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Research progress of SREBP and
its role in the pathogenesis of
autoimmune rheumatic diseases
Xiaofen Xu, Wumeng Jin, Runyu Chang and Xinghong Ding*

Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical
Sciences, Zhejiang Chinese Medical University, Hangzhou, China
Autoimmune rheumatic diseases comprise a group of immune-related disorders

characterized by non-organ-specific inflammation. These diseases include

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ankylosing

spondylitis (AS), gout, among others. Typically involving the hematologic

system, these diseases may also affect multiple organs and systems. The

pathogenesis of autoimmune rheumatic immune diseases is complex, with

diverse etiologies, all associated with immune dysfunction. The current

treatment options for this type of disease are relatively limited and come with

certain side effects. Therefore, the urgent challenge remains to identify novel

therapeutic targets for these diseases. Sterol regulatory element-binding

proteins (SREBPs) are basic helix-loop-helix-leucine zipper transcription

factors that regulate the expression of genes involved in lipid and cholesterol

biosynthesis. The expression and transcriptional activity of SREBPs can be

modulated by extracellular stimuli such as polyunsaturated fatty acids, amino

acids, glucose, and energy pathways including AKT-mTORC and AMP-activated

protein kinase (AMPK). Studies have shown that SREBPs play roles in regulating

lipid metabolism, cytokine production, inflammation, and the proliferation of

germinal center B (GCB) cells. These functions are significant in the pathogenesis

of rheumatic and immune diseases (Graphical abstract). Therefore, this paper

reviews the potential mechanisms of SREBPs in the development of SLE, RA, and

gout, based on an exploration of their functions.
KEYWORDS

sterol regulatory element binding proteins, cytokine storm, autoantibodies,
autoimmune rheumatic diseases, inflammation, immune cells
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GRAPHICAL ABSTRACT

Under the influence of factors such as PUFAs and LXR, SREBP mRNA transcription is promoted, allowing the SCAP-SREBP complex to move from
the endoplasmic reticulum to the Golgi apparatus. After cleavage by S1P and S2P in the Golgi, the complex enters the nucleus. Furthermore, under
the influence of amino acids and the PI3K/AKT/mTOR signaling pathway, nuclear SREBP promotes the expression of target genes, thereby facilitating
lipid synthesis, cytokine production, and accelerating inflammatory and immune cell responses. These functions are closely associated with the
pathogenesis of rheumatic autoimmune diseases.
1 Introduction

Autoimmune rheumatic diseases represent a group of chronic

disorders characterized by inflammation and autoimmunity, with

the potential to affect any organ or system, leading to systemic

damage. Current research indicates the involvement of various

signaling pathways, including type I interferon pathways, immune

cell pathways, immune metabolic pathways, complement, and

coagulation, in the pathogenesis of these diseases. Adaptive

immune cells, particularly B lymphocytes, play a significant role

in the mechanisms underlying the development of autoimmune

rheumatic diseases. B cells emerge as crucial contributors in many

autoimmune disorders, such as RA, SLE, gout and multiple sclerosis

(MS). In many of these conditions, the production of

autoantibodies may constitute a primary pathogenic mechanism,

highlighting the potential roles of B cell subsets and terminally

differentiated antibody-producing plasma cells in autoimmunity

(1). Innate immune cells mainly include macrophages, neutrophils,

dendritic cells, natural killer cells, eosinophils, basophils, and other

cell types, they circulate in the blood or reside in tissues, serving as

the first line of defense against various pathogenic factors (2). Under

the influence of relevant pathogenic factors, these cells produce

cytokines or regulate the dynamic balance of t issue
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microenvironments through direct interactions with lymphocytes,

participating in tissue damage and repair (3).

Inflammasomes, as crucial components of the innate immune

response, play a vital role in the clearance of pathogens or damaged

cells, providing a defense mechanism against pathogens and

preventing pathological host damage. However, excessive

activation of inflammasomes can also lead to autoimmune

diseases, including RA, juvenile idiopathic arthritis (JIA), SLE and

others (4–6). Inflammasomes and the interleukin-1 family of

cytokines can promote the development of autoimmune diseases

through the generation of adaptive immunity by T and B

lymphocytes (4).

SREBPs were initially identified by Brown et al. as transcription

factors that regulate the promoters of genes involved in cholesterol

biosynthesis and the sterol regulatory pathway of the LDLR (7–9).

Biological analysis underscores the significance of the SREBP

pathway as a pivotal node in cell growth, metabolism, circadian

rhythms, cellular stress, inflammation, and homeostasis (10).

Recent research has indicated a correlation between SREBPs and

various pathogenic processes, including endoplasmic reticulum

(ER) stress, inflammation, cell apoptosis, and autophagy, with

disease severity also being linked to SREBP levels (10–13).

