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University, Guiyang, China, 4Department of Neurosurgery, Liuzhou People’s Hospital, Liuzhou, China
Objective: Despite extensive research on the relationship between pulmonary

tuberculosis (PTB) and inflammatory factors, more robust causal evidence has yet

to emerge. Therefore, this study aims to screen for inflammatory proteins that may

contribute to the susceptibility to PTB in different populations and to explain the

diversity of inflammatory and immune mechanisms of PTB in different ethnicity.

Methods: The inverse variance weighted (IVW) model of a two-sample

Mendelian Randomization (MR) study was employed to conduct causal analysis

on data from a genome-wide association study (GWAS). This cohort consisting

PTB GWAS datasets from two European and two East Asian populations, as well

as 91 human inflammatory proteins collected from 14,824 participants.

Colocalization analysis aimed to determine whether the input inflammatory

protein and PTB shared the same causal single nucleotide polymorphisms

(SNPs) variation within the fixed region, thereby enhancing the robustness of

the MR Analysis. Meta-analyses were utilized to evaluate the combined causal

effects among different datasets.

Results: In this study, we observed a significant negative correlation between

tumor necrosis factor-beta levels (The alternative we employ is Lymphotoxin-

alpha, commonly referred to as LT) (P < 0.05) and tumor necrosis factor receptor

superfamily member 9 levels (TNFRSF9) (P < 0.05). These two inflammatory

proteins were crucial protective factors against PTB. Additionally, there was a

significant positive correlation found between interleukin-20 receptor subunit

alpha levels (IL20Ra) (P < 0.05), which may elevate the risk of PTB. Colocalization

analysis revealed that there was no overlap in the causal variation between LT and

PTB SNPs. A meta-analysis further confirmed the significant combined effect of

LT, TNFRSF9, and IL20Ra in East Asian populations (P < 0.05).
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Conclusions: Levels of specific inflammatory proteins may play a crucial role in

triggering an immune response to PTB. Altered levels of LT and TNFRSF9 have

the potential to serve as predictive markers for PTB development, necessitating

further clinical validation in real-world settings to ascertain the impact of these

inflammatory proteins on PTB.
KEYWORDS

pulmonary tuberculosis, tumor necrosis factor, Mendelian randomization,
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1 Introduction

The Mycobacterium tuberculosis (MTB) complex, which causes

Pulmonary Tuberculosis (PTB) in humans and animals, is globally

recognized as the second leading infectious cause of mortality,

following novel coronavirus pneumonia (1). With the rapid

advancement of molecular biology detection technology, enzyme-

linked immunosorbent assay based on immunology technology

exhibits excellent specificity. However, it is susceptible to

individual immune status and other influencing factors, thereby

necessitating high testing costs. GeneXpert MTB/RIF has gained

widespread usage due to its advantages in terms of ease of

operation, fast detection speed, and high sensitivity. Nevertheless,

its diagnostic capability is limited to the period when

Mycobacterium tuberculosis is excreted by patients with

tuberculosis and cannot be employed during the non-excretory

phase. Consequently, there exists an urgent need for a direct, rapid,

and accurate method for early tuberculosis diagnosis (2). Several

studies have identified certain inflammatory proteins as crucial

players in PTB pathology, indicating a promising avenue for PTB

diagnosis and targeted therapy (3, 4).

The eradication of PTB requires the concerted efforts of both

cellular immunity and humoral immunity, with T cells contributing

to cellular immunity and B cells playing a role in humoral

immunity. MTB is a facultative intracellular bacterium that

predominantly resides within macrophages (Mø). When aerosol

droplets containing MTB are inhaled, MTB effectively recognizes

alveolar Mø located on the lining of the alveoli. Mø exhibits limited

ability to detect or respond reliably to MTB infection, resulting in a

weakened inflammatory response. Ultimately, migration from the
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alveolar space to the lung interstitial occurs through host-

dependent interleukin 1b (IL-1b) signaling and direct activity of

other molecules, leading to a delay of adaptive immunity by 2 weeks

(5). The involvement of B cells in anti-tuberculosis humoral

immunity and their regulatory role in various host immune

components contribute to the enhancement of cellular immune

response against MTB. B cells not only produce antibodies but also

secrete pro-inflammatory [such as interferon–gamma (IFN-g) and
tumor necrosis factor-alpha levels (TNF-a)] and anti-inflammatory

cytokines (for instance, IL-4、IL-10). The role of B cells in

promoting protective immunity and modulating host defense is

substantial. The evidence regarding the contribution of B cells and

antibodies to MTB clearance exhibits significant variability,

necessitating further investigation into whether this disparity can

be attributed to genetic factors within the study population (6).

