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Defining correlates of protection
for mammalian livestock
vaccines against high-priority
viral diseases
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David T. Williams and Stacey E. Lynch

Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease
Preparedness, Geelong, VIC, Australia
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers,

global and local economies, and food security. Vaccination is fundamental to the

control and prevention of exotic and endemic high-priority infectious livestock

diseases. Successful implementation of vaccination in a biosecurity plan is

underpinned by a strong understanding of correlates of protection—those

elements of the immune response that can reliably predict the level of

protection from viral challenge. While correlates of protection have been

successfully characterized for many human viral vaccines, for many high-

priority livestock viral diseases, including African swine fever and foot and

mouth disease, they remain largely uncharacterized. Current literature provides

insights into potential correlates of protection that should be assessed during

vaccine development for these high-priority mammalian livestock viral diseases.

Establishment of correlates of protection for biosecurity purposes enables

immune surveillance, rationale for vaccine development, and successful

implementation of livestock vaccines as part of a biosecurity strategy.
KEYWORDS

correlates of protection, livestock, biosecurity, vaccines, protection, immunity,
antibodies, T cells
1 Introduction

Biosecurity involves implementation of measures to minimize the risk of introducing

and spreading pathogens within and between farms, between humans and animals, and

within the environment (1, 2). The development of biosecurity programs requires a strong

scientific basis and the use of risk assessment to evaluate and implement appropriate

measures without unnecessarily hindering commerce and trade (1, 2). Many measures are

utilized to prevent and control exotic and endemic high-priority viral animal diseases
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ranging from animal husbandry practices to culling of infected

animals or herds (1, 2). Livestock vaccines can further bolster

biosecurity strategies and contribute significantly to the overall

health and productivity of animal populations (Figure 1) (3, 4).

While the immune response to infection with many high-priority

viral livestock diseases is well characterized, the protective immune
Frontiers in Immunology 02
response to a subsequent infection and the relationship to vaccine-

mediated protection are incomplete. In this review, we discuss

current knowledge of protective immunity and vaccine-induced

correlates of protection (CoPs) for high-priority mammalian

livestock viral diseases in the context of biosecurity (Table 1). We

selected six examples of viral diseases notifiable to the World
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C

FIGURE 1

Use of correlates of protection to inform biosecurity programs. (A) An outbreak of an important viral livestock disease, e.g., bluetongue (BT), (B)
triggers the implementation of a biosecurity program that may include vaccination. (C) Initial exposure to antigen via vaccination or natural infection
will generate a primary immune response to the target virus, including activation, proliferation, and differentiation of innate (e.g., NK cells and DCs)
and adaptive immune cells (e.g., B and T cells), and the production of antibody and generation of immune memory. (D) When immune animals
encounter a subsequent infection, immune memory rapidly activates and expands to generate an efficient secondary immune response. (E) The
antiviral immune response elicits various functions including cytokine secretion, antibody-mediated neutralization, and antibody Fc effector
functions {i.e., antibody-dependent cellular phagocytosis (ADCP), cytotoxicity of infected cells [antibody-dependent cellular cytotoxicity (ADCC)],
and CD8+ T cell mediated}, which collectively controls viral replication and clears infection, thus reducing disease severity and ongoing viral
transmission. (F) Correlating these immune features can help identify indicators of protection to inform vaccine development and the use of
vaccination in biosecurity programs. Created with BioRender.com.
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TABLE 1 Summary table of evidence for innate, humoral, and cellular immune features as correlates of protection against viruses causing disease
of livestock.

