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Background: More and more evidence supports the association between

myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is

to explore the shared biomarkers and pathogenesis of MI complicated with OA

by systems biology.

Methods: Gene expression profiles of MI and OA were downloaded from the

Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression

Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis

were used to identify the common DEGs. The shared genes related to diseases

were screened by three public databases, and the protein-protein interaction

(PPI) network was built. GO and KEGG enrichment analyses were performed on

the two parts of the genes respectively. The hub genes were intersected and

verified by Least absolute shrinkage and selection operator (LASSO) analysis,

receiver operating characteristic (ROC) curves, and single-cell RNA sequencing

analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes

and chondrocytes were verified by RT-qPCR. The immune cell infiltration

analysis, subtypes analysis, and transcription factors (TFs) prediction were

carried out.

Results: In this study, 23 common DEGs were obtained by WGCNA and DEGs

analysis. In addition, 199 common genes were acquired from three public

databases by PPI. Inflammation and immunity may be the common pathogenic

mechanisms, and the MAPK signaling pathway may play a key role in both

disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which

is entirely consistent with the results of single-cell RNA sequencing analysis, and

furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many

types of immune cells were closely associated with MI and OA. Two potential

subtypes were identified in both datasets. Furthermore, FOXC1 may be the

crucial TF, and the relationship of TFs-hub genes-immune cells was visualized

by the Sankey diagram, which could help discover the pathogenesis between

MI and OA.
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Conclusion: In summary, this study first revealed 3 (DUSP1, FOS, and THBS1)

novel shared biomarkers and signaling pathways underlying both MI and OA.

Additionally, immune cells and key TFs related to 3 hub genes were examined to

further clarify the regulation mechanism. Our study provides new insights into

shared molecular mechanisms between MI and OA.
KEYWORDS

myocardial infarction, osteoarthritis, systems biology, immune cell infiltration,
biomarkers, MAPK signaling pathway
1 Introduction

Myocardial infarction (MI), characterized by the erosion

or rupture of unstable coronary plaques, is a common and

critical cardiovascular disease (1, 2). Osteoarthritis (OA) is a

musculoskeletal disorder marked by degeneration and destruction

of articular cartilage, which ranks alongside cardiovascular diseases

and neurological disorders as the major cause of disability and

mortality worldwide (3, 4). According to previous research, patients

with OA have a much higher risk of MI than the general population

(5). High body mass index, abnormal glucose and lipid metabolism

are also promoted (6). Moreover, it has been shown that OA-related

persistent pain may contribute to MI (7). Although corticosteroids

and nonsteroidal anti-inflammatory medications are recommended

to alleviate the symptoms of OA, some additional hazards cannot be

ignored (3). For instance, early medicines like rofecoxib were kept

out of the public eye due to cardiovascular safety concerns.

Currently prescribed drugs like celecoxib and naproxen are also

believed to be associated with an increased prevalence of MI (8–10).

Short-term, low-dose corticosteroids induce few serious

cardiovascular adverse events (11), while OA usually requires

long-term drug maintenance and comprehensive management,

which may pose a danger to glucose and lipid metabolism (12,

13). Furthermore, an observational study involving 467,779 knee

replacements showed that MI was a barrier to further reducing

perioperative mortality (14). Another large cohort research in the

United Kingdom also revealed a considerably higher incidence of

MI after joint replacement (15). Even while MI and OA are

common comorbidities, especially in the elderly, it might be

challenging to treat each patient individually using the single-

disease guidelines (16). Therefore, continued research into the

shared pathogenesis and potential diagnostic biomarkers of MI

and OA are crucial for clinical purposes.

Recently, there is increasing evidence that aging, sex, and obesity

are risk factors for both OA and MI (3, 17). It is now clear that age-

related oxidative stress, cellular degradation, and cumulative exposure

to various risk factors may work together to promoteMI and OA (18,

19). Because of the cardioprotective properties of female estrogen,

younger women experience fewer cardiovascular events, whereas

postmenopausal women have a significantly higher incidence of MI
02
and OA. Multisite OA that is influenced by the timing of menopause

is also known as menopausal arthritis (20). In addition, obesity is a

known risk factor for cardiovascular disease, and it can also cause

mechanical stress in weight-bearing joints, which is a primary cause

of OA (21). Recent evidence suggests that active substances produced

by adipose tissue may contribute to the development of OA (22).

Although the above risk factors explain the predisposing factors to

some extent, they fall short of explaining the specific pathogenesis.

Notably, some studies have hypothesized that MI and OA may be

connected pathologically through chronic systemic inflammation

(23). Contrary to the conventional belief that OA is not

inflammatory, it has increasingly come to light that chronic

inflammation could promote the occurrence and progression of

OA by the production of inflammatory mediators and immune cell

infiltration (24, 25). Meanwhile, inflammation has greatly advanced

in causing MI by contributing to the development of atherosclerosis

up until acute ischemia episodes (26). Nevertheless, it is still unknown

how chronic inflammation affects the precise pathogenesis behind the

comorbidity of MI and OA.

With the rapid development of life science and computer

technology, bioinformatics analysis has made it possible to

explore disease patterns in vast amounts of biological data (27).

From the perspective of life as a whole, systems biology approach

has the capacity to comprehend the multi-omics-based molecular

mechanisms of diseases and offer suggestions for investigating

probable pathogenesis and novel therapeutic approaches (28). In

this study, by using integrated systems biology and bioinformatics

analysis, we obtained common differentially expressed genes

(DEGs) and disease-related genes between MI and OA from the

Gene Expression Omnibus (GEO) database and three public disease

databases (CTD, GeneCards, and DisGeNET), respectively. Then,

we performed Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis on the two parts

of the genes to reveal the common signal pathways. The hub genes

were then identified by intersection and verification. Finally, the

relationship between the hub gene, transcription factors (TFs),

immune cell infiltration, and subtypes analysis were predicted and

visualized. The analysis flowchart of our study is shown in Figure 1.

This study may be the first to explore the novel biomarkers and

shared pathogenesis of MI and OA as comorbidity, and establish the
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relationship of TFs-hub genes-immune cells, which provides new

insights into the combined therapeutic targets.
2 Materials and methods

2.1 Microarray datasets collection

Only datasets in which the illness group was compared with the

control group or in which early disease was compared with late disease

were considered, with a sample size of at least 20. We searched the

GEO database (https://www.ncbi.nlm.nih.gov/geo) using the

keywords “myocardial infarction” and “osteoarthritis” and then

retrieved the gene expression profiling by array datasets GSE66360,

GSE61144, GSE75181, and GSE55235. GSE66360 includes 49 MI

patients and 50 healthy controls (Platform: GPL570 [HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array),

and GSE61144 contains 14 MI patients and 10 normal controls

(Platform: GPL6106 Sentrix Human-6 v2 Expression BeadChip).

