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In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing

therapeutic methods exhibit limitations; they do not offer a complete cure for

IBD and can trigger adverse side effects. Consequently, the exploration of novel

therapies and multifaceted treatment strategies provides patients with a broader

range of options. Within the framework of IBD, gut microbiota plays a pivotal role

in disease onset through diverse mechanisms. Bacteriophages, as natural

microbial regulators, demonstrate remarkable specificity by accurately

identifying and eliminating specific pathogens, thus holding therapeutic

promise. Although clinical trials have affirmed the safety of phage therapy, its

efficacy is prone to external influences during storage and transport, which may

affect its infectivity and regulatory roles within the microbiota. Improving the

stability and precise dosage control of bacteriophages—ensuring robustness in

storage and transport, consistent dosing, and targeted delivery to infection sites

—is crucial. This review thoroughly explores the latest developments in IBD

treatment and its inherent challenges, focusing on the interaction between the

microbiota and bacteriophages. It highlights bacteriophages’ potential as

microbiome modulators in IBD treatment, offering detailed insights into

research on bacteriophage encapsulation and targeted delivery mechanisms.

Particular attention is paid to the functionality of various carrier systems,

especially regarding their protective properties and ability for colon-specific

delivery. This review aims to provide a theoretical foundation for using

bacteriophages as microbiome modulators in IBD treatment, paving the way

for enhanced regulation of the intestinal microbiota.
KEYWORDS

inflammatory bowel disease (IBD) treatment, gut microbiota, bacteriophage therapy,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1398652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1398652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1398652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1398652/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1398652&domain=pdf&date_stamp=2024-05-08
mailto:yejunfeng@jlu.edu.cn
mailto:liyang_0317@jlu.edu.cn
https://doi.org/10.3389/fimmu.2024.1398652
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1398652
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2024.1398652
1 Introduction

Inflammatory Bowel Disease (IBD) is a collection of autoimmune

disorders impacting the gastrointestinal tract, influenced by the gut

microbiota. Bacteriophages, viruses that infect specific bacteria, play a

role in modulating these microbial communities and may offer a

strategy to combat IBD-related pathogens. Although still in early

stages, phage therapy shows promise, with recent advancements

focusing on optimizing these treatments for IBD. Specially

formulated phage therapies targeting specific pathogenic strains

could minimize adverse effects on beneficial gut bacteria, yet

challenges in phage delivery and specificity remain. Antibiotics, while

effective, indiscriminately kill gut bacteria and contribute to dysbiosis

and resistance issues (1). Traditional methods like probiotics and fecal

microbiota transplantation face hurdles like poor colonization and risk

of transferring harmful agents (2, 3). Advances in gut microbiology

have led to innovative strategies such as targeted bacteriophage delivery

systems for the colon (4), using stabilizers like Eudragit FS30D, which

have shown promising stability and efficacy (5). Therefore,

bacteriophages are increasingly recognized as potential tools for

precisely modulating the gut microbiota and addressing intestinal

disorders. Bacteriophages face challenges such as high temperatures,

low pH, and digestive enzymes, which can diminish their effectiveness

during storage and gastrointestinal transit (6–8). Encapsulation has

proven a valuable method to enhance bacteriophage stability, ensuring

their viability under these conditions. Ma et al. demonstrated that

encapsulating bacteriophage Felix O1 in alginate-chitosan

microspheres significantly improved its survival in simulated porcine

gastrointestinal environments, indicating potential for effective

therapeutic delivery to the intestines (9). This paper reviews recent

progress in IBD treatment, examining the interaction between the

microbiome and bacteriophages, and discussing the mechanisms and

potential of bacteriophage-mediated modulation of gut microbiota. It

covers the influence of preparation, storage, and delivery on

bacteriophage vitality and provides a summary of diverse

encapsulation materials used for bacteriophage delivery. The

conclusion proposes future directions for bacteriophage delivery

strategies in manipulating the gut microbiota.
2 Treatment methods for IBD

IBD is a chronic autoimmune inflammatory condition affecting

the gastrointestinal tract and extraintestinal organs. This disease

encompasses various clinical and histological variations, including

ulcerative colitis (UC), Crohn’s disease (CD), and indeterminate

colitis. The treatment strategies for IBD have continuously evolved

and been explored in recent years (Table 1).
2.1 Drug therapy

Presently, therapeutic drugs for IBD encompass a range of

medications, including aminosalicylates, antibiotics such as

metronidazole, corticosteroids, among others (12). 5-Aminosalicylate
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(5-ASA) salts stand out as a common pharmaceutical intervention for

treating IBD, with sulfasalazine exhibiting specific alleviative effects in

Crohn’s disease patients. The precise mechanism through which

aminosalicylate salts ameliorate IBD remains uncertain. 5-ASA may

possess antioxidant, anti-proliferative, or pro-apoptotic activities,

allowing for localized treatment on the gastrointestinal mucosa (13–

15). The potential effectiveness of 5-ASA in producing significant

effects through the alleviation of mucosal inflammation has been

documented (16–18). Likewise, corticosteroids prove effective in

mitigating inflammatory responses, exhibiting immunomodulatory

effects and finding extensive applications in treatment (19–21).