Virus Host(s) Type
of vaccine

Vaccine
efficacy

Strength of evidence as correlate of protection from
licensed vaccines and vaccines in development

Innate Humoral Cellular

Cytokines NK cells Neutralizing
antibodies

Fc
effector
functions

T cells

LSDV Bovine
species

Live-
attenuated LSDV*

Mod (5, 6). Potential (7–9) Unknown Limited (IgM)
(10, 11)

Unknown Potential
(9, 11)

BTV Wild and
domestic
ruminants

Inactivated virus* High A (12) Potential (13, 14) Unknown Established
(15, 16)

Unknown Potential
(14)

Live-
attenuated BTV*

High (12, 17) Potential (18–20) Unknown Potential (20–22) Unknown Unknown

Viral-vectored Low–Mod (23–25). Potential (23) Unknown Potential (25, 26) Unknown Potential
(23, 25)

DNA Mod (23). Potential (23) Unknown Unknown Unknown Potential
(23)

Passive
immunization

Mod.–High (27, 28) NA NA Established
(27, 28)

Unknown Potential
(29)

Infection in
resistant animals

Low–Mod (30, 31). Potential (30) Unknown Potential (31) Unknown Potential
(31)

PRRSV Swine Inactivated virus* Mod (32–34). Potential (35–38) Potential
(35)

Established (32,
34, 38–41)

Unknown Potential
(42)

Live-attenuated* Mod (32, 43). Potential
(35–37, 44)

Potential
(35)

Potential (32,
45, 46)

Unknown Potential
(44, 45,
47–50)

Recombinant
protein*

Low–Mod (51–53). Unknown Unknown Established (51) Unknown Potential
(52, 53)

Passive
immunization

High (54, 55) NA NA Established
(54, 55)

Unknown Unknown

FMDV Biungulate
species

Inactivated virus* Low c (56, 57) Established
(IFNg); Potential
(58–61)

Unknown Established
(62–64)

Potential (65) Potential
(58, 61,
66–68)

Viral-vectored High (56, 69, 70) Established
(IFNg); Potential
(71–73)

Unknown Potential (74–77) Unknown Potential
(74, 78, 79)

DNA High (80) Potential (80) Unknown Potential (80) Unknown Potential
(80)

Passive
immunization

Mod (81–83). NA NA Established (81) Potential
(82, 83)

Unknown

ASFV Wild and
domestic
pig species

Live-
attenuated ASFV*

Mod.–High (84–86) Potential (87–89) Potential
(89, 90)

Limited (88, 91) Unknown Potential
(87–89,
92–94)

Recombinant protein Low (95) Unknown Unknown Potential (95) Unknown

DNA Low (96) Unknown Unknown Limited
potential (96)

Unknown Potential
(96)

Viral-vectored Low-High Potential (IFNg)
(97, 98)

Unknown Limited potential
(97, 99, 100)

Potential (99) Potential
(97, 98)

Inactivated virus Low/no (101–103) NA NA NA NA NA

Passive
immunization

Mod (104–106). NA NA Limited (106) Potential
(104, 105)

Unknown

(Continued)
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Organization for Animal Health (WOAH), namely, foot and mouth

disease (FMD), African swine fever (ASF), lumpy skin disease

(LSD), bluetongue (BT), porcine reproductive and respiratory

syndrome (PRRS), and classical swine fever (CSF) (Table 1).

These specific diseases were selected as they are high-consequence

viral diseases in mammalian livestock, for which vaccination is or

aims to be employed as part of a biosecurity and control strategy.

Furthermore, these diseases represent diversity in the presentation

of disease and the immune responses associated with protection and

include both RNA and DNA viruses.
2 Vaccination in response to high-
priority livestock viral diseases

Viral vaccines typically comprise a part of the virus (e.g., sub-unit

or recombinant protein), whole viral particles with reduced virulence

[e.g., live-attenuated viral (LAV) vaccine], or inactivated viral particles

(inactivated vaccine) (121). For the example diseases discussed here,

licensed vaccines are most commonly LAVs or inactivated vaccines;

however, subunit vaccines for PRRSV and CSFV have also been

licensed (Table 1). LAVs generally induce strong cellular and humoral

immune responses compared to inactivated and subunit vaccines (13,

122, 123). Inactivated and subunit vaccines generally confer

protection through humoral immunity; however, inclusion of

adjuvants, appropriate antigen selection, and additional doses can
Frontiers in Immunology 04
induce cell-mediated immunity (CMI) (13, 122, 123) (Table 1).