GSE75181 comprises 12 OA patients and 12 normal controls

(Platform: GPL10558 Illumina HumanHT-12 v4.0 Expression

BeadChip), while GSE55235 contains 10 OA patients and 10
Frontiers in Immunology 03
healthy controls (Platform: GPL96 [HG-U133A] Affymetrix Human

Genome U133A Array). In our study, GSE66360 and GSE75181 were

selected as the discovery cohort for WGCNA and DEGs analysis.

GSE61144 and GSE55235 were used for the validation cohort later.

The details of the involved GEO datasets are listed in Table 1.
2.2 Weighted gene co-expression
network analysis

The bioinformatics analysis tool Weighted gene co-expression

network analysis (WGCNA) is utilized to find gene modules that

are associated with clinical features, which can assist in identifying

candidate biomarkers or targets (29). For WGCNA, 0.9 was used as

the correlation coefficient threshold, and the soft-thresholding

power was set to 20 after the outlier samples had been eliminated

by the hierarchical clustering analysis. In order to identify essential

modules, an adjacency matrix and hierarchical clustering were

established. Correlation coefficients between the module and

clinical characteristics in OA and MI were calculated separately,

and the module with a high correlation coefficient was chosen for

collecting candidate genes.
FIGURE 1

The flowchart of this research.
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2.3 Identification of differential
expressed genes

According to the downloaded datasets and platform files above,

we annotated the data and obtained a matrix file of gene expression

in each sample, and grouped each sample according to the clinical

information related to it for subsequent analysis. The limma

package in R was applied to normalize and analyze the GSE66360

and GSE75181 datasets. With the screening criteria of adjusted P-

value < 0.05 and |log2FC| > 1, DEGs in two datasets were identified.

Next, heatmap and volcano plots were drawn to visualize DEGs by

applying the pheatmap R package.
2.4 Enrichment analysis of common DEGs

Common DEGs were identified by the intersection of the results

from the above DEGs and WCGNA analysis. The colorspace,

stringi, ggplot2, circlize, RColorBrewer, and ggpubr packages in R

were utilized to carry out enrichment analysis of Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways of common DEGs. For GO, biological processe (BP),

cellular component (CC), and molecular function (MF) were

enriched, and a P-value < 0.05 was considered significant. The

results of the KEGG pathway analysis were also based on a P-value

of 0.05. The outcomes of enrichment analysis were illustrated

respectively in the loop graph and chord diagram ranked by

P-value.
2.5 Screening common genes associated
with MI and OA

In order to acquire common genes associated with MI and OA,

“myocardial infarction” and “osteoarthritis” were entered into three

open-source databases respectively, including CTD (http://

ctdbase.org/) (30), GeneCards (https://www.genecards.org/) (31)

and DisGeNET (http://www.disgenet.org) (32). The CTD

database is a comprehensive genomics database in the field of

comparative toxicology, which specifically concentrates on studies

that investigate the connections between genes, phenotypes, and

diseases. GeneCards is an extensive repository of human genes,

encompassing both established and anticipated human genetic data
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pertaining to the genome, proteome, transcription, genetics, and

their respective functions. The DisGeNET database serves as a

comprehensive disease-related genetic repository, its primary

objective is to facilitate the investigation of the molecular

underpinnings of distinct human diseases and the examination of

harmful gene attributes. Thus, genes associated with MI and OA

included in all three databases were gathered, and the overlapping

genes between MI and OA were further obtained by the Venn

package in R.
2.6 Construction of protein-protein
interaction network

Protein-protein interaction (PPI) network was constructed to

further investigate the molecular mechanisms underlying MI and

OA. Briefly, we imported common genes above into the STRING

database (https://string-db.org/) (33) with organism limited to “homo

sapiens”, while setting the minimum required interaction score to the

highest confidence (0.9) and hiding disconnected nodes. PPI network

was then visualized and analyzed by Cytoscape 3.9.0 software (https://

cytoscape.org/), and the degree value of nodes was calculated by

cytoHubba plugin. In our study, targets with degree value above the

median were considered core genes of PPI network.
2.7 Enrichment analysis of core genes
of PPI

GO and KEGG pathways enrichment analysis were also

performed on core genes of PPI for validating the previous

analysis by using the cluster profiler package in R. Similarly, P-

value < 0.05 of GO and KEGG pathways were considered

significantly enriched. The top 30 results of pathways and the top

10 terms of BP, CC, and MF were presented in the bubble chart

ranked by P-value respectively.
2.8 Identification and validation of
hub genes

When the common DEGs and core genes of PPI were

intersected, overlapping candidate genes were obtained.
TABLE 1 The details of involved GEO datasets.

ID
GSE

number
Platform PMID Samples

Source
types

Disease Group

1 GSE66360 GPL570 28947747
49 patients vs
50 controls

endothelial cells MI
Discovery
cohort

2 GSE61144 GPL6106 26025919
14 patients vs
10 controls

peripheral blood MI
Validation
cohort

3 GSE75181 GPL10558 27275599
12 patients vs
12 controls

cartilage OA
Discovery
cohort

4 GSE55235 GPL96 24690414
10 patients vs
10 controls

synovial tissue OA
Validation
cohort
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Subsequently, least absolute shrinkage and selection operator

(LASSO) regression was performed to determine the optimal

variables from candidate genes, namely the hub genes. To further

validate the accuracy of the hub genes, the receiver operating

characteristic (ROC) curve was established to assess their

sensitivity and specificity, and the diagnostic values were then

validated in GSE61144 and GSE55235. We calculated the area

under the curve (AUC) and 95% CI, while AUC > 0.7 was

considered ideal.
2.9 ScRNA-seq dataset processing

MI single-nucleus RNA sequencing (snRNA-seq) dataset (34)

was obtained from the CELLxGENE database (https://cellxgene.

cziscience.com/). OA single-cell RNA sequencing (scRNA-seq)

dataset (35) was obtained from the GEO database. The R software

was used for single-cell analysis. Samples in OA scRNA-seq dataset

were read with Seurat package. Low quality cells were filtered

through the following criteria: (1) features < 200 and > 5000; (2)

mitochondrial genes >10%. 2000 highly variable genes were

identified for principal component analysis (PCA) after

normalization of data. Then, samples were integrated using the

first 30 principal components in PCA via the Harmony package.