Glucocorticoids are commonly employed for more severe conditions

than those treated with 5-ASA (22), and their administration may be

escalated when 5-ASA treatment proves ineffective (23).
2.2 Immunomodulators and biologics

Immunomodulators and biologic agents, which possess the

capability to regulate the immune system, have found widespread

application in alleviating symptoms and sustaining remission (24,

25). Nevertheless, some patients may develop tolerance or adverse

reactions to these medications. Given the pivotal role of

inflammatory factors in the pathogenesis of IBD, biologic agents

endowed with anti-inflammatory efficacy have emerged. Infliximab,

the first anti-TNF-a drug, has demonstrated outstanding

therapeutic efficacy for IBD (26, 27). Simultaneous adoption of

therapeutic drug monitoring (TDM) has been shown to optimize

the efficacy of infliximab (28). Furthermore, adalimumab and

golimumab have also been confirmed as effective treatments for

IBD (29, 30). Vedolizumab, a specific antagonist against the a4/b7
integrin, inhibits the interaction between integrins and MAdCAM-

1, effectively blocking the homing of immune cells to intestinal

tissues and reducing mucosal inflammation in IBD patients (31).

This mechanism could offer new opportunities for modulating

macrophage-related processes such as mucosal healing (32).

Numerous studies have demonstrated its efficacy in treating IBD;

for instance, an analysis of homing receptor expression on T cells in

peripheral blood and inflamed mucosa showed that treatment with

vedolizumab is associated with a significant expansion of regulatory

T cells in peripheral blood without a significant increase in viral

infections in the IBD group (33). Therefore, as the only gut-selective

biologic that specifically targets the a4b7 gastrointestinal integrin

receptor, vedolizumab represents a promising therapeutic option

for IBD (34). Ustekinumab, a human IgG antibody targeting the

p40 subunit common to both IL-12 and IL-23, operates differently

from anti-TNF therapies (35). It inhibits the biological activity of

these cytokines by blocking their shared p40 subunit, impacting

receptors on T cells, natural killer cells, and antigen-presenting cells

(36). Monoclonal antibodies against the IL-12/23 p40 subunit have

shown significant therapeutic effects in mouse models of colitis (37,

38), suggesting their potential efficacy in treating related diseases.

Tumor necrosis factor-like cytokine 1A (TL1A) is associated with

IBD and influences the location and severity of intestinal
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1398652
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1398652
inflammation and fibrosis, showing increased expression in

inflamed intestinal mucosa (39). TL1A is closely linked to

mucosal immunity, suggesting that blocking it could have

potential benefits for inflammatory diseases involving the mucosal

surface, such as IBD and asthma. Moreover, the TL1A-DR3

pathway has a specific association with fibrosis in Crohn’s disease

(40). Studies have demonstrated that TL1A antibodies effectively

alleviate intestinal inflammation and reverse fibrosis to baseline

levels in mouse models (41), highlighting TL1A as a promising

target in IBD treatment.
2.3 Intestinal microbiota

2.3.1 Faecal microbiota transplantation
Fecal microbiota transplantation (FMT) transfers feces from

healthy individuals to recipients to restore gut microbiota (42), first

used to treat pseudomembranous enterocolitis (43). Increasing

research links IBD to dysregulated gut microbiota (44, 45), with

microbial changes causing mucosal immune dysregulation and

increasing susceptibility to IBD (46). FMT has proven effective for

IBD treatment (47), as shown by randomized trials like Moayyedi et al.,

which found FMT more effective than placebos in inducing remission

in active ulcerative colitis (48). Other studies, including a multicenter

trial in Australia, demonstrated high-dose, multi-donor FMT’s ability

to induce clinical remission in active UC (49), and a trial with 73 adults

showed that anaerobically prepared donor FMT was likelier to induce

remission than autologous FMT (50). Recent research robustly
Frontiers in Immunology 03
supports FMT as a promising therapy for IBD. A key study

(NCT03426683) involving 35 IBD patients, split into two groups-one

receiving standardized FMT and the other traditional medications-over

a year, assessed FMT’s efficacy, durability, and safety, while identifying

specific bacteria involved in the process. With more clinical trials

underway, FMT is likely to become an established IBD treatment,

providing relief for patients not responding to conventional therapies

by modulating immune responses and reducing inflammation (51).

Meta-analyses also support FMT’s efficacy; for instance, Sudarshan

et al.’s review of 53 studies noted better UC remission with more

frequent FMT infusions and optimized administration (52). Another

meta-analysis showed FMT as a successful treatment for CDI in IBD

patients, advocating for more trials and research to confirm its

effectiveness (53).

2.3.2 Antibiotic therapy for IBD
IBD is linked to host-microbe interactions and gut microbiome

imbalances that promote the colonization of opportunistic pathogens,

crucial to the disease’s development (54). Certain gut bacteria

exacerbate intestinal inflammation in IBD by releasing antigens or

stimulatory factors, with studies indicating that microbial diversity

reductions are significantly associated with IBD onset (55). Antibiotics

like metronidazole and ciprofloxacin are effective in modulating the gut

microbiota and treating IBD (56). A study showed that ciprofloxacin,

despite its good tolerability, did not significantly differ from placebos in

inducing remission in perianal Crohn’s disease due to its tolerability

(57). Additionally, ciprofloxacin demonstrated anti-inflammatory

properties in a colitis mouse model (58). However, the broad-
TABLE 1 Overview of IBD treatment methods. [Adapted from (10)].