Vaccination can be applied as part of a response to an incursion of

a high-priority viral disease to limit the spread and eventually

eradicate the disease (Figures 1A, B) (124, 125). For example, cattle

plague caused by rinderpest virus led to an approximately 20% loss of

dairy cattle in Europe during the 20th century (126). The elimination

of rinderpest virus was achieved in 2011 throughmulti-organizational

campaigns implementing vaccines as a prevention measure as part of

a global biosecurity plan (126). Furthermore, control of FMD

outbreaks has been achieved through vaccination programs in

South Africa and Uruguay (127, 128). Livestock vaccination is an

effective biosecurity measure to reduce the economic impact of high-

priority livestock diseases (Figure 1). However, the implementation of

such vaccines varies between countries and is contingent on various

factors including cost, vaccine availability, epidemiological factors,

regulatory considerations, and host distribution, and may require

vaccine matching to the outbreak strain. For example, a LAV ASFV

vaccine has recently been approved for use in Vietnam to help control

this devastating virus (129). However, in ASF-free countries such as

Australia, this vaccine is not approved due to the risks associated with

the use of an ASFV LAV (e.g., reversion to virulence) and is not

currently part of Australia’s emergency response plan to an ASF

outbreak (130). A major advantage of non-LAV or inactivated

vaccine platforms is that these vaccines can be designed in parallel

with DIVA diagnostic assays to help inform the culling strategy of an

outbreak in an endemic area and facilitate trade.
TABLE 1 Continued

Virus Host(s) Type
of vaccine

Vaccine
efficacy

Strength of evidence as correlate of protection from
licensed vaccines and vaccines in development

Innate Humoral Cellular

Cytokines NK cells Neutralizing
antibodies

Fc
effector
functions

T cells

CSFV Wild and
domestic
pig species

Live-
attenuated CSFV*

High (107, 108) Established
(IFNg);
Potential (109)

Unknown Established
(110, 111)

Unknown Potential
(112–114)

Recombinant
protein E2*

High (107, 115) Established
(IFNg); Potential
(114, 116–118)

Unknown Established (117) Unknown Potential
(117)

DNA (E2) High (113) Unknown Unknown Potential (113) Unknown Potential
(113)

Nanoparticle (E2) High (119) Potential (119) Unknown Potential (119) Unknown Potential
(119)

Passive
immunization

High (120) NA NA Established (120) Unknown Unknown
fr
High: High level of protection defined as sterilizing or near-sterilizing immunity with high level of protection from clinical signs and absence or reduced viremia.
Mod.: Medium level of protection defined as high level of protection from clinical signs but minimal control of viremia.
Low: Low level of protection defined as protection from clinical signs but no–minimal control of viremia with vaccinated animals can act as carriers, and potential for viral shedding.
Established: Immune factor has been assessed and determined as a correlate of protection on several occasions.
Limited: Immune factor has been assessed as a correlate; however, results are inconclusive or variable.
Potential: Immune factor is elevated in protected animals compared to non-protected; however, it is yet to be assessed as a correlate of protection.
Limited Potential: Immune factor is sometimes elevated in protected animals compared to non-protected; however, results are inconclusive or variable and yet to be assessed as a correlate
of protection.
Not applicable (NA): The immune factor of interest can not be assessed against protection either due to lack of protection or a lack of the immune factor in passive immunization.
Unknown: Immune factor is yet to be comprehensively studied in the context of protection and immune correlate analysis has not been complete.
*Licensed vaccine.
ontiersin.org

https://doi.org/10.3389/fimmu.2024.1397780
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Davis et al. 10.3389/fimmu.2024.1397780
3 Defining correlates of protection

In addition to clinical signs, protection can be defined by

duration and levels of viremia, viral load in tissues, shedding, and

transmission to naive or unvaccinated bystander animals (131).