Subsequently, cells were categorized into cell clusters using the

“FindNeighbors” and the “FindClusters” functions. Uniform

manifold approximation and projection (UMAP) was applied to

downscale the data.
2.10 Expression of hub genes in
single-cell dataset

Genes specifically expressed in one cell cluster compared to

others were identified with the “FindMarkers” function. Using these

genes as markers for cell clusters, each cell cluster was annotated

with reference to the CellMarker database (http://bio-bigdata.

hrbmu.edu.cn/CellMarker), which is an updated database of cell

markers identified by previous research (36). The obtained MI

snRNA-seq dataset has been completed with preprocessing. The

data was read and the cells were categorized into different cell types.

The expression of the markers in each cell clusters was viewed by a

dot plot to verify the reliability of the clustering. The single-cell

dataset was then divided into a patient subset and a control subset.

Nebulosa package was used to visualize the relative expression of 3

hub genes in each cell cluster. The expression of hub genes was

scored with the “AddModuleScore” function, and differences in

scoring between subsets were visualized by violin plots.
2.11 Cell isolation and culture

All animal experimental procedures were in accordance with

the institutional and international guidelines and approved by the

Ethics Committee of the First Affiliated Hospital of Guangzhou

University of Chinese Medicine (GZTCMF1-20240009). Cardiac
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cell injury and death generated by hypoxia stimulation has been

used as an appropriate in vitro model to study MI, according to

previous research (37, 38). The hearts of neonatal Sprague Dawley

(SD) rats were rapidly removed and washed instantly in cold

phosphate-buffered saline (PBS, Biosharp, China) solution. Both

ventricles were cut into l to 2 mm3 and dissociated in 0.25% trypsin

(Solarbio, China) at 37°C for 1-2 min, then discard the supernatant

carefully. Next, 0.1% type II collagenase solution (Solarbio, China)

was added to digest the myocardial tissue several times until the

digestion was complete. Cell suspensions were shifted out and

neutralized with complete medium. Then all suspensions were

pelleted by centrifugation at 1200 rpm for 5 min. The isolated

cells were resuspended in DMEM/F12 (Gibco, USA) supplemented

with 10% fetal bovine serum (FBS, Gibco, USA) and penicillin (100

U/ml)/streptomycin (100 U/ml), transferred into culture flask and

cultured at 37°C in humid air with 5% CO2. After 90 min for

fibroblast adherence, neonatal cardiomyocytes were plated into a 6-

well plate at a density of 3×105 cells per well. After 48 h culture, a

sugar-free and serum-free medium was replaced to mimic nutrient

deprivation, and neonatal cardiomyocytes were cultured in a

hypoxic chamber (5% CO2 and 95% N2) for 9 hours (39).

The primary chondrocytes were obtained from the articular

cartilage of neonatal SD rats and dealed with IL-1b according to

previous research (40, 41). The knee cartilage was cut into 1 mm3

small pieces and then incubated with 0.25% trypsin (Solarbio,

China) for 40 min, followed by incubation with 0.2% type II

collagenase (Solarbio, China) for 2 h, the cells were collected and

cultured in DMEM/F12 medium containing 10% FBS in a

humidified atmosphere of 5% CO2 at 37°C. Then cells were

plated at a density of 3×105 cells/ml in a 6-well plate, and the

media were changed every 2-3 days. Cells at 80-90% confluency

were passaged using 0.25% trypsin-EDTA solution. Only

chondrocytes from passage two were used in our study. After

24h, chondrocytes were washed with PBS, and 10 ng/mL IL-1b
(Proteintech Group, Chicago, USA) were added and incubated

for 48 h.
2.12 Quantitative real‐time PCR

After total RNA was isolated from cardiomyocytes and

chondrocytes following the manufacturer’s instructions (Accurate

Biology, Hunan, China). Reverse transcription was carried out

using the Evo M-MLV RT Premix (Accurate Biology, Hunan,

China) under the manufacturer’s instructions. SYBR Green

Premix Pro Taq HS qPCR Kit (Accurate Biology, Hunan, China)

was used for quantitative real-time PCR on QuantStudio™ 5 Real-

Time PCR System (Thermo Fisher Scientific, USA), and results

were analyzed using the 2-DDCt technique with GAPDH serving as

an internal control for normalization. The primer sequences used in

RT-qPCR were shown as follows: FOS (Forward: 5’-GACCATGT

CAGGCGGCAGAG-3’ ; Reverse: 5’-GCAGCCATCTTATT

CCTTTCCCTTC-3 ’), DUSP1 (Forward: 5 ’-GACAACCA

CAAGGCAGACATTAGC-3’; Reverse: 5’-ACAAACACCCTTCC

TCCAGCATC-3’), THBS1 (Forward: 5’-AATGTGGTGCG

TGTCCTCCTG-3 ’ ; Reverse: 5 ’-CCGATGTTCTCCGTTG
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TGATTGAAG-3’), FOXC1 (Forward: 5’-GACATCAAGAC

GGAGAACGGTACG-3 ’ ; Reverse: 5 ’-GGCTGCTGCTGC

TGCTGTC-3’), GAPDH (Forward: 5’-GACATGCCGCCTGG

AGAAAC-3’; Reverse: 5’-AGCCCAGGATGCCCTTTAGT-3’).
2.13 Construction of TFs-hub
genes network

The JASPAR database (https://jaspar.genereg.net/) is a public

website containing many TF-target regulatory relationships derived

from published collections of humans to identify the key regulators

(42). 3 hub genes were imported to predict the TFs-hub genes

interaction network, which was visualized in Cytoscape 3.9.0

software. And the Scan tool in JASPAR was used to identify

transcription factor binding sites for 3 hub genes.
2.14 Immune infiltration analysis and
correlation with hub gene

To investigate the infiltration status of various immune cells of

MI and OA, the CIBERSORT algorithm was used to quantify the

levels of 22 different immune cell types, and the vioplot package in R

was utilized for visualization. Then, the correlation matrix of 22

immune cell type proportions was constructed. Spearman

correlation analysis was performed to explore how closely the

expression of the hub genes related to immune cell enrichment.