Historically, the majority of tuberculosis research has been focused

on elucidating the mechanisms underlying T-cell-mediated

immunity, while our understanding of the role played by

B-cell and antibody-mediated immunity in tuberculosis

remains incomplete. Given our current understanding of MTB’s

immunological mechanism, it may be advantageous to explore

molecular biological evidence of active infection from a cytokine-

centric perspective.

The discovery of TNF originated from the observation that

cancer patients occasionally exhibited spontaneous tumor

regression following bacterial infection. Subsequent investigations

have revealed its identity as a circulating factor induced by bacteria,

possessing potent anti-tumor activity and referred to as TNF (7).

Primarily implicated in apoptosis and inflammation, TNF receptors

can also participate in other signal transduction pathways (8–10).

The study of members within the TNF family will continue to be a

prominent area of research. Studies have revealed that TNF-b, a
soluble protein released by activated lymphocytes in response to

antigen or mitogen stimulation, possesses the ability to inhibit

tumor cells and virus-infected cell growth or lysis. This protein is

also known as lymphotoxin-a (LT), which has been found to

replace TNF-b in this paper (11). As a member of the TNF

family, LT is widely acknowledged as a potent pro-inflammatory

mediator. It effectively suppresses human granzyme B (GZMB)

regulatory B cells (Bregs). Utilizing the geneHancer database and
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TFBSTools R package to identify transcription factors binding to LT

and GZMB promoters, two upregulated transcription factors were

discovered in GZMB+Bregs. Inhibiting LT in GZMB+Bregs can

diminish the induction of GZMB+Bregs. GZMB+Bregs inhibit T

cell proliferation and effector function by suppressing cytokine

production and proliferation. Subsequent administration of LT

restores effector T cell proliferation in a dose-dependent manner

(12). The role of LT in the immune response of PTB involves the

regulation of B cells and the promotion of T cell proliferation.

Investigating whether LT can induce a shift from humoral

immunity to cellular immunity is an innovative direction for

future research on the diagnosis and treatment of PTB from an

immunological perspective. The results of the experiments have

demonstrated that LT possesses the capability to accurately detect

MTB bovis infection upon stimulation with specific protein

derivatives. The experiment exhibited a sensitivity of 0.9991,

thereby confirming the diagnostic value of LT. Nevertheless, LT

has received limited attention in tuberculosis research (13).

Given the impact of multiple inflammation-associated proteins

on PTB infection and morbidity, we employed Mendelian

randomization (MR) analysis, akin to a randomized controlled

trial design, to elucidate the causal relationship between PTB and

its associated inflammatory proteins through MR Validation in our

study. The present study employed MR methods to evaluate the

causal impact of inflammatory proteins’ genetic polymorphisms

on PTB by utilizing single nucleotide polymorphisms

(SNPs) associated with inflammatory proteins as instrumental

variables (IVs).
2 Methods

2.1 Study design

The present study conducted a comprehensive evaluation of the

association between 91 inflammatory proteins and PTB using a

rigorous MR design. The conduction of a scientifically rigorous MR

study necessitates the examination of the following three

hypotheses: 1) genetic IVs exhibited a strong association with the

exposure factors; 2) genetic IVs were found to be statistically

uncorrelated with the outcomes and remained unaffected by

potential confounding factors; 3) the results are influenced by IVs

through their impact on exposure factors.

