,

while maintaining comparable binding affinity to conventional

antibodies (8–13). However, structural differences between

antibodies and nanobodies affect how they interact with their

antigens (14). Therefore, it is likely that many humanization

protocols designed for conventional antibodies, particularly

computational tools, are not immediately applicable to nanobodies.

Previous reviews cover experimental humanization

approaches for conventional antibodies, such as CDR grafting or

resurfacing (15, 16). More recent publications address the use of

machine learning in the antibody discovery field, including in

silico methods for humanization, humanness scoring and

immunogenicity prediction within the broader scope of

antibody design (5, 17–22), and draw attention to the need for

multi-parameter optimization (23, 24). Focus is largely placed on

the development of conventional antibodies as opposed to

alternative formats, though the need for work on nanobodies is

highlighted in Norman et al. (17). Rossotti et al. (7) consider

nanobody humanization but focus on experimental rather than

computational methods.

In this review, we start by introducing early approaches to

humanization and, more broadly, how the immunogenicity of an

antibody can be quantified. We cover computational methodologies

designed to measure humanness and direct humanization (Table 1),

including the degree of evidence to support the efficacy of each

protocol and their potential applicability to nanobodies. Finally, we
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place humanization in the wider context of antibody design and

multi-parameter optimization, highlighting the need for high-

quality, unbiased data to overcome the challenges that persist in

this field.
Experimental approaches
to humanization

Experimental methods seek to reduce the immunogenicity of an

antibody by increasing the human portion of its variable domains

(Figure 2). The first broadly applicable strategy to achieve this was

chimerization, the grafting of a non-human variable region onto

human constant domains (44).

Further increases in the humanness of the antibody sequence

were made possible by humanization techniques such as only

grafting the CDRs (complementarity-determining regions) of a

non-human antibody onto a human framework region (45). In

theory, this approach serves to preserve binding activity, since the

CDR loops tend to form most of the binding site, alongside the

structural stability provided by a native framework. However, CDR

grafting has often been found to require additional changes to the

framework, such as back-mutations to the original non-human

residue, to improve or even rescue binding (46).

Reducing the number of non-human residues even further,

structures of antibody-antigen complexes have been used to

determine the binding site residues of a non-human antibody and

use only these from the non-human CDR loops (specificity-

determining region (SDR) grafting) (47, 48). Similarly, Apgar

et al. (2016) (49) developed a method to identify important

binding residues and reduce immunogenic residues in non-

human CDR loops, after CDR grafting.

To preserve favorable properties of the non-human antibody,

humanization has also been carried out using the most closely

related human germline sequences or homologous framework

regions as a template (16). Alternative approaches include

framework shuffling (50), where a set of framework regions

representative of all human germline genes were iteratively

combined with the CDR loops of a non-human antibody and

their binding activity assessed. Another method, resurfacing,

preserves the non-human frameworks: only surface-exposed

residues which differ from human are replaced on the basis that

buried residues will not impact the level of immunogenicity (51, 52).

Collectively, these experimental strategies have been widely

integrated into pharmaceutical companies’ preclinical therapeutic

development pipelines and have yielded developable molecules, as

evidenced by the ever-growing number of humanized antibodies

progressing through first-in-human clinical trials (Figure 1C).

Nevertheless, success remains clone dependent, and efficiencies

could certainly be found in directing the humanization process, in

which amino acid mutations are frequently introduced via trial-

and-error. The concurrent integration of computational methods,

which attempt to learn sequence and structural features of

antibodies to predict the impact of modifications, promises to

lead to more rational and efficacious humanization.
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Quantifying the “humanness” of an
antibody and its utility for
computational humanization

While the most direct measure of immunogenicity is the

quantification of anti-drug antibodies (ADAs), T cells, or
Frontiers in Immunology 03
inflammatory cytokines raised upon injection of the drug into an

organism, this carries an inherent safety risk, and so indicative

assays are used during early-stage development.