Finally, by using the ggalluvial package in R, a Sankey diagram was

drawn to illustrate the relationship of TFs-hub genes-immune cells.
2.15 Identification of potential subtypes

Consensus clustering with K-means algorithms was applied to

identify 3 hub genes-related subtypes correlated with gene

expression, and the “ConsensuClusterPlus” package was adopted

for the quantity and robustness of clusters to be determined with a

consensus clustering algorithm realized.
2.16 Statistical analysis

The R programming language was applied to perform our

bioinformatics analyses. Statistical analysis of different groups was

compared by using Student’s t-test, P < 0.05 is considered

statistically significant.
3 Results

3.1 Weighted gene co-expression
network analysis

WGCNA was utilized to investigate the link between key genes

and clinical traits in MI and OA. For GSE66360, 12 was the ideal
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soft-thresholding power when R2 > 0.9 (Figure 2A). A total of 15

modules were identified after merging the associated modules,

which was displayed by the clustering tree (Figure 2B). The red

module had the strongest positive relation with MI (r = 0.65) in the

module-clinical trait relationships heatmap (Figure 2C). In

Figure 2D, the average gene significance in each module was

estimated. We then chose the red module to build the correlation

plot between module membership and gene significance, and 671

genes were obtained (cor = 0.65, P = 8.2e-82) (Figure 2E). In

addition, we discovered that 18 was the optimal soft-thresholding

power for GSE75181 when R2 > 0.9 (Figure 3A). The clustering tree

was classified into 3 modules, among which the brown module had

the highest correlation with OA (r = -0.94) (Figures 3B, C). The

brown module was selected because of the greatest significance

(Figure 3D), from which 336 genes were identified (cor = 0.84, P =

1.1e-90) (Figure 3E).
3.2 Identification of common DEGs of MI
and OA

According to the previous criteria, a total of 375 DEGs (309

upregulated and 66 downregulated) were identified in GSE66360 and

visualized by heatmap and volcano plots (Figures 4A, C). Moreover, a

total of 432 DEGs (189 upregulated and 243 downregulated) were

identified in GSE75181, which also was represented in heatmap and

volcano plots (Figures 4B, D). As shown in the Venn diagram

(Figure 4E), DEGs were intersected to the results of WGCNA

analysis in MI and OA respectively, and the overlapped genes of

two parts were intersected again, 23 genes (PPP1R15A, SLC7A5,

DDIT3, HBEGF, TRIB1, NR4A2, FOS, GADD45A, JUN, FOSB,

MARCKS, MXD1, RLF, GADD45B, DUSP1, THBS1, CEBPD,

EGR1, IER3, DUSP6, PTGS2, MAP3K8, and RGS2) were finally

identified as the common DEGs of MI and OA.
3.3 Enrichment analysis of common DEGs

GO and KEGG enrichment analyses were performed on

common DEGs to reveal the biological functions and demonstrate

the underlying molecular interactions between MI and OA. A total of

597 GO terms were obtained by applying R packages, which consisted

of 532 BP terms, 10 CC terms, and 55 MF terms. The top 5 terms of

BP, CC, andMF were visualized in the loop graph with the minimum

P-value (Figure 4F) and presented in Supplementary Table S1. BP

enrichment terms mainly contained response to mechanical stimulus,

response to organophosphorus, negative regulation of phosphate

metabolic process, negative regulation of phosphorus metabolic

process, and response to purine-containing compound. CC terms

mainly included RNA polymerase II transcription regulator complex,

transcription regulator complex, protein phosphatase type 1 complex,

protein-DNA complex, and germ cell nucleus. DNA-binding

transcription activator activity/RNA polymerase II-specific, DNA-

binding transcription activator activity, protein tyrosine/threonine

phosphatase activity, and MAP kinase tyrosine/serine/threonine

phosphatase activity were the significantly enriched MF terms.
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Besides, a total of 59 pathway terms were identified, and the top 5

pathway terms were shown in the chord diagram ranked by P-value

(Figure 4G) and listed in Supplementary Table S2 (dual-positive).

KEGG pathway enrichment terms indicated that common DEGs

were mainly involved in MAPK signaling pathway, IL-17 signaling

pathway, TNF signaling pathway, Oxytocin signaling pathway, and

p53 signaling pathway.
3.4 Identification of common genes
associated with MI and OA

CTD, GeneCards, and DisGeNET databases were searched by

using the keywords “myocardial infarction” and “osteoarthritis”

respectively, and only overlapped genes were saved. We then

acquired 1295 genes associated with MI and 1183 genes

associated with OA, then 494 common genes between MI and

OA were identified in Figure 5A.
3.5 PPI network analysis

In order to determine the core genes, the degree values of the

PPI network between 494 common genes were analyzed. We then
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obtained a network with 405 nodes and 2349 edges by setting the

highest confidence level (0.9) and hiding the unconnected nodes.

Degree values were calculated using the cytoHubba plugin in

Cytoscape software, and the median degree was 7. Node sizes and

color shades showed positive correlations ranked by degree values,

and a total of 199 core genes in the PPI network were discovered to

have degree values greater than 7 (Figure 5B). The corresponding

degree values were listed in Supplementary Table S3.
3.6 Enrichment analysis of core genes
of PPI

To further explore the biological functions and validate our

results presented above, we also performed GO and KEGG

enrichment analysis on the core genes of PPI. According to the

bar graph, the results of functional enrichment and pathway

analysis were ranked by P-value (Figure 5C), cytokine-mediated

signaling pathway, leukocyte migration, wound healing, positive

regulation of MAPK cascade, response to oxygen levels and

leukocyte chemotaxis were the mainly enriched terms of BP, and

membrane raft, membrane microdomain, focal adhesion, external

side of plasma membrane and cell-substrate junction were primarily

involved in CC terms, MF terms mainly contained cytokine
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FIGURE 2

WGCNA analysis of the significant modules in MI. (A) Determination of the optimal soft thresholds for GSE66360. (B) Gene co-expression modules
represented by different colors under the clustering tree. (C) Identification of highly correlated modules between MI and healthy controls.
(D) Distribution of average gene significance in the each module. (E) Correlation plot between module membership and gene significance of genes
included in the red module.
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receptor binding, cytokine activity, signaling receptor activator

activity, and receptor ligand activity. Additionally, the

significantly enriched pathway terms of KEGG were MAPK

signaling pathway and so on, which indicated similar results to

our previous analysis (Figure 5D).
3.7 Identification and validation of the
hub genes

After taking the intersection of the PPI core genes and common

DEGs, 5 candidate hub genes (DUSP1, FOS, THBS1, EGR1, and

PTGS2) were obtained (Figure 6A). Meanwhile, all candidate hub

genes were subjected to LASSO regression analysis, which is

characterized by penalizing the absolute value of a regression

coefficient, DUSP1, FOS, and THBS1 were then chosen as the

final hub genes (Figures 6B, C). Next, the diagnostic sensitivity

and specificity of 3 hub genes were evaluated using ROC curves, the

AUC of all hub genes was greater than 0.7 (Figures 6D, E),

indicating a high diagnostic value for both MI and OA.