Although the SCAP-SREBP pathway plays a crucial role in
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cholesterol metabolism, its role in the immune system remains

poorly understood. Recent studies have found that the activation of

SREBP leads to inflammasome activation, induces macrophage

inflammation, and triggers cytokine storms, thereby participating

in related immune and inflammatory responses (14, 15).

Additionally, research indicates a close association between the

SREBP pathway-controlled cholesterol metabolism and adaptive

immunity, including antibody and T follicular cell responses (16).

Loss of SREBP in T cells severely impairs CD8 T cell activation (17).

Moreover, the absence of SREBP signaling in B cells results in

defective germinal center, memory B cell, and bone marrow plasma

cell generation, preventing the generation of effective antibody

responses (18).

Consequently, this article provides a comprehensive review of

the SREBP’s upstream regulators, intracellular distribution, and

identified biological functions. Furthermore, based on the

established biological functions, we hypothesize that this protein

may play a crucial role in the development of autoimmune

rheumatic diseases such as SLE, RA and gout, and we present a

series of prospects for future investigation in this field, to provide a

novel target for the treatment of this type of disease.
2 Regulators of SREBPs

SREBPs are considered transcription factors that serve as

primary regulators of a series of lipogenesis pathways, comprising

three subtypes: SREBP-1a, SREBP-1c, and SREBP-2 (19). The

activity of SREBPs relies on the SCAP (20). SCAP is a polytopic

membrane protein residing in the endoplasmic reticulum. It binds

to SREBP within the endoplasmic reticulum and transports it to the

Golgi apparatus for proteolytic processing. Additionally, two other

ER-resident membrane proteins, insulin-induced gene 1 protein

(INSIG1) and INSIG2, interact with SCAP, causing the retention of

the SREBP-SCAP complex in the ER membrane (21, 22). INSIG can

enhance its own stability by binding to 25-hydroxycholesterol

(produced in the ER). Once SREBPs leave the ER and enter the

Golgi apparatus, they undergo a two-step proteolytic processing by

two proteases: site-1 protease and site-2 protease (23). Cholesterol

25-hydroxylase, an enzyme responsive to type I interferons,

increases the production of 25-hydroxycholesterol, which

inactivates SREBPs and subsequently exerts anti-inflammatory

effects by reducing the secretion of IL-1b (24, 25).

The liver X receptor (LXR) serves as a pivotal transcriptional

regulator of cholesterol, fatty acid, and phospholipid metabolism

(26). The promoter region of SREBP1c possesses an SRE element

that facilitates its self-regulatory activation (27), LXRa and LXRb
are powerful activators of the SREBP1c promoter. When LXR

agonists are administered, they stimulate the activation of both

SREBP1c and fatty acid synthase (28). Consumption of

polyunsaturated fatty acids (PUFAs) can reduce hepatic SREBP1c

activity (29). The inhibition of SREBP1c by PUFAs occurs through

several mechanisms: reduced transcription, increased mRNA decay,

inhibition of proteolytic cleavage, and enhanced proteasomal

degradation of nuclear SREBP1c (30).
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ATF6 is a transcription factor anchored in the ER membrane,

overexpression of exogenous, active ATF6 or its activation through

glucose depletion has been observed to suppress the expression of

SREBP target genes. Specifically, ATF6 is known to interact directly

with SREBP2 through its leucine-zipper domain. This interaction

recruits histone deacetylase 1, thereby inhibiting the transcriptional

activity of SREBP2 (31). Amino acid levels play a crucial role in the

activation and regulation of SREBP expression. Specifically, amino

acids activate the mechanistic target of rapamycin complex 1

(mTORC1) within the lysosome. By modulating mTORC1 activity,

amino acids ensure that cells can appropriately adjust to metabolic

demands, impacting both anabolic and catabolic pathways (32, 33).

The PI3K-AKT-mTOR pathway has been identified as a major

upstream signaling pathway regulating SREBP (34). AKT

phosphorylates GSK3b, inhibiting its activity, which reduces

SREBP degradation via the FBXW7-mediated ubiquitin

proteasome system (35). AKT phosphorylates and inhibits

INSIG2A, freeing the SREBP–SCAP complex for transport to the

Golgi (36). AKT suppresses TSC, activating mTORC1, which

phosphorylates and relocates lipin-1 to the nucleus, activating

nuclear SREBP1 (37, 38). mTORC1 phosphorylates CREB-

regulated transcription coactivator 2, promoting SREBP1

translocation from the ER to the Golgi by releasing inhibitory

SEC31 and facilitating COPII vesicle formation (39).
3 Biological functions of SREBPs

3.1 The role of SREBPs in
lipogenesis regulation

The SREBP1 gene gives rise to two isoforms through

transcription from distinct promoters. SREBP1c is the

predominant subtype expressed in most tissues, whereas SREBP1a

exhibits high expression only in specific tissues and cells, such as

intestinal epithelium, cardiac tissue, macrophages, and bone

marrow dendritic cells (40). SREBP1c lacks 24 amino acid

residues in the N-terminal transactivation domain of SREBP1a.