Treatment Medications Mechanism Clinical Applications

Drug Therapy
Aminosalicylates
Antibiotics
Corticosteroids

Alleviate inflammation;
Inhibit abnormal proliferation;
Regulate immune dysregulation

5-ASA offers specific relief for Crohn's patients;
Corticosteroids are commonly prescribed

Immunomodulators
Thiopurines
Cyclosporine

Regulate the immune system
Thiopurine analogs prevent relapse in ulcerative
colitis and Crohn's disease (11);
They're commonly used to maintain remission

Biologics
Infliximab
Adalimumab

Reduce inflammation levels;
Regulate the immune system

In treating IBD, Infliximab performs exceptionally
well;
Adalimumab has also been proven effective

Stem Cell Therapy Stem cells
Repair damaged tissues;
Promote healing;
Anti-inflammatory

More research is needed to assess the safety and
effectiveness of reconstructing damaged
intestinal mucosa

Treatment Introduction Clinical Applications

Fecal Microbiota Transplantation (FMT)
FMT rebuild the gut microbiome, restoring balance, diversity, and
treating intestinal and extra-intestinal diseases;
effectively relieve conditions such as ulcerative colitis and other IBDs

Balancing the gut microbiome and regulating
immunity effectively treats IBD, providing a
promising treatment approach;
Yet, further research is needed to assess its safety
and long-term effects

Targeting Intestinal Epithelial Cells

Targeting intestinal epithelial cells with bacteriophages as a novel
immunotherapy for IBD, it exhibits immunomodulatory properties,
balancing inflammation&tolerance;
promise as a prospective therapy

With potential for treating inflammatory bowel
diseases, bacteriophages offer new directions in
IBD therapy;
Their antimicrobial activity and
immunomodulatory properties provide promising
avenues for IBD treatment
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spectrum activity of most antibiotics affects both harmful and beneficial

bacteria, potentially leading to adverse outcomes when overused (59).

Long-term use of antibiotics in IBD must balance efficacy against side

effects: metronidazole often has severe adverse effects (60), while

ciprofloxacin is well-tolerated but expensive and can cause nausea;

combined use can increase side effects significantly (61). Judicious use

of antibiotics, adhering to clinical guidelines and minimizing doses and

duration, can optimize benefits while reducing risks of resistance and

adverse effects.
2.4 Targeting intestinal epithelial cells

The intestinal epithelial layer acts as a barrier that separates the

organism from the external environment (62). Once there is a

disruption in the balance of the gut barrier microbiota, uncontrolled

immune reactions may erupt in the intestinal microenvironment. This

imbalance can lead to unrestrictedmicrobial growth, resulting in various

diseases, including IBD (63). Deficiencies in epithelial lymphocytes,

chemokine receptor expression, and pattern recognition receptors can

lead to abnormal immune responses, subsequently promoting cell

differentiation and increasing inflammation (64). Consequently,

bacteriophage targeting of intestinal epithelial cells is being explored

as a novel immunotherapeutic approach for treating IBD (65). Górski

et al. posit that bacteriophages, beyond their antimicrobial activity, also

exhibit immunomodulatory characteristics that could be beneficial in

the treatment of IBD.
2.5 Treatment limitations

The majority of drugs available for IBD offer symptomatic relief

rather than a complete cure. Additionally, a significant proportion of

these drugs are associated with severe adverse reactions. Prolonged use

of 5-ASA in IBD patients may lead to side effects such as headaches,

diarrhea, nausea, and even severe complications like pneumonia,

hepatitis, and myocarditis (66). Corticosteroids, while potent and

rapid in treating IBD, fail to effectively maintain remission and can

induce irreversible complications with long-term use, including

cataracts, glaucoma, hypertension, and diabetes (67, 68). While

biologics broaden the therapeutic spectrum for IBD, they

unfortunately bring about severe complications such as tuberculosis,

fungal infections, cancer, and tumors. Beyond the serious adverse

reactions of medications, the exorbitant cost of IBD treatment imposes

a substantial economic burden on patients. Consequently, the

development of safe, effective, and cost-efficient therapeutic drugs for

clinical treatment of IBD holds paramount significance.
3 Interaction between microbiota and
bacteriophages in IBD

3.1 Role of bacteriophages in IBD

Increasing evidence in humans suggests that the microbiome

plays a crucial role in the pathogenesis of IBD. For instance, clinical
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trial results (Clinical Trial ID: UMIN 000004123) indicate that

inter-individual variations in the gut microbiota may be associated

with individual differences in the risk of IBD or other diseases (69).

Alterations in the gut microbiota are believed to play a pivotal role

in the onset, progression, and severity of the disease. Transferring

dysregulated IBD-associated microbiota to healthy mice has been

shown to induce intestinal inflammation (70–72). Bacteriophages

are considered a part of the gut microbiome and may influence

bacterial community structure in various clinical settings. The

administration of exogenous bacteriophages may represent a

potential strategy for inhibiting IBD-associated pathogenic

bacteria (73). Alterations in the community structure of IBD may

be influenced by the prolific reproduction of bacteriophages within

the intestinal bacterial ecosystem. The specific targeting of

pathogenic strains by a tailored combination of bacteriophages

holds potential as an eradication therapy for preventing and

treating IBD, while minimizing adverse effects on the surrounding

bacterial microbiome (Table 2).