Computational methods have gained traction in the

quantification of the humanness of a sequence, hypothesized as a

proxy metric for the likelihood of immunogenicity due to the

evident success of experimental grafting strategies.
B

C

A

FIGURE 1

Humanization is the leading method for generating antibody therapeutics compatible with the human immune system. (A) Genetics of all WHO-
recognized antibody- and nanobody-derived therapeutics included in the Thera-SAbDab database (4), by year of proposed International
Nonproprietary Name (INN). (B) Developmental origins of therapeutics with a proposed INN before and after 2017 show that humanization is still the
predominant means of generating antibodies for therapeutic use. (C) Cumulative number of humanized therapeutics recorded in Thera-SAbDab
reaching at least phase-II clinical trials, by year of proposed INN. Statistics for recent therapeutics are likely to increase with time.
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An early example of a computational humanness score is the H-

score (25), which uses pairwise sequence identity to distinguish

between human and non-human variable regions. The G-score was

later derived from the H-score to account for the effects of the size
Frontiers in Immunology 04
of the corresponding human germline family (26). This was further

refined to the T20 metric by Gao et al. (27), who incorporate a

BLAST search, scoring by taking the average percentage sequence

identity of the top 20 matching sequences. Lazar et al. (28) break

sequences down into 9-mers, proposing the Human String Content

(HSC) score, which is calculated by comparing the sequence

identity of each 9-mer frame in a sequence to human germline

sequences. Together, these methods were validated simply

by demonstrating distinct distributions of humanness scores

between human and non-human species. For example,

Abhinandan and Martin (25) showed a separation between the

mean ‘raw humanness’ scores and Z-scores of human and murine

antibodies. Improving on this, the T20 score was shown to

distinguish between chimeric, humanized, and human sequences

with greater specificity than the H-score or G-score on a set of 98

therapeutic antibodies. Further to this, Gao et al. present perhaps

the first quantitative benchmark between an in silico humanness

metric and a direct measure of immunogenicity, having

demonstrated on a dataset of 65 therapeutic antibodies that

higher (more human) T20 scores correlate, albeit weakly

(Pearson’s correlation of 0.21), with lower ADA abundance.

To capture higher-order relationships between amino acid

residues, Seeliger (29) designed a heuristic scoring function to

distinguish between human and murine antibodies, using

commonly occurring mutations as a fingerprint for the species.

Like previous work, their humanness scores show a small overlap

between murine and human antibodies, given the shared sequence
FIGURE 2

Humanization methods have evolved from initial chimerization
approaches, aiming to reduce non-humanness without
compromising functionality. These include CDR-grafting, where
non-human CDR loops are grafted on to a human framework, SDR-
grafting, where only the binding residues of the CDRs are grafted on
to the framework, and resurfacing, where exposed non-human
residues are replaced by human ones.
TABLE 1 Summary of available computational methods for humanness scoring and humanization, in order of reference in this review.

Authors Year Name Web server Reference

Abhinandan and Martin 2007 H-score http://www.bioinf.org.uk/abs/shab/ (25)

Thullier et al. 2010 G-score N/A (26)

Gao et al. 2013 T20 score https://sam.curiaglobal.com/t20/ (27)

Lazar et al. 2007 Human String Content N/A (28)

Seeliger 2013 N/A N/A (29)

Clavero-Álvarez et al. 2018 MG-score N/A (30)

Schmitz et al. 2020 PGSSM score N/A (31)

Marks et al. 2021 Hu-mAb https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/humab (32)

Prihoda et al. 2022 BioPhi https://biophi.dichlab.org/ (33)

Uçar et al. 2023 SelfPAD N/A (34)

Zou et al. 2023 PLAN N/A (35)

Wollacott et al. 2019 N/A N/A (36)

Vashchenko et al. 2022 AbBERT N/A (37)

Choi et al. 2015, 2016 CoDAH N/A (38, 39)

Hsieh et al. 2022 N/A N/A (40)