In a genome-wide protein quantitative trait locus (pQTL) study

of 91 plasma proteins, MR Analysis was employed, utilizing a total

of 91 inflammatory proteins and genetically significant SNPs

associated with PTB. To mitigate potential sample bias, the

inflammatory proteins and PTB genetic information utilized in

this study were sourced from distinct Genome-wide association

studies (GWAS) datasets (Figure 1A).
2.2 GWAS data for inflammatory proteins

The dataset utilized inflammatory protein data obtained from a

European genome-wide pQTL study, which encompassed 14,824
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participants at the Olink Target platform. The panel measured 92

inflammation-associated proteins using the Olink Target-96

Inflammation immunoassay panel. Proteomic data for each

cohort were generated in Olink’s laboratory in Uppsala. During

the project, Olink removed brain-derived neurotrophic factors from

the inflammatory panel due to detection issues, so our study

included a total of 91 proteins (14).
2.3 GEWAS data for PTB

The PTB pooled datasets were all obtained from the ieu open

gewas project (https://gwas.mrcieu.ac.uk/). The GWAS IDs were

ebi-a-GCST90018892, ukb-b-15622, bbj-a-149, and ebi-a-

GCST90018672 respectively. SNPs were extracted from the VCF

files shared by the analytic platforms. In the European Population

PTB dataset with GWAS ID ebi-a-GCST90018892, the pooled data

consisted of 895 PTB cases and 476,491 control cases, for a total of

24,189,689 SNPs. In the European Population PTB dataset with

GWAS ID ukb-b-15622, the pooled data consisted of 2,277 PTB

cases and 460,656 control cases, for a total of 9,851,867 SNPs. In the

East Asian Population PTB dataset with GWAS ID bbj-a-149, the

pooled data consisted of 549 PTB cases and 211,904 control cases,

for a total of 8, 885, 805 SNPs. In the East Asian Population PTB

dataset with GWAS ID ebi-a-GCST90018672, the pooled data

consisted of 7800 PTB cases and 170,871 control cases, for a total

of 12,454,677 SNPs.
2.4 Selection of IVs

The selection of IVs in this MR analysis was based on 3 basic

assumptions. First, we set P < 1×10-5 as the genome-wide significance

threshold to select SNPs strongly associated with PTB and

inflammatory proteins. Secondly, to avoid linkage disequilibrium, a

clustering procedure implemented in R software was used to identify

independent variants. A threshold of R2 < 0.001 at a distance of 500

kilobases was applied for assessing linkage disequilibrium. Finally, to

quantitatively verify whether the selected SNPs were strong

instruments, the proportion of variance in the exposure was

calculated using the R2 value for each SNPs, and instrument strength

was estimated using the F statistic to avoid weak instrument bias.

A threshold of F > 10 is usually recommended.
2.5 MR analysis

In this analysis, the causal relationship between inflammatory

proteins and PTB was assessed primarily using the inverse

variance weighting (IVW) method, which is the most efficient

method with maximum statistical power. When the instrumental

variables satisfy all three main assumptions, the IVW method

provides a more accurate estimate of the causal effect of exposure

and is considered the most efficient MR method. However, if some

IVs do not meet the assumptions, the analysis may give inaccurate

results. Therefore, we conducted the following sensitivity
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analysis:1) the hypothesis violation caused by the heterogeneity of

the correlation between individual IV was examined through a Q

test conducted on IVW and MR-Egger; 2) the MR-Egger intercept

method was employed to estimate horizontal pleiotropy, ensuring

the independent correlation between genetic variation and

inflammatory proteins with PTB; 3) the reliability and stability

of hypothesis testing are enhanced through the utilization of

additional analysis techniques such as weighted median and

weighted models; 4) the likelihood of observed associations for

individual SNPs was assessed through the performance of

individual SNP analyses and retention tests.
Frontiers in Immunology 04
2.6 Colocalization analysis

Following the confirmation of a causal association between an

inflammatory protein and PTB through MR Analysis, colocalization

analysis identified significant signal sites to determine whether both

phenotypes were influenced by the same causal variant in a specific

region. This further strengthens the previous evidence linking these

two phenotypes. The colocalization analysis consisted of four

hypotheses. H0: There was no significant association between

phenotype 1 (exposure) and phenotype 2 (outcome) with all SNPs

in a genomic region. H1/H2: Either phenotype 1 or phenotype 2
A

B

FIGURE 1

NIR flowcharts depicting 91 inflammatory proteins and their correlation significance across four PTB datasets. (A), Schematic of MR analysis.
Significant IVs for 91 inflammatory proteins and PTB were selected to explore causality. Three basic assumptions of MR analysis were also illustrated.
In order to identify SNPs with a robust correlation between PTB and inflammatory proteins, it is commonly recommended to establish a genome-
wide significance threshold of P < 1×10-5. When utilizing kb and R2 to detect chain imbalance, it is typically advised to set Kb < 500 and R2