This domain allows SREBP1a to bind tightly to CREB-binding

protein, and as SREBP1c lacks these amino acids, its transcriptional

activity is relatively lower (41, 42). In most cultured cells, SREBP1a

(rather than SREBP1c) is the predominant isoform, possibly

because SREBP1a can stimulate the expression of lipogenic and

cholesterol-synthetic genes, thus providing components necessary

for membrane lipid synthesis (43, 44).

A series of animal studies employing transgenic and knockoutmice

for each SREBP gene and subtype indicate that SREBP1c primarily

regulates the expression of fat synthesis genes, while SREBP2 controls

genes related to cholesterol metabolism (20, 41, 43). Physiologically,

SREBP1a robustly activates total fat synthesis in rapidly growing cells,

while SREBP1c plays a role in the nutritional regulation of fatty acids

and triglycerides in fat-producing organs, such as the liver. In contrast,

SREBP2 has a regulatory role in all tissues (20). This functional

specificity is more evident in vivo than in vitro, but isoforms exhibit

functional overlap when overexpressed. The partial specificity of
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SREBP subtypes for different target genes is explained by their unique

binding dynamics with cholesterol synthesis genes, mainly SRE

elements, as well as SREs and enhancer boxes in fat genes, and

auxiliary factors such as SP1 and NFY (45). SREBP1a and SREBP2,

but not SREBP1c, associate as coactivators with CBP and P300 (also

known as EP300) to recruit the mediator complex (42). The SREBP

family is also acetylated and stabilized by CBP and P300 (42, 46, 47).
3.2 SREBPs can elicit cytokine storms

Cytokine storms refer to the rapid and excessive release of pro-

inflammatory cytokines by immune cells, which can lead to a

hyperinflammatory response and contribute to various

pathological conditions. The mechanisms through which SREBPs

induce cytokine storms and their precise impact on immune

regulation are areas of ongoing research. SREBP2 activation

induces an inflammatory response and exacerbates inflammatory

damage. Firstly, existing research suggests that SREBP2 can regulate

the inflammatory phenotype by modulating cholesterol

homeostasis. Increased cholesterol synthesis is involved in various

immune pathways, such as interferon response, inflammasome

activation, and innate immunity (14, 48, 49). Additionally,

perturbation of cellular cholesterol may alter membrane dynamics

and impact cell signal transduction (50). Secondly, SREBP2 can

interact with several pro-inflammatory mediators and promote

their transcription, such as IL1b, IL8, NLRP3, and NOX2 (51–54).

SREBP-2 serves as a transcription factor for lipid synthesis.

However, it has been observed that COVID-19 patients maintain

lower cholesterol levels, even though the expression levels of SREBP-2

in their plasma increase. A seminal discovery by Wonhwa (15)

identified an elevated C-terminal segment of SREBP-2, termed

SREBP-2C, in the blood of COVID-19 patients. This heightened

level of SREBP-2C correlates closely with the excessive inflammation

observed in the lung tissues of COVID-19 patients, inducing an

upregulation of inflammatory responses that can lead to cytokine

storms. Clinical studies have further revealed that ICU patients with

elevated plasma levels of SREBP-2C exhibit more severe lung

inflammation in CT images compared to non-ICU patients with

lower SREBP-2C levels. Consequently, SREBP-2 can serve as a

diagnostic marker for the severity of COVID-19 in critically ill

patients and as a therapeutic target for preventing cytokine storms

and lung damage. Additionally, in an infectious disease mouse model,

the inhibition of SREBP-2 and NF-kB attenuated cytokine storms

induced by viral infection and prevented lung injury. These findings

underscore the potential clinical significance of SREBP-2 in assessing

COVID-19 severity and its role in the prevention of cytokine storms

and lung injury, offering novel prospects for the diagnosis and

treatment of COVID-19.
3.3 SREBPs can promote
macrophage inflammation

The inflammasome is a multiprotein complex formed in the

cytoplasm following exposure to various stimuli from pathogenic
Frontiers in Immunology 04
sources. Its activation depends on sensor proteins recognizing

ligands, subsequently recruiting adaptor protein ASC (55). This leads

to ASC oligomerization and the recruitment and activation of caspase-

1, an enzyme responsible for processing Pro-IL-1b into mature IL-1b.
Studies indicate that conditionedmedia from BMDMs transduced with

Hmgcr or Dhcr24 enhances their ability to stimulate T cells for IL-17A

production (56). Furthermore, researchers have demonstrated that

cholesterol-treated BMDM significantly promote IL-1b production.

Inhibition of SREBP expression can suppress IL-1b-induced
macrophage inflammation (14).

