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Background: Lung adenocarcinoma accounts for the majority of lung cancer

cases and impact survival rate of patients severely. Immunotherapy is an effective

treatment for lung adenocarcinoma but is restricted by many factors including

immune checkpoint expression and the inhibitory immune microenvironment.

This study aimed to explore the immune microenvironment in lung

adenocarcinoma via disulfidptosis.

Methods: Public datasets of lung adenocarcinoma from the TCGA and GEO

was adopted as the training and validation cohort. Based on the differences in

the expression of disulfidptosis -related genes, a glucose metabolism and

immune response prognostic model was constructed. The prognostic value

and clinical relationship of the model were further explored. Immune-related

analyses were performed according to CIBERSORT, ssGSEA, TIDE, IPS.

Results: We verified that the model could accurately predict the survival

expectancy of lung adenocarcinoma patients. Patients with lung

adenocarcinoma and a low-risk score had better survival outcomes

according to the model. Moreover, the high-risk group tended to have an

immunosuppressive effect, as reflected by the immune cell components,

phenotypes and functions. We also found that the clinically relevant immune

checkpoint CTLA-4 was significantly higher in low-risk group (P<0.05),

indicating that the high-risk group may suffer worse tumor immunotherapy

efficacy. Finally, we found that this model has accurate predictive value for the

efficacy of immune checkpoint blockade in non-small cel l lung

cancer (P<0.05).
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Conclusion: The prognostic model demonstrated the feasibility of predicting

survival and immunotherapy efficacy via disulfidptosis-related genes and will

facilitate the development of personalized anticancer therapy.
KEYWORDS

lung adenocarcinoma, tumor microenvironment, disulfidptosis-related genes, immune
checkpoint, programmed cell death
Introduction

Lung cancer is one of the most common causes of cancer-related

death worldwide, and lung adenocarcinoma (LUAD) accounts for the

majority of lung cancer cases among all histological subtypes (1).

Because LUAD is prone to metastasis in the early stage, the prognosis

of LUAD patients is usually poor, with an average 5-year survival rate

less than 20% (2). At present, personalized and precise treatments for

lung cancer have been increasingly emphasized (3). Unfortunately,

although great progress has been made in targeted therapy, the 5-year

overall survival (OS) rate of LUAD patients is still low (4). Therefore,

identification of better ways to improve the effectiveness of therapy is

urgently needed.

Under normal circumstances, the immune system can identify

and eliminate tumor cells in the tumor microenvironment (TME)

(5). However, in order to survive and grow, tumor cells will escape

the body’s immune surveillance in different ways, ultimately

resulting in immune escape (6). Therefore, restoring the

antitumor immune response to control and eliminate tumor

cells is the core idea of tumor immunotherapy (7). In clinical

practice, immunotherapy has been successful at enhancing the

tumor killing effect of tumor immune cells by inhibiting

programmed death proteins (8). A case in point is pablizumab,

whose inhibitory site is the PD-1 molecule. Tumor cells express

PD-L1 and bind to the PD-1 receptor on effector T cells, thereby

inducing programmed cell death (PCD) in effector T cells (9).

PCD refers to the process in which cells initiate the expression of

death-related genes through targeted signals in the internal and

external environment, which promotes cell “suicide”, thus

removing unnecessary or abnormal cells from the body (10). To

date, the PCD family has expanded from apoptosis and necrosis to

pyroptosis, ferroptosis, cuproptosis and other forms (11). In the

latest research of Gan et al., a new form of PCD—disulfidptosis—

was also found to be involved (12).

Disulfidptosis refers to glucose deficiency resulting in the

excessive accumulation of disulfide bonds in cells highly

expressing SLC7A11, which leads to abnormal crosslinking of

disulfide bonds between cytoskeleton proteins (13), ultimately

resulting in abnormal contraction of the cytoskeleton, collapse of

the actin network and even cell death (14). Tumor cells usually need

to highly express the SLC7A11 protein to recruit additional cystine
02
for the synthesis of reduced glutathione, which balances the

oxidation caused by the highly active metabolism of tumor cells

(15). In addition, glucose metabolism plays an important role in the

biochemical energy supply and cell substance transformation.

Cystine entry into cells mediated by the SLC7A11 protein needs

to be further reduced to cysteine by reduced nicotinamide adenine

dinucleotide phosphate (NADPH) produced by the pentose

phosphate pathway (PPP) in glucose metabolism (16). This

process can reduce the toxicity of cystine and provide raw

materials for the synthesis of glutathione. However, when glucose

is deficient, NADPH depletion leads to abnormal accumulation of

cystine and other disulfides in cells highly expressing SLC7A11 and

triggers disulfidptosis (17). As a species of high-metabolism and

high-energy-consumption cell, tumor cells with high SLC7A11

expression exhibit a stronger disulfidptosis response when glucose

is depleted (18).