Tennenhouse et al. 2023 CUMAb https://cumab.weizmann.ac.il/step/cumab-terms/ (41)

Sang et al. 2022 Llamanade http://www.llamanade.app (42)

Ramon et al. 2023 AbNatiV www-cohsoftware.ch.cam.ac.uk/index.php/abnativ (43)
The expanded form for ‘N/A’ would be ‘Not available’.
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identity of the two species. Using a statistical inference method

to account for correlations between residue pairs at different

positions, Clavero-Álvarez et al. (30) created an ‘MG-Score’

metric, finding that their approach outperforms the T20 score at

differentiating between human and murine sequences, although

these methods are equally predictive for the smaller therapeutic

datasets tested.

Schmitz et al. (31) introduce a position- and gene-specific

scoring matrix (PGSSM) metric, which uniquely uses single

nucleotide frequencies to measure the similarity of a sequence to

a human antibody repertoire. The authors found that human

sequences scored significantly higher than other species including

non-human primates, using their metric. In a broader application

to antibody developability, Petersen et al. (53) use a position-

specific scoring matrix representing antibody repertoire data to

predict high-frequency framework mutations that could improve

therapeutic properties.

Although sequence identity indicates how closely related a

human antibody and non-human antibody are, it may not be

the most informative metric for the purpose of humanization.

More recent strategies such as those from Seeliger (29) and

Clavero-Álvarez et al. (30), or those using scoring matrices could

offer an advantage in that they provide insight into higher-order

features: it is possible to determine which residues are most

important in contributing to humanness versus which are

common across species. This in turn can be used to inform the

choice of mutations for humanization.

Naturally, the greater availability of sequence data (54, 55) has

made in silico humanness scoring and humanization amenable to

machine-learning methods. Hu-mAb (32) approaches this problem

as a classification task, using random forest models to distinguish

human from non-human sequences, achieving ROC AUC values

across all classification models of 1 or close to 1. Similarly to

Gao et al. (27), the authors curated an ADA benchmark dataset,

this time for an enhanced set of 217 therapeutics, demonstrating a

stronger correlation between higher Hu-mAb humanness scores

and lower immunogenicity. They also demonstrated that

therapeutics with the most severe ADAs frequently had Hu-mAb

scores below 0.9.

The same dataset of 217 therapeutics was used for evaluation by

Prihoda et al. (33) and Uçar et al. (34). Uçar et al. used a contrastive-

learning model to predict humanness, leveraging a large body of

patent data, while Prihoda et al. present the BioPhi platform,

developed using Transformer architecture. BioPhi consists of

tools for both humanization (Sapiens) and humanness scoring

(OASis), the latter derived from the use of 9-mer peptides in

the HSC scoring method (28). The platform can operate at

different levels of stringency: at a medium level (a peptide is

defined as human if it is found in at least 50% of subjects), OASis

outperformed other humanness scoring methods, such as the

aforementioned T20 and MG-scores, with a ROC AUC of 0.966,

though it was comparable to the PGSSM metric from Schmitz et al.

(31). Authors find a similar correlation between their humanness

scores and the ADA responses to the therapeutic set, though do not

outperform Hu-mAb (achieving a Pearson correlation of 0.28,

compared to Hu-mAb’s 0.34).
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Marks et al. (2021) further validate Hu-mAb by comparing their

computationally suggested mutations against a ground truth of

experimentally chosen mutations for a set of 25 humanized

therapeutics, all of which showed reduced immunogenicity upon

humanization. Overall, they found Hu-mAb more efficiently

suggested mutations that overlapped considerably with the

mutations made experimentally (77%, or 85% when including

residues of similar types). A similar approach is taken by Prihoda

et al., (33) and Zou et al. (35), who adopt the BioPhi OASis

humanness scoring method in their proposed humanization

approach, which makes use of protein language models alongside

a k-nearest-neighbors method to optimally select residues for

humanization. Prihoda et al. expand their test set to include 152

humanized antibodies and putative parental sequences.