In macrophages, studies have revealed that the SCAP/SREBP2

shuttle complex directly interacts with the NLRP3 inflammasome,

regulating inflammasome activation by translocating from the

endoplasmic reticulum to the Golgi apparatus (57). Another set

of research indicates that SREBP2 is highly activated in

macrophages treated with TNFa, and nuclear SREBP2 binds to

target genes involved in inflammation and interferon responses,

promoting an M1-like inflammatory state (51). Moreover, several

studies suggest that cellular cholesterol levels control immune

phenotypes. The type I interferon (IFN) signal in macrophages

reduces cholesterol synthesis, allowing the activation of STING on

the ER to enhance IFN signaling (49). Furthermore, research has

shown that restoring cholesterol biosynthesis in macrophages

promotes inflammation (14, 50).

Additionally, inflammatory factors upregulate SCAP expression,

facilitating the translocation of the SCAP/SREBP2 complex from the

endoplasmic reticulum to the Golgi apparatus. This disrupts

intracellular cholesterol homeostasis and contributes to

atherosclerosis and non-alcoholic fatty liver disease (58, 59). We

have also discovered that crosstalk between SCAP/SREBP and the

TLR4-MyD88-NF-kB inflammation pathway mediates foam cell

formation in atherosclerosis (60). Moreover, SCAP overexpression

promotes the translocation of SCAP and NLRP3 inflammasomes to

the Golgi apparatus, increasing the activation of the NLRP3

inflammasome pathway and thereby expediting atherosclerosis (61,

62). These findings highlight SCAP as a crucial molecular link between

lipidmetabolism and inflammation (63). The STING/TBK1 pathway, a

classical innate immune signaling pathway, has recently been shown to

play a critical role in the inflammatory response of metabolic diseases.

SCAPs activation of the STING-NF-kB signaling pathway has been

implicated in the pathogenesis of macrophage inflammation and lean

non-alcoholic fatty liver disease (64).
3.4 SREBPs can regulate cellular energy
metabolism to promote the proliferation of
B cells and the production
of autoantibodies

Recent research indicates that the SREBP pathway, governing

sterol metabolism, is closely associated with adaptive immunity,

including antibody and T follicular cell responses (16). Depletion of

SREBP in T cells severely impedes CD8 T cell activation (17). In

addition, recent research has revealed a connection between B-cell

activation and lipid metabolism reprogramming (18). Activation of

TLR4, CD40, and BCR signaling pathways significantly upregulates
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the expression of most genes involved in cholesterol biosynthesis in

B cells. Notably, the lack of SCAP severely inhibits the regulation of

these cholesterol biosynthesis-related genes, including those

encoding key enzymes such as Hmgcr, Hmgcs1, Sqle, Dhcr24,

and lipid synthesis-related genes Acsl3 and Acsl4. Pathway

analysis further indicates that the lipid biosynthesis pathway is

one of the highly impacted pathways associated with SCAP

deficiency in B cells.

Studies have demonstrated that B cells undergo 2-5 rounds of

division after stimulation with different TLRs or CD40, while SCAP-

deficient B cells not only fail to undergo division but are also blocked

from entering the S phase. This suggests that the SREBP signal is a key

factor in mitogen-induced B-cell division and promotes the B-cell cycle

process. Furthermore, SCAP deficiency leads to a sharp reduction in

CD138 and YFP-positive GC-derived plasma cells, resulting in a

significant decrease in antigen-specific IgG titers and reduced affinity

maturation. These findings highlight the critical role of cholesterol

synthesis-mediated SREBP signaling in maintaining lipid homeostasis,

cell cycle progression, and plasma cell differentiation. Loss of SREBP

signaling in B cells impairs the generation of germinal center, memory

B cells, and bone marrow plasma cells, preventing the effective

production of antibody responses (18).
3.5 SREBPs can facilitates
cancer development

Dysregulated cellular lipid metabolism, driven by the SREBP

pathway, is a prominent feature of cancer cells (65). Oncogenic

growth signals render cells reliant on de novo lipogenesis, which

encompasses extensive fatty acid synthesis from glucose and

glutamine to meet the bioenergetic and biosynthetic demands of

rapidly proliferating tumor cells (66). Insulin-mediated signals

through the PI3K-AKT-mTORC1-SREBP axis play a pivotal role in

regulating lipid synthesis in response to nutritional fluctuations. This

signaling pathway also serves as an established survival route,

activated structurally in many cancer types, exerting pronounced

roles in growth, malignancy, anti-apoptosis, drug resistance, and

metastasis (67). Numerous oncogenic signaling molecules, including

P53, PTEN, PI3K, and KRAS, converge upon the PI3K-AKT-mTOR

pathway to activate protein and lipid biosynthesis in cancer cells,

satisfying the demand for lipids in cell growth. Even in conditions of

low oxygen and high acidity, SREBP1a mediates the metabolic flux

from enhanced glycolysis to lipid synthesis via PI3K-AKT signaling,

upregulating the LDLR to facilitate cholesterol uptake. SREBP1a is

highly expressed in cancer cells and exhibits robust promoter activity

in actively proliferating cancer cells (68–71).