Therefore, in this study, we investigated disulfidptosis-related

molecules and pathways using immune- and glucose metabolism-

related genes by analyzing LUAD patient gene expression in the TCGA

database.We established a risk model to predict LUAD patient survival

and immunotherapy efficacy based on disulfidptosis-related genes,

providing a therapeutic reference for LUAD patients.
Methods

Patients and datasets

The fragments per kilobase of transcript per million mapped

reads (FPKM) standardized RNA-seq data of 600 samples,

including 59 normal lung tissues and 541 tumor samples and

corresponding clinical, prognostic and tumor mutation burden

(TMB) data downloaded from The Cancer Genome Atlas (TCGA)

website (https://portal.gdc.cancer.gov/projects/TCGA-LUAD),

were used to identify DEGs between normal samples and tumor

samples. Patients with unknown clinical information or an overall

survival time less than 30 days were excluded. Then, three gene

expression profiles of LUAD (GSE26939, GSE68465, and

GSE72094) were downloaded from the Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo) and used to validate the

accuracy of the prognostic model. The 32 genomes involved in
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glucose metabolism were downloaded from the Molecular

Signatures Database (MsigDB) via gene set enrichment analysis

(GSEA; https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) and

used to identify disulfidptosis-related genes involved in glucose

metabolism. Finally, two databases, IMMPORT (https://

www.immport.org/) and InnateDB (https://www.innatedb.ca/),

were used to obtain immune-related genes (19). The selected

genes were subsequently used to identify disulfidptosis-related

genes involved in the immune response.
TCGA differential analysis

We performed differential expression analysis of genes encoding

proteins (or their active subunits) that affect glucose metabolism in

the TCGA cohort by the Wilcoxon test (20). Gene expression profiles

were processed by CIBERSORT to determine the cell composition of

complex tissues. The Wilcoxon test was subsequently used to analyze

the difference in infiltrating immune cell diversity between normal

tissues and lung adenocarcinoma tissues. The differential gene

mechanism and signaling pathway enrichment analyses were

performed by gene set variation analysis (GSVA) based on the

Gene Ontology (GO) dataset (c5.go.v2023.1.Hs.symbols.gmt) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset

(c2.cp.kegg.v2023.1.Hs.symbols.gmt) from the TCGA cohort. We

performed correlation analysis to identify disulfidptosis-related

genes (DRGs) via the R packages “corrplot” and “circlize”.

Additionally, heatmaps were constructed to visualize the results of

the differential expression gene (DEG) analysis in the TCGA cohort

via the R packages “limma” and “pheatmap”. Ultimately, immune cell

infiltration was analyzed and visualized by correlation analysis

between DEGs and immune cells.
Identification of g/i-DRG-DEGs

A total of 24 DRGs were classified from recently published

literature (21) to identify g/i-DRG-DEGs (disulfidptosis-related

genes involved in glucose metabolism and the immune response).

According to previous reports, Pearson analysis was considered an

accepted method for revealing the correlation between DRGs and

genes involved in glucose metabolism and the immune response in

the RNA-seq data of TCGA LUAD patients (22). The cutoff values

of R > 0.4 and P < 0.001 were acceptable. The differences in the

expression levels of the g/i-Genes between LUAD tissues and

normal tissues from the lungs were subsequently evaluated via the

Wilcoxon test. A false discovery rate (FDR) < 0.05 and a fold

change (FC)> 1 were set as screening criteria for obtaining

differentially expressed g/i-DEGs. The g/i-DEG and g/i-DRGs

intersect to obtain the g/i-DRG-DEG. The g-/i-DRG-DEGs were

subsequently subjected to univariate Cox analysis to determine the

prognostic value of the g-/i-DRG in LUAD patients via the R

package “survival”. Least absolute shrinkage and selection

operator (LASSO) Cox regression analysis was applied to

construct a 7-g/i-DRG-DEG predictive signature (23).
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Construction of the disulfidptosis-related
prognostic signature

Initially, 7 prognostic genes were screened out on the basis of the

optimal penalty parameter l determined by tenfold cross-validation

following the minimum criteria. Afterwards, Multivariate Cox

regression analysis was conducted to establish a seven-gene

predictive model. The computational formula used for determining

the disulfidptosis-related prognostic risk score was as follows:

Risk score = Coefi gene1 × gene1 expression + Coefi gene2 × gene2

expression + ···· + Coefi gene × gene expression. Coefi represents the

coefficient value of the corresponding gene. Patients were divided into

low-risk and high-risk groups based on the median risk score (24).