A metric often used to validate humanization is the change in

humanness score after mutation, where scoring methods are

developed using a dataset of human antibodies as a benchmark.

Assuming a reliable and valid negative correlation between this

humanness metric and immunogenicity, an increase in the

humanness score of a putatively humanized sequence before and

after mutation would indicate that humanization has been

successful. This is adopted by Marks et al. (32), Zou et al. (35),

Wollacott et al. (35, 36) and Vashchenko et al. (37). Long short-

term memory (LSTM) models trained by Wollacott et al. on natural

antibodies can be used to quantify the nativeness of antibody

sequences and to select templates for humanization, based on

changes in their LSTM humanness score. AbBERT (37) is an

attention-based Transformer trained on 20 million unpaired

sequences from OAS (55) primarily to determine humanness

(for which greater humanness scores are demonstrated for human

sequences over humanized and murine sequences), but embeddings

can be used to optimize in silico antibody design. Vashchenko et al.

(37) are additionally conscious of the balance between humanness

and optimization of other antibody properties such as stability:

authors test for expression levels, finding that in general, more

human antibodies were better expressed.

Structure-guided methods for computational humanization can

make use of means of validation that cannot be adopted by methods

built on sequence data, given the intrinsic differences in the nature

of the data used. For example, Choi et al. (38, 39), Hsieh et al. (40)

and Tennenhouse et al. (41) all adopt binding affinity as their main

indicator for the success of their humanization, specifically whether

the affinities of their proposed humanized variants are comparable

to their parental antibody.

Choi et al. present CoDAH (38, 39), which aims to produce

designs that increase humanness without disrupting stability. Hsieh

et al. (40) implement homology modeling and molecular dynamics

simulations to compare murine and humanized CDR structures, as

changes in these residues impact the resulting binding affinity. Given

the effect that CDR-grafting can have on stability and affinity,

Tennenhouse et al. (41) present CUMAb, which seeks to simulate

this CDR-grafting onto human frameworks and select designs using

an energy-based ranking. Computationally, this can be carried out at

much higher throughput and CUMAb searches a more diverse

structural space, testing non-homologous frameworks as well as

homologous templates that are the default for CDR-grafting.
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The combination of close similarity between a proposed

humanized variant and human antibodies, and maintaining

binding affinity, imply that humanization has successfully

increased humanness without compromising native features

which may contribute to binding or other favorable properties of

the therapeutic. However, to evaluate the performance of these tools

more robustly, the reliability of the humanness scoring method

must also be considered. Additionally, while maintaining affinity is

undoubtedly important in the success of a humanized antibody,

relying solely on affinity for the validation of these humanization

methods will not fully encapsulate their capabilities.

Overall, these computational methods capture humanness in

different ways, and each have their own merits as measurements,

but vary as to what extent, and by what means, they are validated as

predictors of immunogenicity. An increased humanness score, the

most-used validation metric across all tools, does not de facto

guarantee reduced immunogenicity. Humanness metrics which

are validated against experimental data, such as those that exhibit

a correlation to the incidence of ADAs across therapeutics, or whose

values support experimental humanization decisions for a case

study antibody that were proven to decrease immunogenicity,

might reasonably be considered more robust predictors.

Furthermore, it is important to consider that machine learning

approaches, which are now abundant in this field, are reliant on the

data that they are built upon: humanized antibodies generated by

these models will harbor the inherent biases of the training set,

which could limit their real-world applicability.
Applicability of antibody humanization
software to nanobodies

MAbs are significantly more established as biotherapeutics than

nanobodies, meaning benchmark datasets are more readily

available and so efforts thus far have been focused on developing

in silico methods for conventional antibodies. For example, as

illustrated above, a dataset of 217 therapeutics with ADA data has

been used for validation of antibody-focused computational

approaches. In comparison, to our knowledge, ADA data only

exists for 10 nanobody therapeutics (Table 2, 56–73). This

discrepancy extends to a differential availability of natural

sequence data from which to build models. There are far more

publicly available antibody repertoire data than nanobody

repertoire data: at present, approximately 1.6 million nanobody

sequences are deposited in the OAS database, compared to over 2

million paired and 2.4 billion unpaired antibody sequences (55).