≤ 0.001,
indicating the removal of SNPs within the range of 500 Kb and those with an R2 value exceeding 0.001 as the most significant SNP. To assess tool
efficacy using the F statistic, it is generally suggested to set F > 10. (B), Circular heatmap plot of correlation significance of inflammatory proteins
influence on PTB.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1398403
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mo et al. 10.3389/fimmu.2024.1398403
showed significant association with SNP sites in a genomic region. H3:

Both phenotypes 1 and 2 were significantly associated with SNP sites

in a genomic region, but driven by different causal variation sites. H4:

Both phenotypes 1 and 2 were significantly associated with SNP sites

in a genomic region and driven by the same causal mutation site. The

analysis provided posterior probabilities for each hypothesis test (H0,

H1, H2, H3, and H4). If the posterior probability of shared causal

variation is ≥0.75, it indicats strong evidence of colocalization between

the SNP and both phenotypes.
2.7 Statistical analysis

All MR analyses were performed using the “TwoSampleMR”

package in R (version 4.2.3). The odds ratio (OR) and the

corresponding 95% confidence intervals (CI) were used to estimate

the magnitude and direction of inflammatory protein effects. Meta-

analysis was performed using Revman 5.4 software to collect the

required data and create a database, statistical methods were used to

analyze the heterogeneity using Heterogeneity, and also random and

fixed effect models were used for the comparative analysis with a

confidence interval of 95%. The colocalization analysis was conducted

using the “coloc” package in R (version 4.2.3). P < 0.05 was considered

statistically significant. The Heatmap plot of this sduty was created

from https://www.chiplot.online/. The Venn and Volcano plot were

generated from https://www.bioladder.cn/web/#/pro/index.
3 Results

3.1 Overall trends

The results of 91 inflammatory proteins from four databases were

summarized and analyzed to determine their impact on the risk of PTB

development. It was observed that the majority of inflammatory

proteins have an OR value close to 1 in the development of PTB.

Additionally, PTB exhibited divergent responses to 76 inflammatory

proteins, while consistent effects were observed in 15 inflammatory

proteins. Notably, levels of interleukin-10 receptor subunit alpha,

neurotrophin-3, leukemia inhibitory factor receptor, interleukin-6,

fibroblast growth factor 5 and 21, interleukin-15 receptor subunit

alpha, T-cell surface glycoprotein CD6 isoform, C-C motif chemokine

19 and C-X-C motif chemokine 6 were found to be influential.

Furthermore, the levels of interleukin-22 receptor subunit alpha-1 and

eukaryotic translation initiation factor 4E-binding protein 1 as well as T-

cell surface glycoprotein CD5 and sulfotransferase 1A1 also contributed

to the development of PTB in conjunction with TNF-related activation-

induced cytokine (Figure 1B). The integration effect and significance of

this result should be further determined through meta-analysis.
3.2 Influence of 91 inflammatory proteins
on PTB

Since the genome-wide significance threshold for selecting

strongly correlated SNPs was P < 1×10-5, there were 91
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inflammatory proteins. The IVs variable for GWAS ID: ebi-a-

GCST90018892 contains a total of 24,189, 689 SNPs, with a

median of 37 SNPs. The IVs for GWAS ID: ukb-b-15622 contain

a total of 9,851,867 SNPs, with a median of 13 SNPs. The IVs

variable for GWAS ID: bbj-a-149 contain a total of 8,885,805 SNPs,

with a median of 16 SNPs. The IVs for GWAS ID: ebi-a-

GCST90018672 contains a total of 12,454,677 SNPs, with a

median of 20 SNPs. All analyses used IVW as the primary

analytical method, and there was no evidence of heterogeneity

and no weak instruments. From the preliminary results of the

study, 17 significantly correlated inflammatory proteins were

screened from 4 databases (P < 0.05 for IVW) (Figure 2A). After

the screening, LT, TNFSF9, and IL20Ra were identified with varying

degrees of overlap (Figure 2B). The presence of LT demonstrated a

protective effect against PTB in one European and two East Asian

databases (OR < 1, P < 0.05). Similarly, TNFSF9 exhibited a

protective effect against PTB in both a European and an East

Asian population database (OR < 1, P < 0.05). Conversely, IL20Ra

was identified as a risk factor for PTB in both a European and an

East Asian population database (OR > 1, P < 0.05) (Figure 3A). The

statistically significant correlations of three overlapping

inflammatory proteins in the three MR Models, Q test, and

sensitivity analysis are presented in Supplementary Table 1. All

tool variables were found to be significant (P < 0.05).
3.3 Estimators of the combined effects