Time-dependent receiver operating characteristic (ROC)

analyses and Kaplan–Meier log-rank tests were used to evaluate

the performance and prognostic ability of the predictive signature

using the TCGA and GEO datasets via the R packages “timeROC”

and “survival”, respectively. Additionally, univariate and

multivariate Cox regression analyses were performed to assess the

ability of the risk model to predict patient prognosis independent of

other clinicopathological features.
Clinical and functional analysis

A nomogram for predicting the 1-, 3-, and 5-year survival of

LUAD patients was developed using the risk model in conjunction

with clinicopathological parameters such as age, sex, and stage

(25). We employed a calibration curve to determine if the

anticipated survival rate was congruent with the observed

survival rate. GSEA was performed to determine which pathway

genes were enriched mainly between the high- and low-risk

groups via the GO dataset and the KEGG dataset from the

molecular signature dataset (https://www.gsea-msigdb.org/gsea/

msigdb) as references. The criteria for statistical significance were

FC>1, nominal p<0.05 and FDR<0.25. Then, functional enrichment

analyses based on the KEGG dataset and GO dataset were

performed separately (26).
Immune infiltration analysis

Twenty-nine different kinds of tumor infiltrating immune cells

(TIICs) were examined by ssGSEA (27). The Wilcoxon test was

performed to compare the tumor-infiltrating immune cell scores.

K−M survival curves and the log-rank test were used to compare the

prognostic significance of immune cells with significant differences

between the high-infiltration and low-infiltration groups in the TCGA

cohort (28). Additionally, the expression levels of immune checkpoint

molecules were extracted from 541 LUAD tissues in the TCGA

database. The differential expression of immune checkpoint

molecules in the high- and low-risk groups was explored using the

Wilcoxon test. The same method was used to analyze the difference in

HLA expression (29).
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Immune analysis

Tumor immune dysfunction and exclusion (TIDE) is a

computational framework for evaluating the possibility of tumor

immune escape according to the gene expression profiles of tumor

samples. We obtained TIDE scores (http://tide.dfci.harvard.edu/) and

performed a difference analysis of TIDE scores for the high- and

low-risk groups using Wilcox’s method to predict immune escape.

To further verify the accuracy of the risk score model, we generated

ROC curves for the risk score, TIDE score and TIS. First, we

calculated the tumor mutation burden (TMB) for each tumor

sample in the TCGA cohort and performed differential analysis of

the TMB using the Wilcoxon test. Subsequently, we performed

combined survival analysis on the same samples by combining

TMB and risk score data. We classified tumors into six subtypes

based on immunological characteristics (30). The immune

checkpoint inhibitor (ICI) sensitivity score of tumor samples

from each TCGA cohort was calculated by the R package

“oncoPredict”. Finally, we downloaded the immune cell

proportion score (IPS) from The Cancer Imaging Archive

database (TCIA) and combined it with the TCGA expression

data. We used the R packages reshape2 and ggpubr to perform a

rank sum test on the IPS between the high- and low-risk groups,

and the results were visualized with box plots.
Other statistical analyses

RStudio and its associated packages were used to conduct all the

statistical analyses. The ‘ggplot2’ package was used to visualize the

graphs. Wilcox analysis was performed through the ‘limma’ package.

The chi-square test was used to examine differences in the

proportions of clinical features. A paired t test was used to analyze

the difference in the survival of LUAD tissues and adjacent normal

tissues. Differences amongmultiple groups were analyzed by one-way

ANOVA. p<0.05 was considered to indicate statistical significance.
Results

Selection and differential analysis of the
TCGA cohort

The overall data analysis workflow is shown in Figure 1. We

selected the TCGA cohort, which included 600 samples (including

541 LUAD cases and 59 normal tissue cases). Samples with

duplicate names were removed by quality control (the expression

values of the same patient were averaged), and 508 LUAD samples

were ultimately obtained. We annotated the standardized RNA-seq

data in the TCGA cohort and obtained a total of 59427 genes. By

analyzing the differential expression of the genes affecting glucose

metabolism, we found that several hypoxia-inducible genes (such as

HIF-1A and PDK-1, P<0.05) were significantly upregulated.

Moreover, glucose transport-, glycolysis-, and pentose phosphate

pathway-related genes (such as SLC2A1, PKM, PFKP, IDH2 and

G6PDH, P<0.05) were significantly upregulated, suggesting that
Frontiers in Immunology 04
there were additional active glucose transport, glycolysis and

pentose phosphate pathway processes in LUAD cells (Figure 2A).