However, given the increasing application of nanobodies in the

therapeutic space, future work developing humanization

approaches should consider their applicability to other formats

and modalities. General principles for the experimental

humanization of nanobodies are akin to those for antibodies,

such as CDR grafting and back-mutation, resurfacing and the use

of germline sequences as templates (74). However, there are

additional considerations to make since antibodies and

nanobodies have distinct structural features (Figure 3). Vincke
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et al. (9) outline the humanization of a camelid nanobody (VHH)

and observe the importance of residues in the FR2 region in

contributing to binding affinity. These hallmark residues, located

at an equivalent position to those at the VH-VL interface in

antibodies, are usually hydrophilic and are hypothesized to

contribute to the increased solubility of the single-domain

antibody (8, 75). Since these residues are buried and hydrophobic

in conventional antibodies, in silico humanization tools built for

antibodies may suggest changes to these residues. Although this

may increase their humanness, it may also diminish the favorable

properties that nanobodies possess. Furthermore, this could

decrease developability and increase immunogenicity, since

exposed hydrophobic residues increase aggregation propensity

(76–78).

In addition to their distinct hallmark residues, nanobodies

more often incorporate framework residues into their paratopes

(the antigen binding site) (12, 14, 79, 80). This is critical to

consider in developing computational methods based on

protocols such as CDR grafting, where it may be assumed that

only the CDRs contribute to antigen-binding. As highlighted by

Hummer and Deane (81), this is a pitfall encountered with

CUMAb (41), where their approach to entirely replace the

framework during in silico CDR-grafting may remove critical

binding residues in nanobodies.
Bespoke computational methods for
nanobody humanization

Therefore, there is a need for computational methods that take

the characteristic topology of nanobodies into account; the

structure modeling software NanoBodyBuilder2, which

outperforms AlphaFold2 by 0.55 Å over the CDR3 region,

exemplifies the advantages of nanobody-specific tools (82). The

development of humanization software dedicated to nanobodies is

still a relatively new endeavor, the first being Llamanade (42). Sang

et al. identify properties specific to Nbs by comparison with IgGs

and use this as the basis for rational Nb humanization, avoiding

humanization of residues that are integral to the nanobody

physicochemical properties, such as highly conserved framework

residues in the FR2 region and those which may contribute to the

conformation of the CDR3 loop. This balance between nativeness

(keeping residues critical to the unique structural properties of the

nanobody) and humanness is also prioritized in AbNatiV (43), a

deep-learning-based pipeline for nanobody (and antibody)

humanization. Sequence data is used to train variational auto-

encoders (VQ-VAE) models which quantify the similarity of a

sequence to human VH or camelid VHH domains. This measure of

nanobody or antibody nativeness is coupled with a sequence profile

that can be used to inform engineering.

The Llamanade pipeline was assessed by calculating T20 scores

(27) and conducting ELISA tests for 9 SARS-CoV-2 binders. The

authors observed an increase in humanness scores, and, upon

expression, 8 out of the 9 structures exhibited binding capabilities

comparable to the original structures. The use of the T20 score in
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their evaluation invites confidence in their approach, given that Gao

et al. (27) previously demonstrated some correlation between

increased humanness and decreased immunogenicity. AbNatiV

takes a similar approach to verify their humanness scoring,

finding a negative correlation between humanness and the
Frontiers in Immunology 07
percentage of patients who developed ADAs for 216 therapeutic

antibodies. Following Llamanade, humanization conducted by the

AbNatiV pipeline is validated by the characterization of humanized

variants of two nanobodies: Ramon et al. (43) find that their method

improves or retains thermostability and binding compared to wild-
FIGURE 3

Antibodies and nanobodies differ in their structural features. Camelid nanobodies (VHHs) are derived from heavy-chain antibodies and lack the light-
chain partner seen in conventional antibodies, exposing residues that would otherwise be buried at the VH-VL interface.
TABLE 2 Nanobody therapeutics with available ADA data.