Notably, induction of sterilizing immunity (i.e., preventing

replication of the virus) following vaccination is the gold standard

level of protection (132). Measurable immune features or correlates,

including antibodies, cytokines, or T cells, which are statistically

associated with and can reliably predict protection, are defined as

CoPs (Figures 1E, F) (131). Many factors influence the contribution

of an immune feature to protection, including the vaccine delivery

platform, antigen(s), host genetics, and the target viral disease (133).

CoP analysis assesses the strength of the relationship between the

immune feature and protection using animals with varying levels of

protection—either immunized/vaccinated animals or naturally

resistant animals (131, 134). Single or multiple immune features

may be associated with protection for a given disease or vaccine.

Studying the levels of protection achieved through active and

passive (transfer of immune sera or antibodies) immunization (134)

can provide key insights into the immune response associated with

protection and can enable identification of CoPs (Table 1). Notably,

much of what is known currently about protective immunity

against the focus diseases in this review has come from research

on vaccine candidates currently in development, with the exception

of commercial vaccines listed in Table 1.
4 Innate immune features as
correlates of protection

4.1 Antigen-presenting cell function
and counts

Depletion of key antigen-presenting cells including

macrophages, monocytes, and/or DCs transiently occurs in

animals during infection with ASFV, PRRSV, BTV, FMDV,

LSDV, and CSFV (135–138). Depletion of these immune cell

subsets during acute infection ultimately hinders the development

of protective immunity. Furthermore, downregulation of MHC

class I and/or MHC class II expression during FMDV (139),

ASFV (140), and PRRSV (141) infection hampers antigen

presentation and impairs T-cell responses. Therefore, measuring

the number, viability, and MHC expression of these cells could act

as an early indicator of vaccine success or failure (Figures 1C-E).

However, such changes in cell counts can vary with strain and

virulence, as seen in ASFV infection of pigs (142).
4.2 Natural killer cells

Natural killer (NK) cells elicit cytotoxic functions through

secretion of cytotoxic molecules (perforin and granzyme) and

cytokines, including interferon gamma (IFNg) and tissue necrosis

factor alpha (TNFa) (143). NK cells mediate cytotoxicity directly via
Frontiers in Immunology 05
cytotoxic molecules or indirectly via antibodies (see Section 5.2)

(Figure 1E). NK responses are suppressed following infection with

ASFV, FMDV, and PRRSV; however, vaccination can retain NK cell

activity (35, 90, 144). Notably, protected pigs showed elevated NK cell

cytotoxicity and cytokine secretion compared to non-protected pigs

following PRRSV LAV vaccination (Table 1) (35). Similarly, enhanced

NK cell activity has also been observed in pigs immunized with a low

virulent strain of ASFV upon subsequent challenge with a highly

virulent strain, compared to unimmunized pigs (Table 1) (90). Finally,

NK cells have shown high levels of cytotoxicity in vitro in bovine and

porcine cells infected with FMDV (144, 145). Collectively, the

literature suggests that the functional response and frequency of NK

cells could be assessed as an indicator of vaccine-mediated protection

in the host for ASFV, FMDV, and PRRSV. However, the contribution

of NK cells in protective immunity remains to be assessed for CSFV,

LSDV, and BTV (Table 1).
4.3 Type I interferon

Viral proteins frequently inhibit the host’s Type I interferon

(IFN) production during natural infection via various mechanisms

(146–151). Type I IFNs, including IFNa and IFNb, are anti-viral

cytokines secreted bymonocytes, macrophages, DCs, and NK cells. In

vitro studies where virus-infected cells were treated with Type I IFNs

have highlighted the potential for these cytokines to inhibit viral

replication of BTV (152), ASFV (153), PRRSV (154), CSFV (155),

and FMDV (156). Similarly, elevated Type I IFNs have been

implicated in protection from homologous challenge following

vaccination for BTV (13, 23) and PRRSV (157). Type I IFN

adjuvanted vaccines have protected animals from clinical signs and

viremia early post-vaccination in the absence of humoral immunity

for FMDV (71, 72) and CSFV (116), providing strong evidence for

the contribution of Type I IFN in early protective immunity.