Bacteriophage-mediated regulation of the gut microbiota is

achieved through interactions between bacteria and phages within

the colon. Acting as natural predators of bacteria, phages can

disrupt or lyse host bacteria through processes such as lytic

replication or lysogenic cycles. In cases of gut microbiota

dysbiosis, an excess of pathogens or harmful bacteria can produce

unwanted metabolites (Figure 1). These metabolites are absorbed

into the systemic circulation, triggering related symptoms. Upon

reaching the colon, bacteriophages can selectively kill host

pathogens, reducing adverse metabolites through specific

recognition and infection, while minimizing disruption to non-

targeted microorganisms (Figure 1). Furthermore, the ecological

niche of pathogens can be occupied and colonized by symbiotic or

probiotic bacteria, restoring gut homeostasis and promoting overall

health. In recent research, Lv et al. isolated a strain of Lactobacillus

subspecies, Lactobacillus SF, from the feces of healthy infants and

conducted a systematic probiotic evaluation. The results

demonstrated that Lactobacillus SF could restore gut microbiota

balance by increasing the relative abundance of bacteria capable of

occupying the same ecological niche as pathogenic bacteria, thereby

reducing the survival space for pathogens. This indicates that

Lactobacillus SF exhibits excellent resistance to gastric fluids,

colonization in the intestine, and strong antibacterial and

antioxidant capabilities (84).
3.2 Personalized bacteriophage therapy

In the human microbiome, bacteriophages can be employed for

targeted elimination of specific pathogens without causing harm to

beneficial microbial communities (85, 86). With a plethora of phages

available, their precise and widespread regulatory capabilities make

them an ideal tool for modulating the human microbiome (87).

Bacteriophages exhibit high diversity and adaptability, enabling them

to thrive in various environments and target different bacterial species

(87).Tailoring bacteriophages based on the microbial characteristics of

different populations allows for personalized therapeutic interventions

and modulation. The low toxicity of bacteriophages in regulating the
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human microbiome minimizes the risk of severe immune reactions or

adverse effects (88, 89). Their self-replication mode enables effective

treatment at low doses (90), providing a high level of safety and

feasibility in utilizing bacteriophages for human microbiome

modulation. In terms of infection mechanisms, bacteriophages can

utilize both lytic and lysogenic pathways to infect hosts, broadening

their applicability (91, 92). Co-evolution with bacterial hosts enhances

their plasticity and survival rates (93, 94). Moreover, bacteriophages

can serve as vectors by introducing new functionalities or silencing

virulence factors to target bacterial pathogenicity. Bacteriophages

possess unique characteristics that position them as precise tools for

human microbiome modulation, holding tremendous potential

for revolutionary breakthroughs in the regulation and treatment

of the human microbiome through further research and

development (Figure 2).

Viral tagging (VT) technology leverages the specificity of

bacteriophages for host bacterial infection, enabling the isolation

and purification of bacteriophages by marking and separating host

bacteria (96). High-purity bacteriophage samples obtained through

VT technology are crucial for microbial community modulation.

The use of high-purity bacteriophage samples enhances the
Frontiers in Immunology 05
effectiveness of microbial community modulation by facilitating

accurate assessment and control of the composition and functions

of microbial communities. The high purity of bacteriophage

samples also aids in reducing unwanted interference from host

bacteria or other contaminants, thereby better achieving the desired

effects of microbial community modulation. Obtaining high-purity

bacteriophage samples through VT technology is a critical prelude

to microbial community modulation. Research by Agarwal et al.

demonstrates that polymers loaded onto bacteriophages,

administered through dry powder inhalation, deposit throughout

the lungs, providing active bacteriophages. This ultimately

significantly reduces mouse infections and associated

inflammation, successfully saving mice from mortality (97).

Another study evaluated the effectiveness of bacteriophage

therapy in treating methicillin-resistant Staphylococcus aureus-

induced mastitis in a mouse model (98).In the mastitis mouse

model, treatment with bacteriophage 4086-1 markedly inhibited the

proliferation of Staphylococcus aureus in the mammary gland.

Concentrations of the inflammatory markers TNF-a and IL-6

were significantly reduced, indicating the effective alleviation of

the inflammatory response by bacteriophages.
TABLE 2 Summary of phage applications in IBD treatment and modulation of gut microbiota. [Adapted from (74–77)].

References/
Clinical
Trial ID

Trial Content Summary of Results

(78)
(Federici et
al., 2022)

In four IBD cohorts (n=537), specific antibiotic-resistant Klebsiella
pneumoniae (Kp) strains are closely linked with disease severity;
This study aims to develop a soluble phage cocktail targeting both sensitive
and resistant Kp strains in IBD, using diverse mechanisms to suppress Kp,
curb inflammation, and ease disease severity

Assessments of Kp-targeting phages in artificial human gut and
healthy volunteer models demonstrate their adaptability, safety, and
efficacy in the lower intestinal tract, influenced by gastric acid;
Highlights oral phage therapy's potential to effectively suppress non-
communicable pathogens and overcome resistance

(79)
(Titécat et
al., 2022)

Assessed the in vitro efficacy and specificity of seven lytic cocktail phages

(EcoActive™) against 210 clinical AIEC strains and 43 non-E. coli strains;

In vivo experiments in healthy and AIEC-infected mice corroborate these
findings regarding safety and efficacy

EcoActive cocktail effectively targets 95% of AIEC strains in vitro,
sparing 43 non-E. coli commensal strains, unlike traditional
antibiotics;
Long-term administration of the EcoActive cocktail in healthy mice
is safe and does not disrupt gut microbiota balance;
Supporting phage therapy to reduce AIEC in IBD intestines

NCT03808103
A double-blind randomized controlled trial was conducted with 30
participants;
Oral administration of bacteriophages was employed

Evaluating the safety and effectiveness of intestinal invasive
Escherichia coli in patients with inactive Crohn's disease;
The aim is to improve the course of Crohn's disease by infecting and
killing specific types of bacteria

(80)
(Duerkop et
al., 2018)

Using sequence-independent methods to select viral allelic genes;
Applying quantitative metagenomics to study intestinal bacteriophages in a
mouse colitis model