Furthermore, GSE61144 and GSE55235 were used to validate the

clinical utility of 3 hub genes, and all the AUC were also higher than

0.7 (Figures 6F, G). Among them, DUSP1 showed the best
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diagnostic efficiency for MI (AUC = 0.971) and OA (AUC =

1.000). These results suggested that 3 hub genes could be

promising diagnostic biomarkers for both MI and OA.
3.8 Differential expression of hub genes
among groups in single-cell dataset

The cells in MI snRNA-seq dataset were divided into adipocyte,

cycling cells, endothelial cells, fibroblasts, mast cells, myeloid,

neuronal, pericyte, vascular smooth muscle cells (vSMCs),

cardiomyocytes and lymphoid (Figure 7A). Referring to

CellMarker, ACTA2, MYL9 and MYH11 were used as markers

for vSMCs; NOTCH3 and KCNJ8 as markers for pericyte; CDN19,

CADM2, and NRXN1 as markers for neuronal; CD163, CD14, and

RBM47 as markers for myeloid; CPA3, SLC24A3, and KIT as

markers for mast cells; BCL11B, and IL7R as markers for

lymphoid; COL5A1, FBN1, and PDGFRA as markers for

fibroblasts; EGFL7, LDB2, and VWF as markers for endothelial

cells; TOP2A as marker for cycling cells; MYBPC3, MYO18B, and

TNNT2 as markers for cardiomyocytes; GPAM, PNPLA2, and

PLIN1 as markers for adipocyte. Dot plot in Figure 7B shows

differences in the expression of markers between different cell
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FIGURE 3

WGCNA analysis of the significant modules in OA. (A) Determination of the optimal soft thresholds for GSE75181. (B) Gene co-expression modules
represented by different colors under the clustering tree. (C) Identification of highly correlated modules between OA and healthy controls.
(D) Distribution of average gene significance in the each module. (E) Correlation plot between module membership and gene significance of genes
included in the brown module.
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clusters. Density plots show the different expression trends of 3

genes between the disease and control in MI (Figure 7C). In the MI

snRNA-seq dataset, the expression of 3 hub genes was relatively

dispersed in the healthy controls. While in the MI samples, it was

concentrated in fibroblasts and myeloid. Violin plots show that the
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expression levels of all 3 genes were elevated in MI samples

compared to healthy controls (Figure 7D).

After quality control and downscaling, the cells in OA scRNA-seq

dataset were categorized into 15 clusters (Figure 8A). Referring to

CellMarker, SOX9 and COL2A1 were used as markers for
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FIGURE 4

Identification of common DEGs and enrichment analysis. (A) Heatmap of all DEGs in GSE66360. (B) Heatmap of all DEGs in GSE75181. (C) Volcano
plots of all DEGs in GSE66360. (D) Volcano plots of all DEGs in GSE75181. (E) Identification of common DEGs between MI and OA. (F) The loop
graph showing significantly enriched top 5 GO (BP, CC, and MF) terms associated with common DEGs. (G) The chord diagram showing significantly
enriched top 5 signaling pathways in KEGG and distribution of DEGs in each pathway.
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chondrocytes; VWF and SPARCL1 as markers for endothelial cells;

CXCR4 and PTPRC as markers for B cells. Dot plot in Figure 8B

shows differences in the expression of markers between different cell

clusters. 3 annotated cell clusters were visualized with the UMAP plot

(Figure 8C). In OA dataset, 3 hub genes were mainly expressed in

chondrocytes (Figure 8D). And 3 hub genes were concentrated in

different chondrocyte subpopulations in OA samples and healthy

controls, suggesting that certain subpopulations are more involved in

the disease process. Among the 3 genes, DUSP1 and FOS were highly

expressed in healthy samples and THBS1 was highly expressed in OA

samples (Figure 8E).

Through the RT-qPCR validation, the mRNA expression levels

of 3 genes were significantly different. Compared with the control

group, DUSP1, FOS, and THBS1 were all significantly down-

regulated in OA samples (Figures 9A-C). On the other hand,

significantly lower expression of DUSP1 and THBS1 and higher

expression of FOS were observed in MI samples compared to

controls (Figures 9D-F).
3.9 Analysis of TFs–genes network

To better understand the key TFs that regulate hub genes at the

transcriptional level, we examined the link between TFs and the hub

genes and built a TFs-genes network for visualization. As shown in

Figure 10A, a total of 18 TFs interacted with 3 hub genes. TFAP2A,

E2F1, CREB1, and SRF were associated with 2 hub genes, and FOXC1

were regulating all the hub genes simultaneously, which may play a

key role in regulating the progression of MI and OA. This was

confirmed by our empirical experiments, in which FOCX1 was

significantly differentially expressed in both disease groups,

suggesting its possible involvement in regulating the progression of

MI and OA (Figure 10B). As shown in Supplementary Figure S1,

MA0032.1.FOXC1 and MA0032.2.FOXC1 were recognized as

binding regions, and a total of 175 binding sites were identified for

3 hub genes with transcription factors (Supplementary Table S9). In

addition, the FOS gene was regulated by multiple TFs in the

meantime, this may be due to easier identification.
3.10 Association between the hub genes
and immune infiltration

To our knowledge, immune response and inflammation are

closely related to the pathogenesis of MI and OA comorbidity.

Hence, immune infiltration analysis was carried out to further

reveal the immune microenvironment differences by adopting the

CIBERSORT algorithm. The proportions of 22 types of immune

cells between healthy people and MI are shown in Figure 11A.

Compared to healthy people, the fractions of plasma cells, T cells

follicular helper, T cells gamma delta, NK cells resting, monocytes,

dendritic cells activated, mast cells activated and neutrophils were

relatively greater in MI, while T cells CD8, T cells CD4 memory

resting, T cells regulatory (Tregs), NK cells activated,

Macrophages M0 and mast cells resting were relatively less (p <

0.05) (Figure 11C). The correlation matrix was constructed to a
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close negative or positive connection between each type of

immune cell (Figure 11B). The Spearman correlations between

the expression of three hub genes and immune cell enrichment
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FIGURE 5

Identification of shared genes related to diseases, PPI network, and
enrichment analysis. (A) Identification of common genes between
MI and OA from three public disease databases. (B) Analysis of PPI
network, the core genes were obtained with degree value greater
than 7. (C) Top 10 terms in GO (BP, CC, and MF) enrichment analysis
of the core genes. (D) Top 30 results in KEGG pathway enrichment
analysis of the core genes.
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were presented in the lollipop graph (Figures 11D-F). Between OA

and healthy control, the differential proportions and correlation

matrix of each type of immune cells were shown in Figures 12A, B.