Furthermore, we analyzed the differences in immune cells in

the tumor microenvironment in this cohort (Figure 2C). Through

gene set variation analysis (GSVA) analysis based on Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) analyses, we found significant differences in

immune-related, metabolism-related and tumor-related

pathways (Supplementary Figures S1A, B). Moreover, the

expression of 24 disulfidptosis-related genes (DRGs) was

significantly different in different tumor-infiltrating immune

cells (Figure 2D), and most DRGs were expressed at low levels

in CD4+ regulatory T cells and plasma cells. We found that there

were 22 DRGs in the TCGA cohort (Figure 2B). We performed

differential expression analysis of the DRGs, and all the DRGs

were significantly different between normal and tumor tissues

(P<0.05). Among them, SLC7A11, LRPPRC and other genes were

significantly expressed at low levels in normal tissues, while

MYH10, PDLIM1 and other genes were significantly highly

expressed in normal tissues (Supplementary Figure S1C).
Identification and construction of the
7-g/i-DRG-DEG signature model

We selected a total of 1009 genes from 32 glucose metabolism-

related gene sets from the GSEA database and then extracted the

expression of 1009 genes from the TCGA cohort via Perl scripts.

Using the same method, we evaluated the expression of 2328 genes

involved in the immune response from the IMMORT and INNATE

gene sets. These two gene sets were combined to obtain the total gene

set (g/i-Genes) related to glucose metabolism or the immune

response (Figure 3A). The expression levels of the g/i-Genes were

performed via differential gene analysis and correlation analysis with

the DRGs: a. Through differential gene expression analysis (log2|

FC|>1, FDR<0.01), we obtained 905 glucose metabolism- and

immune-related genes (g/i-DEGs). b. A total of 707 DRG-related

genes (g/i-DRGs) were screened by Pearson correlation analysis (R >

0.4, P < 0.001). A total of 128 differentially expressed disulfidptosis-

related genes involved in glucose metabolism and the immune

response (g/i-DRG-DEG) were obtained by taking the intersection

of g/i-DEG and g/i-DRG. Ultimately, we used the overall survival

(OS) data of LUAD patients in the TCGA cohort to examine the

predictive ability of g/i-DRG-DEGs through univariate Cox

regression analysis, and 37 prognostic g/i-DRG-DEGs were

identified as “risk genes”.

Subsequently, 508 LUAD patients were randomly divided into

two groups: the training group and the validation group. We used

the expression profiles of 37 prognostic g/i-DRG-DEGs in the

training cohort to construct a 7-g/i-DRG-DEG model containing

7 signatures through LASSOCOX regression analysis, including

ARRB1、LIFR、PDGFB、LGR4、KIF20A、NT5E、PHKA1

(Figures 3B, C). There were significant differences in the expression

of these seven genes in the TCGA cohort (Figure 3D). Multivariate

Cox regression was used to analyze the expression risk score of the

7-g/i-DRG-DEG for each sample. Tumor stage and risk score were
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found to be important predictors of OS in LUAD patients by

univariate Cox regression analysis (Figure 3E, P<0.001). Tumor

stage and the risk score were independent determinants of OS in

LUAD patients by multivariate Cox analysis (Figure 3F, P<0.001).

To better demonstrate the prognostic value of this model for LUAD

patients, we used a nomogram to predict the prognosis of LUAD

patients at 1, 3, and 5 years (Figure 3G). The calibration curve

further verified that the 1-, 3-, and 5-year survival rates were highly

consistent with the predicted survival rates (Figure 3H).
Prognostic reliability of 7-g/i-DRG-
DEG model

We focused on the prognostic value of the 7-g/i-DRG-DEG

signature model and evaluated its performance. Patients in the

TCGA training cohort were divided into high-risk and low-risk

groups by the median cutoff (Figure 4A), and deaths among LUAD

patients increased as risk scores increased (Figure 4D). K−M curve

analysis revealed that OS was significantly shorter in the high-risk

subgroup than in the low-risk subgroup (P<0.001) (Figure 4G).

Moreover, the area under the curve (AUC) values for 1-year, 3-year

and 5-year survival were 0.694, 0.706 and 0.749, respectively

(Figure 4J). The risk score had greater predictive accuracy than did

the other single factors (Figure 4M). To evaluate the prognostic value of
Frontiers in Immunology 05
OS in the entire TCGA dataset, we further performed confirmatory

analyses of the model in the validation cohort and the entire TCGA

cohort. Consistent with the results observed in the training cohort,

samples from both risk categories were reasonably distributed in the

validation cohort (Figures 4B, E, H, K, N) and the entire cohort

(Figures 4C, F, I, L, O). Finally, we conducted external validation on

three GEO datasets (the GSE26939, GSE68465 and GSE72094 cohorts)

to further verify the generalizability of the model. The results

demonstrated that the model had the same stable performance

(Supplementary Figure S2). The above analyses revealed that the

disulfidptosis-related 7-g/i-DRG-DEG signature is a reliable

independent predictor of LUAD patients.
The clinical and functional characteristics
of risk score based on the 7-g/i-DRG-
DEG model