The mevalonate pathway is upregulated in many cancers,

including liver cancer, possibly due to mutations in sterol-related

genes, such as SREBP2 and SCAP, resulting from p53 mutations

(71). Additionally, genome-wide expression analysis identified

mutations in sterol gene promoters for p53 and SREBP in human

breast tumors. These mutations disrupted breast tissue architecture

through the mevalonate pathway (69–71). The tumor suppressor

retinoblastoma protein and GTPase NRAS interact in an anticancer

senescence pathway. retinoblastoma protein loss activates SREBPs
Frontiers in Immunology 05
and enhances geranylgeranylation in a reverse E2F-dependent

manner, leading to NRAS activation, subsequent induction of

DNA damage response, and p130-dependent cell senescence (72),

thus promoting retinoblastoma development.
4 Prospects of SREBPs in rheumatic
immune diseases

4.1 SREBP and systemic
lupus erythematosus

SLE is a chronic autoimmune disease characterized by genetic,

endocrine, environmental, and their interaction-induced

autoantibody production, immune complex deposition, abnormal

activation of various immune cells (such as T and B lymphocytes

and granulocytes), and tissue damage in organs like the kidneys,

skin, heart, and lungs (73–75). The exact etiology and pathogenesis

of SLE remain incompletely understood (76). In China, the

incidence of SLE is approximately 70 per 100,000, and it shows

an increasing trend year by year (75). SLE has a complex

pathogenesis closely related to genetics, immune dysregulation,

viral infections, and environmental factors (77, 78). Recent

research on the pathogenesis of SLE has provided a wealth of

information (79–90). Among the multitude of mechanisms

contributing to SLE, immune dysregulation stands out as one of

the primary drivers of disease. Immune cells play a pivotal role in

the initiation and progression of SLE’s autoimmune response. In

SLE, immune cells exhibit overexpression of autoimmunity,

imbalanced cytokine production, and increased apoptosis, all of

which have a significant impact on the pathogenesis of SLE (91).

Lipids are crucial constituents of cell membranes, and changes

in their composition and content can influence the normal

function of cells. For instance, alterations in the composition,

distribution, and dynamics of lipid rafts (microdomains primarily

composed of cholesterol and sphingolipids) on T cells accelerate

their activation in SLE patients, exacerbating the condition (92).

Anomalies in lipid raft expression on T cells in SLE may lead to

abnormal activation and signaling pathways, resulting in the

production of aberrantly expressed cytokines and assisting in

the abnormal response of B lymphocytes, leading to the

production of autoantibodies and the development of SLE (93).

Additionally, the cellular microenvironment plays a significant

role in influencing cellular lipid metabolism, further contributing

to cellular dysfunction (94). Research indicates that cholesterol

buildup is essential for T cell proliferation and their response to

antigen interactions. When cholesterol synthesis is blocked due to

SCAP deficiency, T cell proliferation is entirely halted (17, 95). On

the other hand, if cholesterol cannot be esterified because of Acat1

deficiency, there is an increase in plasma membrane cholesterol

accumulation, which enhances T cell proliferation (96). Likewise

(97), the lack of Abcg1-mediated cholesterol efflux results in

increased plasma membrane cholesterol and further promotes T

cell proliferation (Figure 1).

Research (98) has indicated a close relationship between IFN-g
expression and the severity of SLE in both human and murine models
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of the disease, the increase in nuclear form of SREBP (nSREBP) leads to

cholesterol accumulation, which promotes the expression of IFN-g
(99). Spontaneously developed germinal centers containing

autoreactive B cells that produce pathogenic autoantibodies play a

role in promoting autoimmune responses and driving the development

of systemic lupus erythematosus. Studies have demonstrated that IFN-

g-STAT1 signaling controls the formation of GCs by promoting the

expression of T-bet in B cells and the production of IFN-g (100). As
previously discussed, the loss of nSREBP signaling in cells can lead to

defects in cell cycle progression andmetabolic reprogramming, thereby

impeding the generation of germinal centers, memory B cells, and

plasma cells required for an effective antibody response (18). We

speculate that increased expression of nSREBP in B cells accelerates

B cell cycle progression, promotes B cell activation and proliferation,

leading to the formation of germinal centers. Subsequently, B cells

complete Ig affinity maturation and class switching in germinal centers,

resulting in excessive production of pathogenic autoantibodies. The

binding of these autoantibodies to antigens forms immune complexes,

ultimately contributing to the pathogenesis of SLE (Figure 1).

Macrophages can be polarized into inflammatory (M1) and

anti-inflammatory (M2) phenotypes through various stimuli, such

as IFN-g and LPS for M1 polarization, or IL-4 for M2 polarization,

playing crucial roles in immune regulation (101). Studies have

shown that M1 macrophages in patients with SLE can regulate

the activation status of T and B lymphocytes, thereby influencing

disease activity (102). In MRL/lpr mice, transient ischemic renal

injury upregulates CSF-1 expression in renal tubular epithelial cells,

leading to increased release of CSF-1 and subsequent expansion of

M1 macrophages, accelerating the onset of lupus nephritis (103).