Plasma cells and T cells follicular helper were relatively less in OA,

but T cells CD4 memory resting was significantly greater (p <

0.05) (Figure 12C). Spearman correlation analysis was also

performed to detect the correlation between the expression of

three hub genes and immune cell enrichment in OA (Figures 12D-

F). Finally, as shown in Figure 13, the relationship of TFs-hub

genes-immune cells was visualized by the Sankey diagram, which

may be components to discovering the pathogenesis between MI

and OA.
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3.11 Analysis of subtypes in GEO datasets

As shown in Figure 14A, the optimal number of subtypes was 2

in GSE66360, including cluster A and cluster B, which was

determined using a consensus matrix plot and a CDF plot. Then,

we found that the expression of DUSP1, FOS, and THBS1 in cluster

B was higher than that in cluster A (Figures 14B, C). For GSE75181,

it can also be divided into two stable potential subtypes based on 3

key genes (Figure 14D). The expression level of DUSP1 was low in

cluster B, while THBS1 was relatively high in cluster B, and there

was no significant difference in FOS between the two subtypes

(Figures 14E, F).
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FIGURE 6

Identification and validation of the hub genes. (A) Five candidate genes were obtianed by intersecting common DEGs to the core genes of PPI in the
Venn diagram. (B, C) LASSO regression analysis for screening the hub genes in GSE66360 and GSE75181, cross-validation was performed to select
the best l, and the lines in the regression coefficient path map represented the variables included and their running trajectories. (D, E) ROC curves
of DUSP1, FOS, and THBS1 to assesse for diagnostic sensitivity and specificity value in GSE66360 and GSE75181. (F, G) Validation the clinical utility of
three hub genes in GSE61144 and GSE55235.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1398990
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1398990
4 Discussion

It is now clear that MI and OA are the major causes of death

and disability worldwide, which has aroused great concern (2, 43).

Previous studies have recognized the multi-aspect association

between MI and OA, including shared risk factors, medication

use, and perioperative adverse events, though the majority of them

are observational in nature (6, 15, 44, 45). On the contrary hand, a

recent Mendelian randomization study indicated that the increased

odds of MI are likely to have a protective effect against OA (46).

Another research also demonstrates that higher levels of serum

calcium are associated with decreased risk for OA but increased risk

for MI (47). These findings make the relationship between MI and

OA appear to remain up for debate, but objective restraints like

analytical techniques and sample representativeness should be

taken into account. In fact, there are valid reasons to investigate

the comorbidity since some relatively high-quality evidence

continue to have strong opinions of the tight association between

these two diseases (48, 49). Almost all kinds of arthritis are
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associated with an elevated risk of MI. Risk of MI in people with

OA is up to 30% compared with the normal population, which may

be related to systemic inflammation and the promotion of

cardiovascular risk factors (5). Although the use of nonsteroidal

anti-inflammatory medications can substantially relieve discomfort,

the risk of MI often increases with the increase in dosage. A

combination of low-dose pharmaceuticals or multimodal pain

management may delay the onset of MI (50). In addition, MI is

the leading cause of perioperative death in patients with OA,

especially in patients with poor surgical tolerance, and prompt

intervention is needed to avoid fatal cardiovascular events (51).

Thus, it is necessary to explore the complex mechanism of this

comorbidity. A holistic approach to research in systems biology

allows for the explanation of the relationships and underlying

principles of complex disorders, which provides us with a strategy

to investigate the potential genetic changes and common

pathogenesis between MI and OA. In this study, 3 promising

diagnostic biomarkers and their regulatory relationships with TFs

and immune cells are identified from the perspectives of genomics
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FIGURE 7

Single-cell analysis of MI dataset. (A) Cells were categorized and annotated into 11 cell types. (B) Dot plot of markers for cell clusters. (C) Density
plots of the 3 genes expressed in MI and HC samples. (D) Violin plots of the 3 genes between groups. vSMCs, vascular smooth muscle cells;
HC, healthy controls.
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and immunology, which may provide novel targets for diagnosis

and treatment.

In the MI and OA datasets, DUSP1, FOS, and THBS1 were all

shown to have significantly different levels of expression, and they

were also identified in three public disease databases as associated

genes with MI and OA. By integrating multiple machine learning

approaches to screen the best candidate genes (Figures 2-5),

DUSP1, FOS, and THBS1 were identified as shared diagnostic

markers for this comorbidity. Furthermore, all hub genes

demonstrated a strong diagnostic value and superior diagnostic

effectiveness (AUC > 0.7) (Figure 6). Notably, the single-cell

sequencing results are entirely consistent with our bioinformatics

analysis (Figures 7, 8). As RT-qPCR results showed, all three genes

were significantly differentially expressed between the disease group
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and the control group, which was almost consistent with the results

of our analysis (Figure 9). As a member of the bispecific protein

phosphatase family, DUSP1 is a phosphatase expressed in various

tissues and organs, which is confirmed to be low expressed in the

myocardium of the infarcted region. The loss of DUSP1 can affect

myocardial energy metabolism by promoting activated mitophagy

and apoptosis (52). Interestingly, DUSP1 is downregulated in

vascular endothelium under shear stress and acts as a protective

factor during the early inflammatory phase of atherosclerosis (53).

Another study demonstrates that DUSP1 protects the ischemic

myocardium, potentially by increasing its expression to reduce

inflammation and apoptosis (54). Study in vitro also confirmed

that the DUSP1 expression level was significantly lower in

cardiomyocytes of neonatal rats under hypoxia and nutrient
B

C

D E

A

FIGURE 8

Single-cell analysis of OA dataset. (A) Cells were categorized into 15 clusters. (B) Dot plot of markers for cell clusters. (C) Cell clusters were
annotated into 3 cell types. (D) Density plots of the 3 genes expressed in OA and HC samples. (E) Violin plots of the 3 genes between groups.
HC, healthy controls.
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deprivation. Hence, although this result is not consistent with the

dataset, we believe that DUSP1 is a potential diagnostic marker

based on previous studies. In addition, OA synovial tissues exhibit

reduced DUSP1 expression relative to healthy controls, and DUSP1
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is possible to slow the progression of OA through inhibiting the