Name Phase Therapeutic (T)/
Placebo (P)

Total
participants

% Patients
with ADA

Reference

2Rs15d - T 20 0 (56, 57)

- T 20 5

ALX-0061 I/II T 37 0 (58–61)

II T 250 41

P 62 52

IIb T 187 31

ALX-0081 I/Ib T 64 0 (62–64)

II T 36 9

III T 145 3

ALX-0141 I T 42 0 (65)

ALX-0171 I T 60 0 (66, 67)

IIb T 135 34

P 39 26

ALX-0761 I T 33 30.3 (68)

P 8 37.5

ATN-103 I/II T 266 3 (69–71)

M6495: Construct 579 (2F3*SO35GS
linker093*SO linkerAlb11)

- T 50 6 (72)

M6495: Construct 581 (2F3*SO35GS linker Alb11) - T 50 0 (72)

TAS266 I T 4 75 (73)
Where applicable, dose-dependent figures have been aggregated for total participants and percentage of patients with ADAs.
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type variants. Both works by Sang et al. (42) and Ramon et al. (43)

are subject to the same difficulties in their use of humanness scoring

and affinity as their primary means of validation, as was previously

discussed. This is only exacerbated by the more restricted sequence

and structural data available for nanobodies, which, as highlighted

by Sang et al. (42), limits opportunities to quantify the uncertainty

of proposed designs.
Humanization within the multi-
parameter optimization problem

All previously outlined computational approaches consider

humanization in isolation, however, when designing an antibody

therapeutic, it is important to be aware of the full landscape of

properties that need to be optimized. Immunogenicity can originate

not only from intrinsic humanness but also from developability

factors, including solubility, aggregation likelihood, cross reactivity,

and product heterogeneity deriving from sub-optimal chemical or

thermal stability of the antibody (83–85). More broadly, the multi-

parameter optimization problem may pertain to patient or

treatment-related factors affecting therapeutic success. For

example, a patient’s immune status, such as having a chronic

infection or being depleted of B cells, might impact the likelihood

of observing ADAs. The personalized combination of human

leukocyte antigen (HLA) alleles in each patient influences the

propensity of autologous helper T cells to recognize drug

fragments, and therefore activate B lymphocytes toward the

expression of ADAs (86); tools such as NetMHCIIpan-4.0 (87)

can survey whether drugs contain peptide fragments able to be

displayed by certain Class II HLA alleles. Meanwhile, more

convenient routes of administration that increase the global

accessibility of a medication, such as subcutaneous injection,

typically require more concentrated doses that are more

susceptible to molecular aggregation and thus the induction

of ADAs.

The use of computation to simultaneously optimize or select

antibodies (or nanobodies) with a general set of drug-like properties

represents a compelling strategy toward reducing the failure rate of

candidate therapeutics and accelerating the antibody design

pipeline. Excitingly, such approaches are already coming to the

fore. Makowski et al. (88) assess how machine learning can be

used to co-optimize the affinity and specificity of Emibetuzumab

through a joint reward function. Furthermore, Bachas et al. (89) use

language models to predict binding affinity alongside a ‘naturalness’

metric. They show that this naturalness relates to developability and

immunogenicity and, as such, optimizing both affinity and

naturalness together using a genetic algorithm may help to solve

this multi-parameter optimization problem. There are also

increasing examples of work using machine-learning to generate

new sequences using antibody libraries with favorable properties as

a source of high-throughput data (90, 91). Arras et al. (92)

developed a semi-synthetic method to generate humanized and

developable nanobodies (VHH) from camelid immunization, with

minimal need for further optimization. Camelid CDR3 loops are

grafted onto humanized VHH backbone libraries with diverse
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combinations of camelid CDR1 and CDR2 loops. The library is

then filtered for developability attributes and biophysical properties

are tested experimentally. In subsequent work, they combine their

library approach with an LSTM model, training the model on

promising sequences selected from the library, to design new

humanized and developable nanobodies (93).