First, we visualized the DEGs between the high-risk and low-

risk groups via heatmaps (Supplementary Figure S3). A total of 782

genes were significantly differentially expressed. Among the seven

modeling genes, NT5E (log2|FC|=1.06, p<0.05) and KIF20A (|

FC|=1.02, p<0.05) were significantly highly expressed in the high-

risk group. We divided LUAD patients in the TCGA cohort into

different groups randomly according to clinical stage, T stage, age,
FIGURE 1

Analysis workflow of our work. LUAD, Lung Adenocarcinoma; TCGA, The Cancer Genome Atlas; GSVA, Gene Set Variation Analysis; DEG, Differential
Expression Gene; DRG, Disulfidptosis-Related Gene.
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sex, and four representative gene mutations (KRAS, EGFR, TP53,

STK11) to study whether the prognostic model could predict LUAD

patient OS based on these clinical features (Supplementary

Figure S4). We also performed a correlation analysis of risk

scores between different clinical variable subgroups and detected

significant differences in tumor stage (P<0.001), T stage (P<0.05)

and TP53 mutation status (P<0.001). In addition, we found that the

OS time of high-risk patients was significantly shorter than that of

low-risk patients in every clinical characteristic subgroup (P<0.01).

In summary, the 7-g/i-DRG-DEG model can accurately predict the

prognosis of LUAD patients without considering certain essential

clinical characteristics.

Then, we performed GSEA, KEGG and GO enrichment analyses.

Through gene set enrichment analysis (GSEA), we found that several

pathways related to tumor development and progression, including

the cell cycle, ECM receptor interaction, focal adhesion, actin

regulatory, and spliceosome pathways, were upregulated in the

high-risk group (Figure 5A), wherein actin regulation is closely

related to disulfide denaturation. Moreover, there were also

significant differences in several biological processes between the

two groups, including intermediate filament, mitotic nuclear, mitotic

nuclear regulation, axial filament assembly and ciliary movement

(Figures 5B, C). KEGG enrichment analysis revealed significant

differences in the cell cycle, motor proteins, complement and

coagulation cascades, pancreatic secretion, protein digestion and

absorption, metabolism of xenobiotics by cytochrome P450, linoleic

acid metabolism and the alpha−linolenic acid metabolism pathway

(Figure 5D). GO functional enrichment analysis also revealed
Frontiers in Immunology 06
significant differences in cytoskeletal motor activity, microtubule

motor activity, glycosaminoglycan binding, heparin binding, serine

metabolism-related enzyme activities, organelle fission, nuclear

division, chromosome segregation, chromosome-associated regions,

organelles involved in cell division, and the collagen-containing

extracellular matrix (Figure 5E). Importantly, cytoskeletal motor

activity and microtubule motor activity are strongly correlated

with disulfidptosis.
Immune correlation analysis

To verify whether the signature genes of the 7-g/i-DRG-DEG

model are related to tumor immunity, we used the CIBERSORT and

ssGSEA algorithms to compare TIICs (31). CIBERSORT analysis

demonstrated that there were significant differences in plasma cells,

CD8+ T cells, CD4+ memory activated T cells, resting NK cells, M0

macrophages, M1 macrophages, resting dendritic cells, and resting

and activated mast cells between the high- and low-risk groups

(Figure 6A). K−M analysis further verified that OS was related to

different TIIC infiltration levels (P<0.05; Figures 6C–G). Similarly,

ssGSEA revealed significant differences in coinhibitory effects on

APCs, B cells, CCRs, iDCs, mast cells, class 1 MHC, NK cells,

inflammatory cells, T helper cells, TILs, Treg T cells, the type I IFN

response and the type II IFN response between the high- and low-

risk groups (Figure 6B), as well as in OS time, which was related to

different TIIC infiltration levels (Figures 6H–N).
B

C
D

A

FIGURE 2

Selection and difference analysis of the TCGA cohort. (A) Differential expression analysis of the key glycolysis-related genes involved in disulfidptosis.
(B) Correlation analysis of 22 disulfidptosis-related genes expressed in this TCGA cohort. (C) Analysis of immune cells in the tumor
microenvironment in this TCGA cohort. (D) Disulfidptosis-related genes correlation analysis with different tumor-infiltrating immune cells. NK cells,
Natural Killer cells. *P<0.05; **P<0.01; *** P<0.001.
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In addition, we analyzed the tumor mutation burden (TMB) in

the TCGA cohort and found that, except for ZNF536 and FLG, the

mutation frequency of the remaining genes with the highest

mutation frequency was greater in the high-risk group

(Figures 7A, B). In detail, the TMB of all samples in the high-risk

subgroup was significantly different from that in the low-risk
Frontiers in Immunology 07
subgroup (P=0.02) (Figure 7F), and the OS time of the high-TMB

subgroup was longer than that of the low-TMB subgroup (P=0.024;