MAPK pathway (55). Zeel T is an effective drug for OA, the positive

therapeutic impact has been demonstrated that may be due in large

part to the considerable up-regulation of DUSP1 (56). Both in vivo
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FIGURE 9

Validation of key biomarkers. (A–C) The RNA expression of FOS, DUSP1, and THBS1 in OA and control group. (D-F) The RNA expression of FOS,
DUSP1, and THBS1 in MI and control group. P < 0.01: **, P < 0.001: ***.
BA

FIGURE 10

TFs prediction and validation. (A) TFs-hub genes interaction network analysis, round dots indicating the hub genes, square dots indicating TFs, bigger
size of round dots indicating association with a greater number of TFs. (B) Expression levels of key transcription factor between OA/MI and control.
P < 0.01: **, P < 0.001: ***.
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and in vitro experiments showed that knockdown of DUSP1

aggravated OA cartilage erosion by promoting osteoclast

differentiation (57). FOS is a crucial cell proliferation and

differentiation regulator that contributes to myocardial fibrosis in

post-MI rats (58), which is the main cause of later deterioration of

cardiac function. In the male SD rat model of MI with left coronary

artery ligation, immunohistochemical results showed that FOS was

significantly overexpressed (59). However, targeted FOS therapy

has been shown to have the ability to improve cardiac function by

ameliorating cardiac interstitial fibrosis after MI (58). According to

an intriguing study, the transcript levels of FOS are the best
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indicators of the relationship between smoking and MI, offering a

possible marker for gauging the severity and progression of

atherosclerosis (60). On the other hand, cartilage tissues from

clinical OA patients and healthy controls were collected and

cultured in vitro, and the FOS expression level was found to be

lower in the disease group (61), which is consistent with our

experimental results and dataset. However, another experimental

study suggests that FOS is activated and upregulated in promoting

OA pathogenesis (62). The function of FOS promoter SNPs is a

viable marker in OA progression and joint destruction, although it

may need to be tested with larger samples (63). Thus, further studies
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FIGURE 11

Immune cell infiltration analysis between MI and control. (A) The proportion of 22 kinds of immune cells between the two groups. (B) Comparison of
differential infiltration among 22 immune cells. (C) Correlation of 22 immune cell type compositions. (D-F) The correlations between the expression
of three hub genes (DUSP1, FOS, and THBS1) and immune cell enrichment.
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are needed to investigate the effect of FOS on OA. Besides, the

expression of THBS1 is relatively low in the acute phase of MI, but it

is secreted by fibroblasts in large amounts one week after infarction,

which turns over violently and inhibits neovascularization (64).

After MI, tissue launches a repair reaction to rescue heart function.

THBS1 produces a protective barrier by highly selective up-

regulation in the infarct border zone, hence decreasing

inflammatory response and excessive remodeling (65). However,

the early stage of MI is dominated by the mass death of

cardiomyocytes and THBS1 deposition has been observed around

the infarced myocardium over time (66). The ischemic and hypoxic
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cardiomyocytes may produce THBS1 and efflux, which may

increase the concentration of THBS1 in the circulation (67). This

may explain the reduced expression of THBS1 in our investigations

in vitro. In OA, THBS1 can slow the progression of OA by

decreasing angiogenesis and inflammation (68). The expression of

THBS1 was much lower in the synovial tissues of OA patients than

in the normal synovial tissues, and the down-regulation of THBS1

was more noticeable in the presence of IL-1b (69). Interestingly, the

expression of THBS1 is varied in different portions of OA cartilage.

The expression of THBS1 is generally lower in the more seriously

injured areas, it may be associated with vascular invasion
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FIGURE 12

Immune cell infiltration analysis between OA and control. (A) The proportion of 22 kinds of immune cells between the two groups. (B) Comparison
of differential infiltration among 22 immune cells. (C) Correlation of 22 immune cell type compositions. (D-F) The correlations between the
expression of three hub genes (DUSP1, FOS, and THBS1) and immune cell enrichment.
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throughout the course of OA (70). A recent study indicated that

THBS1 released by chondrocytes may have anti-inflammatory

effects on T cells, which may explain THBS1 as a potential

protective factor for OA (71). Taken together, 3 shared

biomarkers may provide new insights into the diagnosis and

management of MI combined with OA.

The increase of lipid oxidation and arterial stiffness by higher

levels of inflammatory mediators in peripheral blood, which is

mostly reflected in the link between MI and OA, suggests that

systemic inflammation may be involved (72). Our study went a step

further. The results of GO analysis showed that inflammatory

response, oxidative stress response regulation, Immune cell

chemotaxis, MAPK pathway-related kinase activity, and cytokine

activity were mainly enriched. This indicated that not only

inflammation but multiple molecular pathways may be involved

in the mechanisms of MI and OA. It was striking that MAPK

signaling pathway was almost at the top of KEGG pathway

enrichment analysis. IL-17 signaling pathway and TNF signaling

pathway were also quite strongly enriched (Figures 4, 5). Therefore,

MAPK signaling pathway may play a key role in both disorders. As

we all know, MAPK signaling pathway consists of three levels of

kinases including MAPK, MAPK kinase and MAPK kinase of

kinase, which can activate or interact with each other to complete

the signal transduction process. The functions mediated by the

different branches are jointly regulating a variety of physiological

and pathological effects such as inflammation, immune response,
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and apoptosis (73). The activation of MAPK signaling pathway is

associated with systemic inflammation and has a considerable

degree of plasticity (74). Systemic inflammatory stimulation can

increase OA progression through MAPK signaling pathway to

enhance inflammatory response and decrease cartilage growth

(75). Up-regulation of MAPK signaling has also been reported to

contribute to the growth of the necrotic core of plaques, which is the

most prevalent cause of MI (76). Therefore, MAPK signaling

pathway may help elucidate the pathological link of this

comorbidity in terms of systemic inflammation. It has been

shown that MAPK signaling pathway can be induced by pro-

inflammatory factors to trigger increased inflammation, but

adverse remodeling usually occurs as a consequence of an

overactive inflammatory response after MI (77). In addition,

MAPK signaling pathway is implicated in platelet activation and

aggregation, and selective inhibition of this pathway can promote

microcirculation (78). Myocardial fibrosis can reduce cardiac

compliance and adversely affect systolic and diastolic function,

which raises the risk of eventual cardiac insufficiency. Fibrosis

will be significantly reduced through MAPK signaling pathway

inhibition (79). Studies have also clearly demonstrated that

MAPK signaling pathway has a role in the pathology of OA,

especially in inflammation and apoptosis (80). As previously

indicated, the significance of inflammation in the development

and progression of OA is gradually becoming recognized and

accepted. Inflammatory mediators disrupt the balance between
FIGURE 13

Sankey diagram of the TFs-hub genes-immune cells network, three columns from left to right indicating TFs, hub genes and immune cells
respectively, the size of each rectangle representing the degree of connectivity.
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consolidation and fracture in the joint. Inhibiting the activation of

MAPK signaling pathway can reduce the further bone destruction

induced by inflammatory mediators, and directly improve the

downstream inflammatory effect and chondrocyte apoptosis (81).