Interestingly, the contribution of Type I IFN to protection against

FMDV appears to be host specific. Elevated levels of protection have

been demonstrated in pigs in contrast to cattle using Adenovirus

(Ad5) vectored vaccination adjuvanted with host-specific Type I IFN

(71, 72). Notably, elevated levels of Type I IFNs following vaccination

—either generated by the vaccine or the adjuvant—can enhance the

antibody response, which can subsequently promote a long-lived

adaptive immune response (116, 158). The potential role of Type I

IFNs in early protection from infection with BTV, PRRSV, CSFV,

and FMDV is well established (Table 1). As for ASFV, IFNamay play

a role in vaccine-induced recall response to challenge (87), although

the definitive role of IFN and other cytokines in protection from

ASFV requires further investigation in protected animals. Similarly,

the role of Type I IFN in protection from LSDV has not been assessed

and should be investigated further.
4.4 Balancing immunopathology and
protective immunity

Clinical signs associated with systemic disease caused by ASFV

(159–161), BTV (30, 162, 163), PRRSV (146, 164), LSDV (165), and
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CSV (166, 167) are commonly associated with a “cytokine storm”

where overproduction of pro-inflammatory cytokines occurs,

leading to extensive immunopathology. The “cytokine storm” has

not been reported for FMDV (168). Infection of natural hosts with

virulent strains of these viruses have been associated with high levels

of cytokines including IL-6, TNFa, IL-1b, IL-8, IFNg, and/or Type I
IFNs (169–178). However, when pro-inflammatory cytokines are

generated in a regulated manner to these viruses, they have anti-

viral potential (13, 30, 73, 117, 173, 179, 180) and are essential to

orchestrating the adaptive protective immune response (87, 181)

(Figure 1E) (Table 1). Measurement of cytokines, such as

interleukin-2 (IL-2) or IFN gamma (IFNg), are commonly used as

a surrogate measure of CMI and vaccine immunogenicity (182–

184). Most notably, protection from FMDV and CSFV has been

correlated to IFNg secretion by T cells (58, 73, 109). Similarly, IFNg
secretion by T cells has also been linked to protection from PRRSV,

but does not fully predict protection (36). Furthermore, elevated

levels of these cytokines post-vaccination are not always a reliable

indicator of protection. Several candidate ASFV vaccines are

considered immunogenic and induce a robust IFNg response but

are not protective (88, 160, 185). Owing to secretion of IFNg by

multiple immune cell subsets (various T cells, macrophages, NK

cells, etc.), caution must be taken when making conclusions about

the role of specific subsets in protection based on such data.

Importantly, protection elicited by the innate immune response is

not strain specific and, thus, may generate cross-protection to

viruses with high antigenic diversity, including BTV, ASFV, and

FMDV, and should be studied using vaccinated protected natural

hosts (14, 87). The role of cytokines in protection from LSDV

remains a large gap in knowledge and, thus, should be studied

further (7–9). It is important to note that many different cytokines

have a role in protective immunity for these diseases, and therefore,

research should aim to investigate cytokines beyond IFNg as CoPs
(30, 37, 44, 59, 60, 118).
5 Humoral immune features as
correlates of protection

Following vaccination against a virus of interest, B cells will

become activated and differentiate into long-lived memory B cells

or short-lived antibody secreting cells called plasmablasts.