Moreover, recent research has revealed that human and murine

macrophages, when stimulated by IgG immune complexes, undergo

metabolic reprogramming dependent on mTOR and HIF-1a,
resulting in the production of pro-inflammatory cytokine IL-1b,
thereby promoting lupus nephritis (104). In the presence of

cholesterol and oxygenated sterols, including 25/27-HC, the
Frontiers in Immunology 06
SREBP-SCAP complex remains sequestered within the

endoplasmic reticulum along with INSIGs. Studies have indicated

(15) that overexpression of nSREBP leads to a cytokine storm, while

inhibiting nSREBP expression can suppress the production of

inflammatory cytokines such as IL-1b and TNF-a, dampening

macrophage inflammatory responses. Consequently, it is

hypothesized that when 25/27-HC expression is reduced,

preventing INSIGs from inhibiting the translocation of the

SREBP-SCAP complex to the Golgi apparatus (Figure 1),

excess ive SREBP express ion ensues , result ing in the

overproduction of IL-1b, IL-6, and CSF-1, which promotes the

expansion of M1 macrophages and accelerates the onset of lupus

nephritis (Figure 2).

All of these findings collectively suggest that SREBPs may play a

crucial role in the pathogenesis of SLE. Investigating the

mechanistic involvement of SREBPs in SLE could offer a novel

therapeutic target for the treatment of SLE.
4.2 SREBP and Rheumatoid Arthritis

RA is an autoimmune disease characterized by progressive

synovial inflammation in multiple joints, resulting in widespread

symmetrical joint swelling, pain, bone destruction, joint

deformities, and potential involvement of connective tissues such

as the heart, lungs, and eyes. It is considered a severe and

challenging-to-treat disease (105). Epidemiological studies have

indicated a global distribution of RA, with an average prevalence

ranging from 0.5% to 1.5%. In China, the prevalence of RA in adults

is approximately 0.4% and shows an increasing trend (106). The

etiology and pathogenesis of RA remain inconclusive, but it is

generally accepted that RA is an inflammatory disease triggered by

external factors on a genetic susceptibility background. RA patients

exhibit innate immune and adaptive immune response

abnormalities, characterized by an imbalance in Th1/Th2
FIGURE 1

The SREBP-SCAP complex is transported from the endoplasmic reticulum to the Golgi apparatus and into the nucleus. Thus, lipid synthesis
increases, promoting T cell proliferation and the process of B cell cycle is accelerated, B cells are activated and proliferated to form GC, and then B
cells complete Ig affinity maturation and class conversion in GC, which leads to excessive expression of pathogenic autoantibodies, autoantibodies
combine with antigens to form immune complexes, and then lead to the pathogenesis of SLE.
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responses, an increased number of Th17 cells, and compromised

functions of T and B lymphocytes that have immunosuppressive

effects. These abnormalities lead to the production of a multitude of

pro-inflammatory cytokines, including IFN-g, TNF-a, IL-1b, IL-6,
and IL-17 (107–109), which participate in a positive feedback loop,

promoting the continuous progression of inflammation. Ultimately,

this results in the infiltration of inflammatory cells into the

synovium, cartilage and bone destruction, joint deformities, and

peripheral tissue damage in RA patients. SREBP-2 promotes targets

of the methoxyerate pathway and interferon-responsive genes in

TNF-activated macrophages (51). Recent studies have shown that

endotoxin-mediated IL-1b production is partially dependent on

SREBP-1a. Caspase-11 interacts with the S1P-SREBP pathway,

activating SREBP-1a, which subsequently drives downstream

inflammatory responses (40, 110). Given the characteristics of

SREBP overexpression promoting the release of inflammatory

factors, we speculate that SREBP exacerbates the continuous

progression of inflammation, leading to synovial infiltration of

inflammatory cells, cartilage and bone destruction, joint

deformities, and peripheral tissue damage in RA patients.

The JAK-STAT signaling pathway plays a significant role in the

pathogenesis of RA (111–114). JAK2 activates downstream genes by

phosphorylating STAT3 or STAT5, leading to the release of pro-

inflammatory signals, such as IL-6, IFN-g, IL-12, and other

inflammatory factors (115–118). Researches have shown that blocking

the JAK2-STAT3 pathway by activating AMPK can exert an anti-

inflammatory effect. AMPK phosphorylates JAK2 at Ser515 and

Ser518, inhibiting JAK2-mediated STAT3 activation (119, 120).

Furthermore (121), study has shown that the activation of AMPK can

suppress the expression of SREBP, while AMPK expression is inhibited

in RA. Therefore, we speculate that SREBP may also play a role in the

pathogenesis of RA.