Figure 7C). The high-TMB plus low-risk subgroup had the longest

OS time; in contrast, the low-TMB plus high-risk subgroup had the

shortest OS time (P<0.001; Figure 7D). According to Thorsson’s

study on dividing cancer sample cells into six immune subtypes, we
B C

D

E F

G H

A

FIGURE 3

Identification and construction of 7-g/i-DRG-DEG signature model. (A) Combining two gene sets to obtain the total gene set (g/i-Genes) related to
glucose metabolism or the immune response. (B, C) Cvfit (B) and lambda curves (C) demonstrating the generated LASSO regression of 7 signature
genes. (D) Differential expression of 7 signature genes between tumor and normal tissue. (E, F) Univariate (E) and multivariate Cox regression
analyses (F) of overall survival in LUAD patients. (G, H) Nomogram analysis (G) and calibration curve (H) predicting LUAD patient prognosis. *P<0.05.
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also found that C1-C6 immunophenotypes were significantly

different between the high-risk and low-risk groups (P=0.001)

(Figure 7E). Furthermore, we found that there were also

significant differences in the expression of immune checkpoint

molecules between the high- and low-risk groups (Figures 8A, B).

PDC1 and CD274, the most commonly used immune checkpoints,
Frontiers in Immunology 08
were significantly highly expressed in the high-risk group.

Moreover, the HLA gene encoding MHC-I molecules was highly

expressed in the high-risk group, while the genes encoding MHC-II

were highly expressed in the low-risk group (Figures 8C, D).

Fortunately, the predictive accuracy of our risk-scoring model

was comparable to that of the TIDE and TIS models (Figure 8E).
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A

FIGURE 4

Prognostic reliability validation of the 7-g/i-DRG-DEG signature model. (A–C) Dividing the cohort into high- and low-risk groups by the median
cutoff. (D–F) Deaths situation of LUAD patients in the cohort between high- and low-risk groups. (G–I) Overall Survival of LUAD patients between
the high- and low-risk groups. (J–L) Area Under Curve (AUC) at 1-year, 3-year and 5-year survival time. (M–O) AUC at risk group, age, gender and
tumor stage. (A, D, G, J, M) Analysis of the TCGA training cohort. (B, E, H, K, N) Analysis of the TCGA internal validation cohort. (C, F, I, L, O) Analysis
of the TCGA entire cohort.
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We further verified that the high-risk group in our model had a

significantly greater score than the low-risk group by TIDE scoring

(P<0.001; Figure 8F), which indicated that the high-risk patients

suffered a worse response to immune checkpoint inhibitor (ICI)

treatment. However, there was no significant difference in the PD-

1-positive group according to the Immunephenoscore (IPS), which

indicated that it was difficult for our model to predict the efficacy of

PD-1 blockers. The low-risk group with CTLA-4 positive had

higher scores than did the high-risk group (P<0.01; Figure 8G),

which indicated that the low-risk group might possess stronger

CTLA-4 blocker sensitivity. CTLA4 is upregulated in activated

regulatory T cells (Tregs) and can bind to CD80 or CD86 on the

surface of antigen-presenting cells, thus “shutting down” tumor

immunity (32). We noticed that Treg numbers decreased

significantly in the high-risk group according to ssGSEA, which

further confirmed the predictive effect of our model on CTLA-4

immune checkpoints. To further verify the predictive effect of this

risk model on immunotherapy efficacy, we selected data sets

(GSE135222 and GSE126044) which contained lung cancer

samples after treatment with Ipilimumab, Nivolumab or

Pembrolizumab (33). As a result, we found this model had a good

predictive effect on immune efficacy, with AUC at 12 and 18

months both exceeding 0.8 (Figure 8H). The PFS of the low-risk

group was significantly longer than the high-risk group (P<0.05;

Figure 8I). In addition, as the risk score increased, the number of

non-responders to ICB treatment was also significantly more than

that of responders (P<0.05; Figure 8J). These verifications further
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illustrated that the 7-g/i-DRG-DEG model could predict the ICB

efficacy in NSCLC accurately.
Discussion

From the discovery of aerobic glycolysis to the pentose

phosphate pathway (PPP), characterizing the special metabolism

of tumor cells has always been a research direction for breakthrough

tumor treatment (34). When the oxygen supply cannot meet the

energy production needs of mitochondria, tumor cells increase

glycolysis to fill the energy gap caused by insufficient ATP,

thereby preventing tumor cell death caused by hypoxia (35).