Another study confirms that MAPK signaling pathway is associated

with bone loss while blocking the process can have good therapeutic

effects (82). Furthermore, mechanical stress can cause cartilage

disintegration as a physical stimulus by activating the MAPK

signaling pathway (83). IL-17 signaling pathway and TNF

signaling pathway are also related to the inflammatory response,

which suggests that our research results are consistent with previous

studies. These pathways above have the great potential to help

reveal the shared mechanisms between the comorbidity.

To further explore the immune microenvironment of these two

diseases, immune infiltration analysis in this study illustrated that

many types of immune cells were closely associated, both innate

immunity and adaptive immunity participated in MI and OA

(Figures 11, 12). Innate immunity can quickly recognize and

respond to the sterile inflammatory state during MI, and then
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recruit circulating monocytes and lymphocytes to drive adaptive

immunity. However, the radical immune response may be a risky

trigger for exacerbating myocardial injury (84). As in other organs,

macrophages are major participants in the innate immune response

in the heart (85). Macrophages infiltrate and expand in the area of

MI, showing a pro-inflammatory effect in the early stage, but in the

repair stage representing an anti-inflammatory state (86).

Neutrophils are important participants in the early inflammatory

process of MI, with large numbers of neutrophils entering the heart,

they will play a surveillance function as well as an antiinflammatory

role (87). Besides, NK cells and monocytes may collaborate to

accelerate the development of inflammation (88). T cells and B cells

constitute a major part of adaptive immunity. The role of adaptive

immunity in MI remains uncertain since different T cell subtypes

can play different roles such as injury or repair (89). B cells are

thought to protect myocardial cell survival and promote cardiac

repair in the early stage of MI (90). The immune response is also a

participant in OA. T cells have been clearly observed to dominate

infiltration in the synovium of OA patients and may be involved in
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FIGURE 14

Consensus clustering based on 3 hub genes. (A) Consensus matrix and Consensus CDF when k=2-9 in GSE66360. Relative alterations in the area
under the CDF curve. Tracking Plot displays sample changes under different k conditions, smaller sample changes indicate better subtype stability.
(B, C) Expression of 3 hub genes in cluster A and cluster B via heatmap and boxplot in GSE66360. (D) Consensus matrix and Consensus CDF when
k=2-8 in GSE75181. (E, F) Expression of 3 hub genes in cluster A and cluster B via heatmap and boxplot in GSE75181.
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inflammation and cartilage destruction (91). Activated B cells are

infiltrated in OA, which associated with inflammation (92).

Furthermore, innate immunity has been reported to play a

synergistic role in the sterile inflammatory process of OA. It can

promote OA progression through a variety of innate immune

response cells and inflammatory factors (93), which differs from

our analysis. Additionally, it is worth noting that plasma cells, T

cells follicular helper, and T cells CD4 memory resting are all

significantly associated with MI and OA, but show completely

opposite trends, which is well worth further investigation.

Therefore, these analyses may provide a direction for further

understanding the immunological link between the two diseases.

We also identified a total of 18 transcription factors that could

regulate the hub genes. FOXC1, which was simultaneously regulating

all of the hub genes, may be the crucial TF (Figure 10). There is

evidence that FOXC1 can promote angiogenesis in the ischemic

injury area, and prevent the subsequent decline in cardiac function by

reducing myocardial fibrosis (94). Hence, it is expected to become a

therapeutic target for assisting myocardial repair. Nevertheless, high

expression of FOXC1 could promote inflammatory response and

aggravate bone degradation in OA (95). This effect is confirmed to be

reversed in another study by downregulation of FOXC1 (96). Our

findings are consistent with the results of previous studies. The

expression level of FOXC1 was suppressed in MI but significantly

promoted in OA. It is intriguing that our results revealed that FOXC1

can regulate MI and OA concurrently at the transcriptional level, and

there is currently no literature indicating the mode of action in this

comorbidity. Notably, FOXC1 was predicted to have many binding

sites with 3 hub genes, which provided directions for further

elucidating the regulatory relationship. Considering the extensive

expression of TFs in humans, further exploration of specific links is

well worth pursuing.

Although the comorbidity of MI and OA has been thoroughly

discussed, the lack of understanding of the molecular process has

put us in a conundrum. Here, we aimed to investigate the

underlying common molecular mechanisms by examining

microarray data of MI/OA patients and healthy controls. DUSP1,

FOS, and THBS1 were found by rigorous screening out by several

systems biology approaches and machine learning. The diagnostic

utility with high sensitivity and specificity was confirmed in external

datasets. MAPK signaling pathway was identified by two

independent enrichment analyses, which may assist to identify

the pathogenic link between them in the future. Finally, the

immune cell subtypes and upstream regulators governed by hub

genes were also studied in depth, and the sequenced tissue samples

were stably divided into two subtypes based on the hub gene

expression (Figures 13, 14). To sum up, our findings provide new

insights into the molecular mechanisms underlying the comorbidity

of MI and OA, which may provide a rationale for developing

precision medicine.
5 Limitation

Our study exists some limitations. Firstly, despite the

combination of public disease databases, the sample size of
Frontiers in Immunology 19
datasets used for bioinformatics analysis was still limited.

Different types of samples may have caused differences. Secondly,

our analysis was only performed at the expression level of the genes,

further experiments in vivo or in vitro were needed to validate our

results. Thirdly, the exact regulatory mechanism of immune cells

and TFs corresponding to the hub genes were only predicted in the

online database. Therefore, more efforts are necessary to explore the

concrete molecular mechanisms between MI and OA in the future.
6 Conclusion

In conclusion, by integrated systems biology analysis this

research firstly revealed the common underlying signal pathway

for MI and OA, and 3 hub genes (DUSP1, FOS, and THBS1) were

identified as novel shared biomarkers, which may be potential

therapeutic targets. Additionally, multiple immune cells and TFs

corresponding to the three hub genes were analyzed to illustrate the

regulatory mechanism. Our study provides new sights into shared

molecular mechanisms between MI and OA.
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