NF-kB plays an essential role in joint destruction. When cells are

stimulated, IkB are phosphorylated by IkB kinase, leading to the release

of NF-kB. NF-kB enters the cell nucleus and, through a series of
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reactions, initiates the transcription and expression of downstream

inflammatory factors such as IL-1b, IL-6, IL-12, IL-17, TNF-a, and
others (122). This, in turn, activates NF-kB, causing an amplification of

the initial inflammatory signal, resulting in a cascade reaction that

sustains the development of the inflammatory response and structural

damage. Clinical studies have found significantly elevated expression

levels and activity ofNF-kB in the serumand lymphatic endothelial cells

of RA patients. Animal experiments have also confirmed that inhibiting

the NF-kB pathway can significantly improve the degree of toe swelling

and inflammatory responses in amousemodel ofRA(123). Studieshave

found that SCAP and SREBP1 form a super complex with IkBa,
bringing NF-kB close to the endoplasmic reticulum. Upon endotoxin

stimulation, SCAP escorts this complex to the Golgi apparatus, where

SREBP1 is cleaved by S1P/S2P, releasing IkBa for phosphorylation and

activating subsequent inflammatory responses (124, 125). Additionally,

the SCAP/SREBP/STING/TBK1 pathway can activate NF-kB in

metabolic diseases and promote the expression of related

inflammatory factors (64). HSP90 is a new regulatory factor of SREBP

and can bind to the SREBP-SCAP complex in the endoplasmic

reticulum and Golgi apparatus, stabilizing it. The inhibition of HSP90

results in the dependence of the complex on proteasomal degradation

(126). HSP90b activates SREBP2, increasing cholesterol biosynthesis

and NF-kB signaling to promote osteoclastogenesis (127). Inhibiting

SREBP and subsequently suppressing NF-kB-related inflammatory

responses may alleviate inflammation, inhibit bone destruction, reduce

disability, and achieve disease remission in RA patients (Figure 3). This

hypothesis merits further investigation.
4.3 SREBP and gout

Gout is an inflammatory disease characterized by the massive

deposition of urate crystals in joints and surrounding tissues,

resulting from disturbances in purine metabolism and/or

abnormal uric acid excretion (128). It has become the second
FIGURE 2

SREBP-regulated macrophage inflammation promotes the pathogenesis of lupus nephritis. If the expression of 25/27-HC is too low and INSIGs
cannot inhibit the transport of SREBP-SCAP complex to Golgi, it will lead to the overexpression of SREBP, produce a large amount of IL-1b, IL-6 and
CSF-1, promote the expansion of M1 macrophages and accelerate the pathogenesis of lupus nephritis.
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FIGURE 3

Inflammatory factor storm caused by crosstalk between SREBP and NF-kB promotes the pathogenesis of rheumatoid arthritis. SCAP/SREBP/STING/
TBK1 can activate the transcriptional expression of downstream inflammatory factors such as IL-1b, IL-6, IL-17, TNF-a by activating NF-kB
phosphorylation, thus reactivating NF-kB, resulting in further amplification of the initial inflammatory signal, the formation of inflammatory factor
storm, leading to joint inflammation to accelerate the pathogenesis of RA. HSP90b promotes osteoclast formation by activating SREBP2 to increase
cholesterol biosynthesis and NF-kB signal, which leads to the pathogenesis of RA.
FIGURE 4

PI3K/Akt/mTOR/SREBP signal transduction leads to the pathogenesis of gout. PI3K/Akt/mTOR signal activates SREBP, resulting in increased fat
production and the formation of inflammatory bodies, which further leads to macrophage inflammation and abnormal glucose and lipid metabolism,
resulting in the pathogenesis of gout.
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most prevalent metabolic disease in China, following diabetes (129).

Recurrent gout attacks not only cause severe pain in affected joints

but can also lead to joint damage, dislocation, deformities, and even

joint disability or amputation. Furthermore, the extensive

deposition of urate crystals in the kidneys can lead to renal

damage and even acute kidney failure, which can be fatal (130).

Currently, commonly used urate-lowering drugs such as febuxostat,

while effective to some extent, have the potential for severe toxic

side effects with long-term use, low patient tolerance, and a high

disease recurrence rate, significantly impacting patient

compliance (131).

Modern medicine recognizes that MSU crystals can strongly

stimulate Toll-like receptors and the NLRP3 inflammasome,

leading to the activation of the innate immune response,

primarily involving macrophages and neutrophils. This eventually

results in the release of IL-1b and other pro-inflammatory factors,

triggering gout attacks (132, 133). Macrophages play a frontline role

in the immune response, with different subtypes classified based on

the cytokines they secrete and the cell surface adhesion molecules.