Considering the diverse causal relationships between various

inflammatory proteins and PTB in different populations, we

conducted a meta-subgroup analysis by pooling data from 4

databases. We investigated a total of three types of inflammatory

proteins that exhibited statistically significant overlap, and

performed heterogeneity tests as well as pooled effect size tests for

the included studies. Additionally, we separately estimated the

combined effects in European and East Asian populations based

on population categories. The results of the meta-analysis

demonstrated significant associations between LT, TNFRSF9, and

IL20Ra with PTB in the East Asian population (P < 0.05).

Furthermore, no heterogeneity was observed (I2 < 50%, P > 0.05),

and the final combined effect using the fixed-effect model was found

to be significant (P < 0.05) (Figures 3B-D). Based on these findings,

it can be concluded that LT, TNFRSF9, and IL20Ra exhibit

significant associations with PTB in both the European

population datasets and the datasets representing the East

Asian population.
3.4 Colocalization analysis of LT

The absence of a significant P value in the GWAS data for

TNFRSF9 and IL20ra prompted us to conduct a co-localization

analysis on LT, aiming to investigate whether there is shared

underlying causal variation between LT and PTB within a specific

genomic region. The results obtained demonstrate that the

posterior probability of shared causal variation between LT and
frontiersin.org
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PTB is only 0.19%, which inadequately explains the causal

relationship between LT and PTB (Figure 4, Table 1).
4 Discussion

In this study, we employed genetic variants as IVs to investigate

the causal relationship between 91 inflammatory proteins as

exposure variables and PTB in two European and two East Asian

populations. Seventeen inflammatory proteins exhibited significant

associations with PTB. The presence of LT and TNFSF9 may
Frontiers in Immunology 06
potentially confer a reduced susceptibility to PTB, whereas

IL20Ra may increase the risk of developing PTB development,

without observing any heterogeneity in these effects across

European and East Asian populations. Furthermore, the posterior

probability of shared causal variation between LT and PTB was only

0.19%, suggesting limited evidence for colocalization of the SNP

with both phenotypes.

The present study underscored the causal role of TNF in

determining susceptibility to PTB. Multiple studies have demonstrated

that the diagnostic value of measuring TNF levels surpasses that of other

factors (15). MR analysis offers novel insights into the causal
A

B

FIGURE 2

The significance and overlap of 91 inflammatory proteins across four PTB datasets. (A), Volcano plot of correlation significance of inflammatory
proteins influence on PTB in each database. (B), Intersection of 4 databases in MR Analysis. The data set whose GWAS ID is ebi-a-GCST90018892 is
abbreviated as ebi92. GWAS ID is the data set ukb-b-15622 is abbreviated as ukb. GWAS ID is the data set bbj-a-149 is abbreviated as bbj. The GWAS
ID is ebi-a-GCST90018672 is abbreviated as ebi72.
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relationship between inflammatory proteins and PTB pathogenesis.

Research on the association between the TNF family and PTB is

expanding. TNF plays a crucial role as a mediator against MTB,

significantly influencing granulomatous structure, Bacillus

colonization, and necrotic area maintenance. PTB is characterized by

alterations in inflammatory markers, while systemic inflammation
Frontiers in Immunology 07
driven by MTB infection may exhibit diverse effects across different

countries and ethnicities. The most relevant markers for distinguishing

inflammatory characteristics among countries is TNF-a, which has

garnered numerous research findings regarding its involvement in PTB

pathogenesis. The pro-inflammatory response in subjects with PTB

reached its peak at 2 months of treatment, as evidenced by an elevation
A

B

D

C

FIGURE 3

The OR values of inflammatory proteins exhibit a significant correlation. (A) The forest maps illustrate the importance of significant inflammatory
proteins effects on PTB across four databases. (B), Meta-analysis of TNF-b in four GWARS databases. (C), Meta-analysis of TNFSF9 in four GWARS
databases. (D), Meta-analysis of IL20Ra in four GWARS databases.
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in TNF-a levels, and subsequently exhibited down-regulation at 6