Observed shifts in colitis-associated bacteriophage populations,
including changes in specific phages linked to the diseased
microbiome host;
Overlap between bacteriophage populations in healthy and diseased
mice and those in healthy individuals and patients with
intestinal diseases

NCT03269617
A randomized placebo-controlled trial was conducted with 43 participants;
Participants received an oral bacteriophage mixture

Assessing the impact of bacteriophage mixture on individual gut
bacteria;
Evaluating changes in metabolic syndrome, inflammatory markers,
microbial metabolites, and gastrointestinal discomfort perception

(81)
(Sinha et
al., 2022)

Using in vivo microbial cross-infection experiment;
Tracking the effects of fecal viral-like particles isolated from ulcerative colitis
patients and healthy controls on bacterial diversity and the severity of
experimental colitis in human microbiota-associated (HMA) mice

Found that several phages were transferred to HMA mice, resulting
in therapy-specific changes in the gut virome;
Phages as dynamic regulators of gut bacterial communities, as
suggested by recent literature
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3.3 Prospects and challenges in treatment

The bacterial lysis induced by lytic bacteriophages may lead to

toxin contamination and the transfer of virulence genes among gut

microbiota (99). In recent years, with the rapid advancements in

synthetic biology and sequencing technologies, lysogenic

bacteriophages have provided a feasible method for modifying

bacterial genes and promoting intestinal homeostasis (100–103).

During lysogeny, engineered lysogenic bacteriophages can

introduce nucleic acids into the host chromosome and express

carried functional genes, thereby enabling precise in situ regulation

of gene expression in individual microorganisms. For example, the

CRISPR/Cas9 system targeting bacterial superantigenicity and cell

lysis genes has been integrated into the Staphylococcus aureus
Frontiers in Immunology 06
lysogenic bacteriophage, resulting in the excision of major

virulence genes from the host genome. This has developed into

an effective strategy to prevent toxin contamination and virulence

gene transfer among gut microbiota (104). However, bacteriophage-

mediated therapeutic outcomes are not always effective. In an early

clinical trial, despite the dose-dependent detection of T4

bacteriophages in volunteer feces after oral bacteriophage

delivery, significant bacteriophage replication and a decrease in

total Escherichia coli counts were not observed. Similarly, Sarker

et al. found that delivered T4 bacteriophages (108 PFU) failed to

proliferate on pathogenic Escherichia coli, and no improvement in

diarrhea was observed. One possible cause of bacteriophage

replication failure may be the presence of bacterial defense

mechanisms, which inhibit bacteriophage invasion and result in
A B

C

FIGURE 2

A comprehensive exploration of bacteriophage-derived tools and strategies for precisely modulating the human microbiome. (A) Determining the
designated target. Bacteriophages will be sourced from diverse environments using cultivation-independent techniques and replicated through cell-
free systems or innovative cultivation methods. Identification of bacterial and functional targets will leverage advancements in culturing methods and
multi-omics approaches. (B) Technology. The isolated phages and phage enzymes will be harnessed to modulate the human microbiota using
various technologies. CRISPR/Cas9 will be transported to the target bacteria utilizing modified phage vectors. VT, viral-tagging. (C) Strategies.
Moreover, to transport specific genes with diverse functions for modifying target bacteria. The ultimate objective is to reinstate a resilient
microbiome in diseases associated with dysbiosis, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and so forth. [Adapted
from (95)].
A B

FIGURE 1

(A) Conventional phage therapy targeting gut dysbiosis associated with pathogenic microbiome. (B) Administered phages actively diminish the
population of pathogenic bacteria, eliminate harmful bacterial genes, and mitigate the absorption of detrimental metabolites in situ. [Adapted from
(82, 83)].
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treatment failure. It has been reported that anti-CRISPR

bacteriophages can collaboratively overcome host bacteria’s

CRISPR resistance, rendering the host susceptible to subsequent

bacteriophage infections. Therefore, delivering a mixture of

bacteriophages targeting the same host (bacteriophage cocktail)

could be a potential solution to increase infection likelihood.

Another reason for bacteriophage replication failure may be

insufficient active bacteriophage numbers in the colon (105).

Indeed, bacteriophage viability is affected by various factors

during storage and gastrointestinal transport, such as high

temperatures and extreme pH values, leading to a significant

reduction in bacteriophage titers and subsequent replication and

proliferation failure (106, 107). Developing bacteriophage

combination-mediated IBD pathogen eradication therapy may

require better strain-level bacterial target identification and

addressing treatment-related challenges, such as bacteriophage

delivery, off-target effects, and bacterial resistance.
4 Optimizing formulation and
encapsulation strategies for
phage-based therapeutics

4.1 Ensuring the stability and activity

When developing bacteriophage therapy formulations, it is

essential to understand the chemical and physical stresses that

bacteriophages may undergo during preparation, processing, and

storage to ensure their stability and activity. Bacteriophages consist

mainly of proteins and are therefore susceptible to various factors

that induce protein denaturation, such as types of organic solvents,

high temperatures, pH values, ion concentrations, and interface

effects. Mechanical pressures that may arise during formulation or
Frontiers in Immunology 07
encapsulation processes, such as shear forces during mixing,

atomization during spraying, and stress during drying, also need

to be carefully considered. Ensuring accurate dispersion of each

bacteriophage particle is crucial during the development of

formulations, although achieving complete dispersion poses

significant challenges, certain techniques can achieve optimal

results. Moreover, attention should be paid to controlling the

morphology of bacteriophage particles to prevent aggregation or

uncontrolled fusion with surrounding materials. Given the purpose

and route of bacteriophage delivery, materials used to manufacture

delivery vehicles should be safe, non-toxic, biocompatible,

biodegradable, and non-irritating to the human body (108, 109).