Antibodies generated from these cells recognize specific epitopes

of viral antigens that are exposed on the virion or expressed on the

cell surface of infected cells. Antibodies can occur as neutralizing or

non-neutralizing antibodies and can elicit various protective

immune functions.
5.1 Neutralizing antibodies

The most-utilized CoPs are neutralizing antibody (Nab) titers,

with higher antibody titers commonly linked to increased

protection (Figures 1E, F). Reduced viral loads and the absence of

clinical disease have consistently been associated with higher Nab

titers following passive immunization or vaccination against FMDV
Frontiers in Immunology 06
(sheep, cattle, and pigs) (62–64, 81), PRRSV (15, 32, 51, 54, 55),

BTV (15, 26, 27, 31), and CSFV (107, 110, 111, 117, 120) (Table 1).

Sterilizing immunity is associated with high Nab titers for PRRSV

(54, 186), CSFV (187), and BTV (188, 189). Notably, the longevity

of the vaccine-induced Nab response can vary among different

vaccines for different diseases (189, 190). While strong Nab

responses to PRRSV, FMDV, and BTV can induce strong

protection to homologous strains, vaccine-induced protection

mediated by Nabs is often strain/genotype specific, due to high

levels of antigenic diversity. However, induction of broadly reactive

Nabs following active or passive immunization can confer high

levels of cross-protection against different strains of PRRSV and

CSFV (55, 120, 191). It is also important to note that vaccination

against PRRSV, FMDV, and BTV in several instances can elicit

protection in the absence of Nabs (192–197).

The role of Nabs in protection from ASFV is a topic of

contention. While protection from lethal ASFV infection has been

correlated to Nab titers by Silva et al. (2022) (91) following LAV

vaccination, many other studies have reported that Nabs were not

sufficient for protection following vaccination, for example, with

subunit vaccines (Table 1) (198, 199). Similarly, while Nabs can

protect cattle against LSDV infection, Nabs are not a reliable

indicator of protection following vaccination against LSDV as not

all vaccinated animals that are fully protected against LSDV

seroconvert (10, 11) (Table 1). This highlights the risk of

assessing Nab titers as the sole CoP in all contexts.
5.2 Non-neutralizing antibodies and Fc
effector functions

Antibodies bound to viral particles or viral antigens expressed

on infected cells engage with Fc receptors (FcRs) on immune cells

(e.g., macrophages, DCs, monocytes, and NK cells), resulting in the

activation of Fc effector functions. Fc effector functions include

antibody-dependent cellular phagocytosis (ADCP) and antibody-

dependent cellular cytotoxicity (ADCC), which clear viral particles

and kill infected cells to reduce disease severity (Figure 1E) (200,

201). Furthermore, Fc effector functions can enhance cross-

protection due to the combined breadth of antibody targets

recognized by neutralizing and non-Nabs (202, 203). While the

mechanism of protection mediated by non-Nabs is poorly

understood, phagocytosis has been shown to play a role.

Phagocytosis of FMDV by macrophages was observed in mice

that received FMDV non-neutralizing monoclonal antibody

treatment and were protected from FMDV challenge, compared

to untreated mice that succumbed to infection (65, 82, 83). ADCC

has been identified as a potential CoP for ASFV. Elevated levels of

ADCC were observed in surviving pigs following passive transfer of

anti-ASFV immune sera and following serial immunization with

attenuated ASFV compared to non-immunized susceptible pigs (99,

104, 105). However, the contribution of ASFV-specific ADCC to

protection is likely vaccine dependent (204).

In rare instances, vaccine-induced antibodies may play a role in

antibody-dependent enhancement (ADE) of infections where viral

immune complexes are phagocytosed by immune cells and lead to a
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productive infection (205). ADE in livestock viral infections has

been speculated for ASFV, PRRSV, and FMDV (206–208). Most

literature surrounding ADE stems from in vitro assays where

enhanced levels of viral replication have been detected in the

presence of serum antibodies (206). Although well described for

dengue virus (209), ADE remains controversial for these livestock

diseases as the small number of in vivo studies reported have shown

limited evidence of ADE occurring (206, 210).