months of treatment (16). TNF-a is a prominent pro-inflammatory

factor that triggers early inflammation in Mtb infection. Upon invasion

of the body by MTB, TNF-a plays a crucial role in the innate immune

response through its recruitment and activation of monocytes at the site

of infection, thus enhancing their bactericidal activity. Furthermore,

TNF-a serves as a key mediator of host immune responses and is

secreted by activated Mø to combat PTB and restrict disease

progression. It facilitates the formation and maintenance of

granulomatous structures while promoting effector molecule

production through macrophage activation when co-stimulated with

IFN-g (17, 18). The involvement of TNF-a in the regulation of

inflammatory response during PTB is thus deemed highly significant.

In clinical TB models, the virulent Peking strain exhibits an enhanced

capacity to suppress lung protective immunity by inducing elevated

levels of type I interferon, thereby leading to reduced TNF-a levels and

diminished T cell activation when compared with strains from other

lineages (19). Some studies of tuberculous pleurisy have reported

elevated levels of TNF at the site of infection. Higher levels of TNF

were observed in bronchoalveolar cells infected in the lungs of patients

with unilateral TB compared to cells obtained from the unaffected side

of the same patients. Additionally, higher levels of TNF were detected in

peripheral bloodmononuclear cells of patients newly diagnosed with TB

compared to those with chronic refractory TB (20–22). Compared to

Human Immunodeficiency Virus(HIV)–infected patients without

central nervous system involvement, HIV-associated tuberculous

meningitis patients exhibited elevated levels of T-helper factor (Th)

17, TNF-a, and LT (23). In the study conducted by Jing Wei et al., the

Kyoto Genomic Encyclopedia and single gene enrichment analysis of

peripheral blood mononuclear cells from the Asian population of Mtb-
Frontiers in Immunology 08
Ag stimulated and control samples revealed a significant enrichment of

the TNF signaling pathway, which is closely associated with

tuberculosis. Furthermore, it was observed that this pathway co-

expressed with five pathways in the protein-protein interaction

network, all of which exhibited upregulation under Mtb-Ag

stimulation (24). Yukari C Manabe et al. conducted a randomized

clinical trial in which 850 HIV patients from 10 African countries were

evaluated for 26 plasma biomarkers using a combination of multiple

immunoassays and enzyme-linked immunosorbent assays. The final

model, constructed with six biomarkers including LT, effectively

predicted the occurrence of PTB with a sensitivity of 0.90 and

specificity of 0.71. These intuitive inflammatory biomarkers can be

used to identify individuals at the highest risk for developing PTB (25).

The association between LT and PTB is becoming increasingly evident,

and it exerts a protective role during MTB infection. However, despite

the ability of LT to induce the production of Th1 cytokines (such as

interferon–amma, and IL-12) and promote pulmonary immune

response, its independent effect appears to be insignificant. The

absence of LT may compromise the control of chronic

Mycobacterium tuberculosis infection, suggesting a potential

involvement of LT in regulating chronic nodular MTB infection (26).

These findings substantiate the efficacy of LT as a predictive factor for

PTB. Moreover, among individuals co-infected with HIV and TB, the

utilization of inflammatory biomarker signatures successfully identified

those at the highest risk for developing PTB (23). These inflammatory

biomarkers reflect numerous activations of innate immunity and

increased Th1 responses, which are associated with the immune

response to MTB. This characteristic holds promise as a stratification

tool in the future and may benefit patients who require heightened

monitoring and novel interventions. Based on our research findings, we
TABLE 1 The results of the co-localization analysis for LT were evaluated based on 4 distinct hypotheses.

Inflammatory protein Chromosome and position H0.abf* H1.abf* H2.abf* H3.abf* H4.abf*

LT 6: 31450757-31630757 8.47×10-5 9.96×10-1 1.79×10-7 2.11×10-3 1.90×10-3
fr
*abf, Approximate Bayes Factors.
FIGURE 4

The colocalization results ofTNF-b and PTB.
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intend to conduct the subsequent experiment on a large sample of the

Asian population. We will establish an exposed group (with high levels

of LT) and a non-exposed group (with low levels of LT) for cohort

observation with the objective of validating whether elevated levels of LT

can predict PTB occurrence across different ethnicities.