Additionally, encapsulation materials should have good resistance

to various adverse environments. Furthermore, the residence time

of ingested substances in the gastrointestinal tract is limited

(Figure 3). Beyond the limited transport time, even if these

encapsulated bacteriophages resist adverse conditions and are

transported to the colon with high vitality, they will be excreted

in the feces, resulting in minimal or no release of bacteriophages

into the colon. Therefore, complete release of encapsulated

bacteriophages is required when they are transported in the

colon (Table 3).
4.2 Enzyme/pH-responsive materials

Selection of enzymatically responsive materials capable of

being degraded by specific enzymes produced by gut microbiota

to release bacteriophages and pH-responsive materials that

dissolve or swell under colonic pH conditions serves as ideal

construction materials for achieving colonic-targeted delivery

(111–114). Ahmad et al. prepared chitosan nanoparticles (CS-

NP) and chitosan-phi KAZ14 bacteriophage-loaded nanoparticles

(C-phi KAZ14 NP) using a simple entrapment method to

effectively protect bacteriophages from gastric acid and enzymes

in the chicken gastrointestinal tract. Chitosan nanoparticles

exhibited potent protective effects on phi KAZ14 bacteriophages.

Gel electrophoresis results demonstrated the protection of phi

KAZ14 bacteriophages encapsulated in chitosan nanoparticles,

while naked phi KAZ14 bacteriophages were degraded (115). In

vitro release studies revealed complete inactivation of free

bacteriophages under gastric conditions, while encapsulated

bacteriophages maintained good vitality and steady release in

the intestinal environment (9, 116).Pectin remains undigested in

the stomach but can be degraded by pectinases secreted by

intestinal bacteria, yielding short-chain fatty acids and

simultaneously releasing encapsulated substances in the colon.

Dini et al. demonstrated that emulsified low methoxylated pectin

as a delivery system was more effective than unemulsified pectin,

alginate, or emulsified alginate microspheres. Free non-

encapsulated bacteriophages exposed to an environment with a

pH of 2.5 showed a 3.7-log unit reduction in titer after 10 minutes.

Additionally, in the presence of 0.5 mg/ml pepsin at pH 2.5,

bacteriophage titer decreased to undetectable levels within 10

minutes. When bacteriophages were encapsulated in emulsified

low methoxylated pectin spheres, there was no significant
FIGURE 3

The pH range, composition of digestive fluids, and transit times
across different segments of the gastrointestinal tract. Encapsulation
within micro-/nanoparticles or stimulus-responsive systems allows
targeted triggering or sustained release at specific sites. The
encapsulation of multiple emulsion drops/multiple concentric shells
also extends the circulation time of bacteriophages. [Adapted
from (110)].
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reduction in titer after 3 hours under conditions with a pH of 2.5

and a pepsin concentration as high as 4.2 mg/ml. These results

indicate that bacteriophages encapsulated in emulsified low

methoxylated pectin are protected from the harsh gastric

environment (117). The differences in acidity among the

stomach, small intestine, and colon enable the possibility of

delivering bacteriophages to target sites using pH-responsive

materials (118). Alginate is a commonly used pH-responsive

material for bacteriophage encapsulation. It forms insoluble

alginate in gastric fluid (pH < 3.0), protecting internal

bacteriophages from gastric acid and digestive enzymes. Dlamini

et al. employed alginate-carrageenan microcapsules to protect

genetically diverse bacteriophages of five Salmonella species

from simulated gastrointestinal conditions. Their study

demonstrated effective encapsulation (>95%) and maintenance

of viability (>87%) of five genetically diverse bacteriophages

representing three genera after exposure to simulated gastric

conditions (pH 2, 3.2 mg/ml pepsin, 37°C, for 1 hour). All

bacteriophages were easily released from microcapsules at pH

7.5 and exposure to simulated duodenal conditions (pH 7, 10 mg/

ml pancreatin, 37°C) (119). Eudragit S100 has been widely used as

an encapsulation material for targeted bacteriophage release in the

colon (5). For instance, Vinner et al. microencapsulated a

Salmonella-specific bacteriophage Felix O1 in a pH-responsive

polymer formulation. They incorporated the pH-responsive

copolymer methacrylic acid Eudragit® S100 (10% (w/v)) and

added the biopolymer sodium alginate to the formulation.

Results showed excellent protection of Felix O1 encapsulated in

the formulation containing 10% (w/v) ES100 and 1% (w/v)

alginate when exposed to simulated gastric fluid (SGF) (pH 1,

for 2 hours). In simulated intestinal fluid (SIF), encapsulated

bacteriophages previously exposed to SGF (pH 1, for 2 hours)

were released as the pH increased, indicating inhibition of

bacterial growth during the logarithmic growth phase (120).
Frontiers in Immunology 08
4.3 Fiber and emulsion materials

Electrospinning technology is a versatile method for fiber

production that does not require the use of toxic solvents or

generate heat, providing a gentle encapsulation environment for

bacteriophages (121, 122) (Figure 4A). For instance, Cheng et al.

incorporated Escherichia coli bacteriophage T4 into poly

(ϵ-caprolactone)/type I collagen (PCL-ColI) nanofibers using

electrospinning to eradicate E. coli infections while establishing

hemostatic functionality (123). To better maintain bacteriophage

activity, R. korehei et al. pre-encapsulated T4 bacteriophages in an

alginate hydrogel layer using an emulsification process and then

incorporated them into fibers using electrospinning technology

(124). The release of encapsulated bacteriophages from the fibers is

mediated by the dissolution and/or swelling behavior of the fiber

matrix (11). Thus, controlling the release rate of encapsulated

bacteriophages from the fibers to the external environment can be

achieved by altering the composition ratio of the composite fibers.