Among these subtypes, M1 macrophages, when activated, promote

the assembly of the NLRP3 inflammasome, leading to the release of

high pro-inflammatory cytokines such as TNF-a and IL-1b, along
with promoting the recruitment of neutrophils from peripheral

blood to the inflammatory site, subsequently releasing pro-

inflammatory cytokines and causing sustained inflammation. In

contrast, M2 macrophages can suppress MSU crystal-induced

inflammation and inhibit caspase-1 activation and IL-1b
production (134). In M1 pro-inflammatory macrophages, the

TCA cycle is disrupted, whereas M2 macrophages possess a

complete TCA cycle and mainly rely on OXPHOS (135). The

overexpression of SREBP1a promotes the repositioning of the

NLRP3 inflammasome to the Golgi apparatus, thereby enhancing

the activation of the NLRP3 inflammasome pathway (61, 62).

SREBP1a also directly activates the transcription of NLRP genes

and caspase-1, mediating the secretion of IL-1b by macrophages.

This indicates an important function of macrophage SREBP1a,

associating lipid generation and/or lipid toxicity with innate

immune responses (40). MIR-33 is a microRNA involved in

SREBP signaling, and is also involved in the production of pro-

inflammatory and anti-inflammatory genes in M1 and M2

macrophages, respectively (136). In addition, SREBP and miR-33

inhibit cholesterol efflux through the ATP-binding cassette

transporter A1 in macrophages (137). Loss of SCAP caused

changes in cholesterol metabolism and induced proinflammatory

M1 polarization in adipose tissue macrophages (125, 138).

Macrophage polarization is a complex process influenced by the

interaction of various intracellular signaling molecules and pathways.

It holds crucial significance in inflammation, metabolic diseases,

autoimmune disorders, and other conditions. Among these factors,

the regulation of the PI3K/Akt/mTOR signaling pathway plays a

central role in controlling macrophage polarization (139).

Furthermore, SREBP1 mediates metabolic flux from enhanced

glycolysis to lipid generation via the PI3K-AKT pathway and

upregulates LDLR, promoting cholesterol uptake (68–71). These

factors can lead to macrophage inflammation, glucose and lipid
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metabolic abnormalities, ultimately contributing to the

pathogenesis of gout (Figure 4).

While macrophages and neutrophils are considered the primary

immune cells involved in gout pathogenesis (140, 141), recent

researches have highlighted the role of T cell subsets in gout

(142, 143). Targeting pro-inflammatory T cell subsets or their

associated cytokines can improve MSU crystal-induced arthritis

in mice. The gut microbiota and its metabolites play a significant

role in maintaining intestinal homeostasis (144, 145) and regulating

T cell differentiation (146), which are crucial in the development of

autoimmune disorders and inflammatory diseases. A previous study

indicated that the loss of SCAP in T cells severely impairs CD8 T

cell activation (17). Due to the limited research on SREBP in gout,

future investigations targeting this pathway may provide new

strategies for gout treatment.
5 Conclusions

SREBP has emerged as a significant discovery in medical

research in recent years, research on SREBP has primarily focused

on the field of obesity and cancer. However, the functions of SREBP

in lipid metabolism, cell growth, and inflammation are also closely

related to the pathogenesis of rheumatic and immune diseases.

Therefore, investigating the expression characteristics and signaling

pathways of SREBP in patients with rheumatic immune diseases

can provide deeper insights into the pathogenesis of these

conditions. This, in turn, holds substantial significance for the

identification of early biomarkers and the development of precise

personalized treatment approaches.
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Glossary

AMPK adenine mononucleotide activated protein kinase

AKT protein kinase B

BMDM bone marrow-derived macrophage

CREB1 cAMP responsive element binding protein1

CSF-1 colony-stimulating factor-1

GC germinal center

GTP guanosine triphosphate

HIF-1a hypoxia-inducible factor-1a

HSP90 heat shock protein 90

IFN-g interferon-g

IL-1b interleukin-1b

IL-4 interleukin-4

INSIGs insulin -induced gene protein

IkB NF-kB inhibitor proteins

JAK-
STAT janus kinase-signal transducer and activator of transcription

KRAS kirsten rat sarcoma viral oncogene homolog

LECs lymphatic endothelial cells

LDLR low density lipoprotein receptor

LPS lipopolysaccharide

M1 macrophages can polarize to inflammatory phenotype

mTOR mammalian target of rapamycin

MyD88 myeloiddifferentiation factor88

MSU monosodiumuratecrystals

NF-kB nuclear factor-kB

NLRP3
nucleotide-binding oligomerization domain, leucine- rich repeat and
pyrin domain-containing 3

NRAS neuroblastoma RAS viral oncogene homolog

OXPHOS oxidative phosphorylation

PI3K phosphatidylinositol 3-kinase

PTEN phosphatase and tensin homolog

RA rheumatoid arthritis

SCAP SREBP cleavage activating protein

SLE systemic lupus erythematosus

SREBPs sterol regulatory element binding proteins

STING stimulator of interferon genes

TAC tricarboxylic acid

TBK1 TANK-binding kinase 1

TLR4 toll-like receptor 4

25/
27-HC 25-hydroxycholesterol and 27-hydroxycholesterol
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