Tumor cells steal more glucose by overexpressing glucose

transporter proteins, and excess raw material increases glycolysis

levels in tumor cells (36). Simply put, tumor cells reprogram the

normal process of glucose metabolism to gain an advantage in

confronting immune cells and competing with normal tissue cells

(37). To further confirm this conclusion, we selected a cohort of 600

samples from the TCGA database and performed differential gene

analysis on glucose metabolism-associated genes. We found that

genes related to hypoxia, glycolysis, glucose transport, and the PPP

were differentially upregulated, which indirectly explained why the

hypoxic environment of tumor cells led to a high consumption and

low production state in the glucose metabolism pathway. Therefore,

the highly expressed glucose transporter (GLUT) plays an

important role in maintaining this state of tumor cells.
B C

D E

A

FIGURE 5

Functional characteristics of the risk score based on the 7-g/i-DRG-DEG model. (A–C) GSEA analyses between the high- and low-risk groups.
(D, E) KEGG (D) and GO (E) analyses between the high- and low-risk groups.
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Nevertheless, an important reason for the occurrence of

disulfidptosis is the insufficient supply of reduced NADPH during

glucose starvation, which leads to the abnormal accumulation of

cystine and other disulfides in cells with high SLC7A11 expression.

As a new form of PCD, disulfidptosis of tumor cells can be further
Frontiers in Immunology 10
exacerbated by limiting glucose uptake via the use of GLUT

inhibitors (38). We further performed differential expression

analysis of 22 DRGs, and the results showed that SLC7A11, a key

gene involved in disulfidoptosis, was differentially elevated in

tumors. Moreover, we found that DRGs expression was also
B
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FIGURE 6

Tumor immunity analysis of the 7-g/i-DRG-DEG model. (A, B) Immune cell components analyses between the high- and low-risk groups by
CIBERSORT analysis (A) and ssGSEA analysis (B). (C–G) K−M curve between the high- and low-risk groups by CIBERSORT analysis. (H–N) K−M curve
between the high- and low-risk groups by ssGSEA analysis. APC, Antigen-Presenting Cells; NK cells, Natural Killer cells; IFN, Interferon; DC, Dendritic
Cells; TIL, Tumor Infiltrating Lymphocyte. *P<0.05; **P<0.01; *** P<0.001.
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differentially increased in several important TIICs involved in

tumor suppressive immunity, such as CD4+ T cells and tumor-

associated macrophages (TAMs). Therefore, we infer that GLUT

inhibitors can also have therapeutic effects on the suppressive tumor

immune microenvironment (39).

Immunotherapy plays an irreplaceable role in tumor treatment.

However, ICB has great limitations in clinical application. On the

one hand, only a few tumors highly express immune checkpoints;

on the other hand, the efficacy of ICB is uncertain even in some

immune checkpoint-positive tumors (40). Moreover, in some
Frontiers in Immunology 11
EGFR-mutated tumors, ICB may even lead to tumor

hyperprogression (41). There is an urgent need for effective

means to predict immune efficacy in the clinic. Therefore, we

constructed models related to immunity and glucose metabolism

to address this issue.

We extracted a total of 3337 genes through the GSEA,

IMMORT and INNATE datasets. We selected 905 genes that

were differentially expressed in tumors (g/i-DEG) and 707 genes

related to disulfidptosis (g/i-DRG) and then intersected the two

gene sets to obtain 128 differentially expressed disulfidptosis-related
B
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A

FIGURE 7

Immune characteristics between the high- and low-risk groups. (A, B) Waterfall plots depicting the gene mutation landscape of the 15 most
frequently mutated genes in the high- (A) and low-risk (B) groups. (C) Survival analysis between high- and low- TMB burden. (D) Survival analysis
among high- and low- TMB combined with high- and low-risk group. (E) C1-C6 immunophenotype analysis between the high- and low-risk groups
(C1, wound healing; C2, IFN-g dominant; C3, inflammatory; C4, lymphocyte depleted; C5, immunologically quiet; C6, TGF-b dominant). (F) TMB
difference between the high- and low-risk groups. TMB, Tumor Mutational Burden.
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genes (g/i-DRG-DEG). Thirty-seven “risk” genes were identified by

Cox regression analysis of OS time. Finally, through LASSO Cox

regression analysis, we constructed a 7-g/i-DRG-DEG model

containing 7 signature genes (ARRB1, LIFR, PDGFB, LGR4,

KIF20A, NT5E and PHKA1) in the training cohort. We verified

the reliability of the model in the validation set and 3 external GEO

datasets stratified by different risk score groups. The results proved
Frontiers in Immunology 12
that this model can better predict the survival of tumor patients

than can the classical TNM staging and risk score models.