Korehei et al. demonstrated that after injecting T4 bacteriophages into

core/shell electrospun fibers prepared from poly(ethylene oxide)

(PEO) and cellulose diacetate (CDA) or their mixtures, PEO-coated

fibers released T4 bacteriophages immediately upon immersion in a

buffer solution. The release rate of bacteriophages significantly

decreased when CDA was mixed with PEO, and T4 bacteriophages

were undetectable in fibers composed solely of CDA. Increasing the

proportion of PEO in the fibers increased the diameter of the

electrospun fibers and the viscosity of the release medium, resulting

in a relatively slower release of T4 bacteriophages. The morphology of

the electrospun fibers after release varied from discontinuous fibers to

microexpanded fibers depending on the PEO/CDA ratio (11).

Encapsulation of bacteriophages in emulsions to form

nanoparticles, followed by electrospinning, is another effective method

to improve bacteriophage protection. Due to the hydrophilic nature of

bacteriophages, W/O and W/O/W emulsions are commonly used for
TABLE 3 Overview of encapsulation materials and carriers for phage delivery.

Encapsulation
materials/
Carrier systems

Advantages Inherent limitations
Recent
research advancements

Fiber
High stability;
Controllable release rate

Limited applicability due to specific constraints;
Challenges remain in reducing bacteriophage
loss in manufacturing

Development of novel
fiber materials

Emulsion
Maintaining high viability;
Increased bioavailability;
Delivery capability

Subject to temperature influence;
Increased risk of bacterial contamination

Improvement in
temperature stability

Hydrogel Maintaining activity Further research needed
Enhancement of performance of
novel hydrogels

Eudragit S1/
Sodium alginate hydrogel

Maintaining activity;
Acid resistance

Potential for higher costs Improvement in cost-effectiveness

Liposomes
Providing physical protection and shielding
from immune clearance;
Prolonged retention time in the intestine

Difficult to maintain long-term stability
Optimization of transportation and
storage stability

Particle materials
Adding protectants to increase survival rates;
Higher stability observed across multiple
formulation forms

Potentially higher costs Reduction of production time
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encapsulating bacteriophages (Figure 4B). For example,

Puapermpoonsiri et al. demonstrated that selective bacteriophages

against Staphylococcus aureus or Pseudomonas aeruginosa could be

encapsulated into biodegradable polyester microspheres using an

improved W/O/W solvent extraction scheme, with only partial loss of

lytic activity (78). Following encapsulation, the aqueous core of the

emulsion can provide a favorable environment for internal

bacteriophages, promoting their survival during transportation and

storage. Esteban et al. showed in their study the efficient

encapsulation of bacteriophage K using water-in-oil nanoemulsions,

demonstrating a novel method for the storage and delivery of

bacteriophage K for the treatment of Staphylococcus aureus

infections. The nanoemulsion-bacteriophage formulation became

more stable and effective over time (81).
4.4 Liposomes and hydrogel materials

Liposomes, with their core containing an aqueous phase, offer a

means to incorporate and encapsulate sensitive bacteriophages.

Additionally, the phospholipid bilayer membrane of liposomes can

provide physical protection for the core bacteriophages (Figure 4C).

Cinquerrui et al. investigated the encapsulation of two model

bacteriophages, preserving their activity and estimating the yield of

microfluidic encapsulated bacteriophages (79). For certain

intracellular diseases, liposomes are often employed to encapsulate

bacteriophages for intracellular delivery to achieve therapeutic
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purposes. Nieth et al. found that liposome-encapsulated

bacteriophages were more effectively absorbed into eukaryotic cells

compared to free bacteriophages (80). Due to their excellent

biocompatibility, liposomes show immense potential in protecting

bacteriophages from immune clearance by preventing phagocytic cell

recognition and capture. Researchers compared the ability of

bacteriophages embedded in liposomes and free bacteriophages to

enter mouse peritoneal macrophages and kill intracellular Klebsiella

pneumoniae. The study also compared the efficacy of liposome-

encapsulated bacteriophages alone or in combination with amikacin

in eradicating mature biofilms. The results demonstrated that

liposome-encapsulated bacteriophages were protected, capable of

entering macrophages and killing intracellular bacteria. Liposome-

encapsulated bacteriophages also exhibited synergistic activity with

amikacin in biofilm eradication (125).

Hydrogels can serve as physical barriers for core bacteriophages,

protecting them from acidic and enzymatic degradation while

prolonging their retention time during intestinal transport, making

them ideal carriers for bacteriophage delivery (Figure 4D). Kopac et al.