These library approaches show that there is potential to achieve

multi-parameter optimization provided there is access to high-

throughput and high-quality data for model training. However, if

we are to address this problem computationally, the necessity for

robust validation methods becomes even greater, since the

entanglement of different antibody properties will make

assessment ever more complex. In some cases, the complex

interplay between developability properties may even render

complete multi-parameter optimization impossible to achieve.
Discussion

Humanization is the leading technique for mitigating the

immunogenicity associated with therapeutics derived from non-

human sources. Primarily, this has been achieved using traditional

experimental strategies such as chimerization and CDR loop

grafting, alongside necessary back mutations. Nonetheless, the

increased availability of sequence and structural data has now

facilitated the development of machine learning-based tools for

humanness scoring and humanization, which suggest case-by-case

engineering strategies for each input variable region sequence and

are beginning to yield promising results. While most efforts are

directed toward antibody humanization, the growing interest in

nanobodies and their distinct structural characteristics necessitates

the consideration of humanization tools tailored for this alternative

scaffold. However, these efforts are hampered by the fact that

nanobody data are currently relatively limited and dispersed

(Table 2, 4, 54, 55, 94). For the plethora of alternative engineered

formats now available, including bispecific or multi-specific

antibodies, or those with enhanced effector functions, such as an

scFv-Fc, these challenges are only enhanced and currently remain

understudied (95, 96).

If in silico humanization tools are to be routinely implemented

into therapeutic design pipelines, they must be thoroughly

validated, such that computationally humanized variants can be

considered confidently de-risked candidates. However, an

additional layer of complexity is added since validation methods

themselves vary in their reliability and proximity to the overarching

phenotype of immunogenicity. Furthermore, the sensitivity of

direct measures of immunogenicity such as ADA detection assays

has increased over time, reflected in the surprisingly high numbers

of ADAs recorded in the placebo arms of recent nanobody clinical

trials (Table 2). This complicates the use of aggregate ADA data

over the past 40 years as a benchmark and perhaps contributes to

the relatively weak correlations observed between humanness

metrics and the recorded abundance of ADAs (97). Even

successful transition of a drug beyond Phase-I clinical trials has

its limitations as a metric, due to the differential toleration of ADAs

based on the severity of the indication. A better understanding of
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the factors underlying ADA production may be gained through

investigation of healthy or immunocompromised humanized

mouse immune systems (98).

Broader issues emerge across the full landscape of antibody

properties, where the successful humanization of candidates might

inadvertently compromise other developability attributes. These

can often be addressed successfully during formulation, but

formulation choices can equally yield their own developability

challenges, such as anti-polyethylene glycol antibodies induced by

recent biopharmaceuticals including modular mRNA vaccine

technologies (99, 100). Consequently, there are growing attempts

to address this multi-parameter optimization problem

computationally, leveraging machine-learning techniques and the

greater data availability, though these fall prey to the same need for

more routine and systematic experimental validation.

More generally, the field at present functions on a certain

definition of humanness. This definition is challenged by the fact

that apparently genetically human antibodies can still provoke

ADA production (1). This is unsurprising due to the genetic

diversity sampled across humans, perhaps most pronounced in

our highly personalized sets of HLA alleles that influence T cell-

assisted B cell activation. Moreover, it remains hard to robustly

capture the humanness of non-germline regions such as the

recombination junctions or of randomness introduced by

somatic hypermutation. Particularly, we highlight the emergence

of machine-learning methods in antibody humanization, built

using resources such as OAS (54, 55). There is an urgent need for

wider representation in the available repertoire sequence datasets,

since any tools trained on them will inherit their underlying biases

(101). Ensuring this heterogeneity will be crucial toward

accurately quantifying humanness and creating computationally

designed therapeutics that exhibit general compatibility

across populations.
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