We studied the relationship between the 7-g/i-DRG-DEG

model risk score and cellular functions. Through differential gene

analysis, we found that the NT5E and KIF20A genes, which are

highly related to tumor development, were differentially elevated in

the high-risk group. The GSEA, KEGG and GO analyses revealed
B
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A

FIGURE 8

Prediction of ICB treatment efficacy. (A-D) Differential expression analysis of immune checkpoints (A, B) and human leukocyte antigens (C, D) between the
high- and low-risk groups. (E) Prediction accuracy of the risk score model compared to that of the TIDE and TIS models. (F) TIDE scoring analysis between
the high- and low-risk groups. (G) IPS scoring analysis between the high- and low-risk groups. (H) Prediction accuracy of ICB efficacy at 6, 12 and 18
months. (I) PFS between the high- and low-risk groups. (J) Response to ICB with different risk scores. HLA, Human Leukocyte Antigens; PFS, Progression
Free Survival; ICB, Immune Checkpoint Blocker; TIDE, Tumor Immune Dysfunction and Exclusion; TIS, Tumor Inflammation Signature. *P<0.05; **P<0.01;
*** P<0.001.
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enrichment of genes involved in various functions and pathways,

including the cell cycle, cytoskeleton movement activity,

microtubule movement activity, organelle division, nuclear

division, chromosome segregation, chromosome-related regions,

organelles involved in cell division and extracellular matrix

containing collagen. Notably, the genes in the high-risk group

were positively correlated with the cell cycle, ECM receptor

interaction, regulation of the actin cytoskeleton, and regulation of

mitosis, indicating that the genes in the high-risk group had

stronger cell proliferation and division functions. This result is

consistent with the clinical observation that poorly differentiated

and highly proliferative tumor cells usually have a worse prognosis

(42). As mentioned before, disulfidptosis relies on abnormal cross-

linking of disulfide bonds between cytoskeletal proteins, and the

high-risk group also exhibited a greater ability to regulate the actin

cytoskeleton (43).

Given that the immune response of the tumor microenvironment

is an important factor in determining tumor cell aggressiveness and

progression (44), we further verified the immune impact of the 7-g/i-

DRG-DEG model. By comparing TIICs through the CIBERSORT

and ssGSEA algorithms respectively, we found that immune cells

with direct tumor killing functions, such as plasma cells and CD8+ T

cells, were significantly reduced in the high-risk group, while immune

cells with auxiliary functions, such as M0 macrophages, M1

macrophages, and activated CD4+ T cells, were significantly

increased in the high-risk group. However, tumor-associated

macrophages (TAMs) have been a hot topic of cancer research in

recent years. An increasing number of studies have proven that TAM

infiltration is strongly correlated with the poor prognosis of tumor

patients due to a series of functions that promote tumor development,

such as supporting tumor cell proliferation, invasion, and metastasis

(45). We also noted that in another similar disulfidptosis-related

model, the expression of signature genes was positively correlated

with M1 cell migration and invasion, indicating that there is obvious

tropism of M1 cells in the high-risk group (46).

In addition, CD8+ T cells in the high-risk group were more

susceptible to immune checkpoint effects. We found that the

immune checkpoint molecule CTLA-4, which is currently widely

used in clinical applications, was significantly overexpressed in the

high-risk group, indicating that the high-risk group may have a

suppressive TME that is more unfavorable for tumor immunity.

Subsequently, the accuracy of the prediction of ICB efficacy was

verified to further illustrate that this model has reference value for

the clinical application of ICB. Specifically, The high expression of

HLA-I class molecules in the high-risk group also confirmed this

conclusion. HLA-I class molecules stimulate cytotoxic immune

responses by binding CD8+ T cells, and HLA-II class molecules

bind to CD4+ T cells (47). An increase in HLA class I molecules in

the high-risk group indicated a decrease in CD8+ T cells. HLA-II

class molecules were lower in the high-risk group, further indicating

that CD4+ immune cells increased, which proved by immune

infiltration analysis. For the immune phenotype, the expression of

angiogenic genes was enhanced in the high-risk group, which had a

high proliferation rate, and Th2 cells were prone to acquired
Frontiers in Immunology 13
immune osmosis, which stimulated the proliferation of CD4+ T

cells and B cells. These results indicate that the TME in the high-risk

group was more inclined to exhibit a “cold immune” phenotype,

which is associated with greater tumor malignancy and a more

tolerant immune environment (48).

In summary, benefiting from the development of bioinformatics

technology, we constructed a 7-gene signature prediction model

based on TCGA LUAD patient data and evaluated patient tumor

prognosis risk through signature gene expression. We demonstrated

the reliability of this model and further validated its value in

predicting tumor immunity through immune infiltration analysis.

Such studies will help to develop more personalized treatment

strategies in the future, promote the development of new drugs,

and ultimately extend the survival expectancy of cancer patients.
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