proposed an efficient PolyHIPE hydrogel system for targeted

bacteriophage delivery and rapid release at the target site. T7

bacteriophages were encapsulated in low cross-linked anionic

nanofibrous cellulose hydrogels, which successfully protected the

bacteriophages at pH below 3.9 (stomach), while the hydrogel

network dissolved completely at pH above 3.9 (duodenum),

allowing bacteriophage release. The PolyHIPE scaffold protected the

hydrogel from mechanical stress during transport, preventing
A

B

C

D

E

FIGURE 4

The preparation processes and microstructures of various carriers with encapsulated phages are outlined. (A) Depicts the preparation process of
electrospun fibers and the microscopic structure of phages encapsulated through the electrospinning technique. (B) Illustrates the fabrication
process and microstructure of multiple emulsions containing phages. (C) Presents a schematic of liposome preparation and the microscopic
structures of encapsulated phages: (i) phages encapsulated in liposomes via the thin film hydration method, and (ii) phages in liposomes through a
microfluidic process. (D) Describes the preparation mechanism and microstructure of hydrogels with encapsulated phages: (i) chitosan-coated
alginate hydrogel loaded with phages using the extrusion-dripping method, (ii) Eudragit S100/alginate hydrogel with phages produced through a
microfluidic technique, and (iii) Eudragit S100/alginate hydrogel with phages via membrane emulsification. (E) Provides a production diagram and
microstructure of dry particles with phages: (i) phages in particles through lyophilization, (ii) dried particles with phages via the electrospraying
process, and (iii) solid particles containing phages through the spray drying method. [Adapted from (82)].
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hydrogel collapse and accidental bacteriophage release (126). In

constructing bacteriophage encapsulation carriers, a layer-by-layer

assembly method was employed to coat acid-resistant

polyethyleneimine and pectin onto alginate-bacteriophage hydrogels

to protect bacteriophage activity during gastrointestinal transport. Hsu

et al. generated alginate microbeads by dripping alginate solution into

stirred calcium chloride solution, which were then coated with

polyethyleneimine (PEI) and pectin. Film-coated alginate

microbeads exhibited resistance to external pH changes. Increasing

film thickness enhanced acid resistance. Encapsulating l
bacteriophages into alginate microbeads coated with (PEI/pectin)

displayed excellent in vitro acid stability compared to free l
bacteriophages (127). Bacteriophage-based hydrogel-mediated

delivery offers a precise strategy for modulating the expression of

specific genes in individual microbes in the intestine, thereby

promoting gut homeostasis and human health. The development of

bacteriophage resistance is also a general consideration when

delivering lytic bacteriophages (128). Therefore, the use of multiple

bacteriophages (bacteriophage cocktails) may be necessary to ensure

successful lytic activity and achieve the desired outcomes, broadening

the host range of targeted microbes and suppressing the development

of resistance (129).
4.5 Particle materials

The production methods for bacteriophage encapsulated particles

mainly include freeze-drying, electrospraying, and spray-drying. Spray

freeze-drying can produce controlled particle size distribution

bacteriophage-loaded porous powders without subjecting

bacteriophages to the high thermal stresses typically encountered in

traditional spray-drying. Some protectants have been added to the

formulation to enhance bacteriophage viability (Figure 4E). In Pereira

et al.’s study, they developed an edible biopolymer microcapsule

packaging for intestinal Salmonella, integrating lytic bacteriophage

particles. For the formulation, a concentration of 2% (w/w) sodium

alginate was added (130). To enhance colorectal cancer (CRC)

chemotherapy effectiveness, nucleic acid bacteriophage-specific

bacteriophages were conjugated with glucan nanoparticles loaded

with CRC chemotherapeutic drugs to form bacteriophage-guided

nanoparticles, which effectively inhibited nucleic acid bacteriophage

growth and significantly extended the survival time of CRC mice

(131). Additionally, in Thanki et al.’s study, combining polymers with

sugars and leucine excipients also contributed to bacteriophage

stability during drying (132). To precisely control bacteriophage

dosage and improve oral administration convenience, these spray-

dried particles can be further compressed into bacteriophage tablets

for colonic delivery. In Khanal et al.’s study, targeting bacteriophage

PEV20 against intestinal Pseudomonas aeruginosa, bacteriophage

tablets suitable for oral administration were produced using

industrial-scale tablet compression and coating machines. The

bacteriophage tablet produced exhibited negligible reduction in

bacteriophage titer throughout the process and passed the British

Pharmacopoeia tests, including friability, weight variation,

disintegration, and dissolution of uncoated tablets (in 0.1 M HCl

and pH 7.4 phosphate buffer). The developed formulation method can
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be used to produce tablets containing other bacteriophages and

bacteriophage cocktails, which are effective in combating intestinal

bacterial infections (133).
5 Conclusion and outlook

Dysbiosis of the gut microbiota is linked with inflammatory

bowel disease. Recently, bacteriophage delivery has emerged as an

innovative strategy, holding immense potential to alter gut

microbiota composition or modulate bacterial genes through their

specificity for certain host bacteria. Bacteriophages play a pivotal

role in the structure and functionality of human gut microbiota,

thereby affecting gastrointestinal health and disease. Given this,

bacteriophages stand out as promising agents for IBD therapy,

targeting pathogenic gastrointestinal bacteria. However,

environmental and gastrointestinal conditions can deactivate

bacteriophages, diminishing their effectiveness and presenting

substantial delivery challenges. Encapsulation techniques have

been employed to boost bacteriophage vitality and stability for

storage and intestinal transit. Various carriers have proven effective

in preserving bacteriophage stability for storage, safeguarding

viability, and ensuring efficient release in the colon during

gastrointestinal passage. Despite some identified limitations with

certain carriers, employing a combination of methods to create

composite carriers presents research opportunities to enhance

bacteriophage delivery in gut microbiota modulation practically.
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Woźniak-Biel A, et al. Effective reduction of Salmonella Enteritidis in broiler chickens
using the UPWr_S134 phage cocktail. Front Microbiol. (2023) 14:1136261.
doi: 10.3389/fmicb.2023.1136261

7. Majewska J, Miernikiewicz P, Szymczak A, Goszczyński TM, Owczarek B,
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