TNFRSF is a type of cytokine receptor consisting of superfamily

proteins. TNFRSF9 is expressed on the surface of antigen-presenting

cells, such as Mø and B cells, as well as various tumor cells. It plays

diverse roles in autoimmune, infection, and inflammatory diseases by

mediating complex immune responses (27, 28). However, their

function extends beyond immune cells and also relates to the body’s

pathological and physiological responses. This “double-edged sword”

characteristic is typical among most members of the tumor necrosis

factor family. Different studies have demonstrated that while TNF and

its superfamily members were crucial for hematopoiesis, prevention of

bacterial infection, immune surveillance, and tumor regression; their

dysregulation also contributed to various diseases (29, 30). The

regulatory network between TNFRSF9 and its ligand TNFSF9 is

highly intricate, primarily due to the presence of bidirectional

signaling that occurs between them. The interaction of TNFRSF9

and TNFSF9 on various cell types can initiate bidirectional signals,

leading to a diverse range of immune responses involving both adaptive

and innate immunity. However, the precise mechanisms underlying

this complex regulatory network remain unclear (31). Therefore,

TNFRSF9, which does not consistently exert a protective role in

certain diseases, exhibits a distinctive functionality across various

immune effector cell types due to its involvement in intricately

orchestrated immune regulatory processes (32). The precise

contribution of TNFRSF9 to human disease remains yet to be

determined. Nonetheless, when combined with the findings from our

study, these conclusions regarding TNF and TNFRSF9 offer potential

for novel therapeutic target against TB.

The IL-20 family exerts a profound influence on the innate

immune response of the host, promoting its activation and limiting

the detrimental effects associated with viral and bacterial infections.

Additionally, it facilitates tissue remodeling and repair processes

while also playing a crucial role in restoring local epithelial

homeostasis and preserving tissue integrity during episodes of

inflammation and infection (33–36). The secretion and expression

of inflammatory factors such as TNF-a and monocyte

chemoattractant protein can be enhanced, thereby effectively

regulating the occurrence of early inflammation. The data revealed

a decrease in the production of these cytokines during active TB with

diabetes and latent TB with diabetes, indicating their potential

protective role against TB (37). In the context of tuberculosis, the

mechanisms underlying the IL-20 family remain incompletely

elucidated. The available findings suggest that the IL-20 subfamily

of cytokines bears resemblance to IL-10 and exerts a regulatory role in

modulating cytokine expression to suppress the inflammatory

response during chronic inflammation (33). Building upon our

discoveries, the exploration for novel ways to predict TB will go

one step further.

This study should also acknowledge and strive to overcome

certain limitations. The present study represents the first MR

investigation aimed at assessing the causal association between

PTB and a comprehensive panel of 91 inflammatory proteins.
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The susceptibility to confounding is relatively lower in MR

Designs compared to other observational studies; however, there

are still limitations. Firstly, the data we investigated originated from

four large-scale GWAS, and due to the absence of specific

demographic information and clinical records of the study

participants, a more detailed analysis was not feasible. Second, the

genetic association between exposure and outcome GWAS may

exhibit population-specific variations and differential influences

based on race. Our findings were derived from European and

East Asian populations, which may differ from other populations;

however, the fundamental biological link between systemic

inflammatory proteins and PTB should remain consistent across

populations. Therefore, caution should be exercised when

extrapolating these conclusions to other racial groups. Third, the

analysis was restricted to alterations in blood tissue, thus excluding

the elucidation of discrepancies in other tissues among PTB

patients. Fourth, the impact on PTB risk was the sole focus of our

testing, without considering their influence on the progression of

PTB disease. The investigation of the association between all

systemic inflammatory regulators and disease progression, would

be invaluable for comprehending PTB.
5 Conclusions

Taken collectively, the findings of the MR study suggest that

levels of specific inflammatory proteins may play a pivotal role in

triggering an immune response to PTB, thereby enabling the

prediction of PTB development risk. Changes in levels of LT and

TNFRSF9 may potentially serve as predictive markers for the

development of PTB. Additionally, the effects of LT, TNFRSF9,

and IL20Ra on PTB vary among different ethnic groups. However,

further clinical validation in real-world settings is necessary to

determine the impact of these inflammatory proteins on PTB.
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