Research on Fc effector functions such as CoPs has been limited

or absent for ASFV, CSFV, BTV, LSDV, PRRSV, and, to a lesser

extent, FMDV (Table 1). Thus, there is a need to characterize the role

of vaccine-induced Fc effector functions in protection using in vivo

models for these livestock diseases to make meaningful conclusions.
6 Cellular immune features as
correlates of protection

Cytotoxic or killer T cells (CD8+ T cells) and T helper (Th) cells

(CD4+ T cells) play a major role in viral immunity (Figure 1E). The

function of T cells for livestock vaccine studies is commonly

measured using IFNg ELISpot, proliferation assays, and flow

cytometry. T-cell response can target both structural and non-

structural viral proteins, compared to antibody responses, which are

generally more effective against structural proteins.
6.1 T cell-dependent antibody response

CD4+ T cells have a key role in generating strong protective

humoral immunity through the development of T cell-dependent

antibody responses against BTV (211), ASFV (212), and FMDV

(213) and should be investigated for CSFV, PRRSV, and LSDV

(Table 1). Notably, the depletion of CD4+ helper T cells in sheep

enhanced clinical signs of BTV primary infection and impaired the

development of Nabs, thus highlighting the importance of these

cells in the development of protective antibody-mediated immunity

(31). The level of T-cell dependency for generating an antibody

response is likely antigen dependent (31). However, while BTV-

specific CD4+ helper T-cell responses appear to be crucial in the

development of a primary antibody response, CD4+ helper T cells

were not activated/expanded in vitro following stimulation (180),

and therefore may play a limited role in the memory response to

challenge. Measurement of CD4+ T cells could provide a strong

indicator of vaccine failure during vaccine development.
6.2 Cytotoxic T lymphocyte response and
cell-mediated immunity

Both CD4+ T cells and/or CD8+ T cells can perform antiviral

functions through the release of cytotoxic molecules (perforin and

granzymes) and cytokines (IFNg, TNFa, and IL-2), which trigger

apoptosis of the infected cell (214). Double-positive CD4+CD8+ T

cells are considered a porcine effector memory subset of CD4+ T

cells and are strong inducers of cytotoxicity and secretion of IFNg,
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and are a major feature in the memory/recall response to

vaccination (215). Polyfunctional T-cell responses have been

described as important for protective immunity and cross-

protection post-vaccination, including proliferation, cytokine

secretion, and cytotoxicity for BTV (14, 31), ASFV (87, 92, 93,

182), FMDV (58, 61, 66–68, 216), CSFV (112–114), and PRRSV

(42, 47, 217) (Table 1). Intriguingly, unlike the other viruses

discussed in this review where Nabs—to homologous strains—are

likely to be the primary CoP, CMI appears to be the primary CoP

for ASFV (Table 1) (89, 218, 219). Following vaccination against

LSDV, T-cell responses increase; however, the functional role of

these cells is yet to be studied (9, 11). The importance of CD8+ T

cells in protection from ASFV was highlighted through depletion of

CD8+ cells (T cells and NK cells) from pigs immunized against

ASFV, resulting in complete loss of protection in these pigs to ASFV

challenge, compared to total protection observed in pigs immunized

with CD8+ cells (92). Finally, early protection elicited post-

vaccination is likely to be cell mediated as observed with the

CSFV C-strain LAV, which induced protective immunity in the

absence of Nabs, associated with CD4+ T-cell proliferation and

IFNg production (220). While total T-cell responses are commonly

assessed, antigen-specific T-cell responses have been rarely

characterized against high-priority viral diseases of livestock

discussed in this review, and the protective potential of other T-

cell subsets remains poorly characterized; for example, gd (gamma

delta) T cells and NK T cells.
6.3 T regulatory responses as markers of
vaccine failure

It is important to note that some subsets of T cells elicit

regulatory functions (221). Known as Tregs, these cells secrete

high concentrations of the immunoregulatory IL-10, and excess

induction of these responses has been associated with vaccine

failure for ASFV (218) and poor clinical outcomes during

infection with PRRSV (222, 223). Upregulation of IL-10 following

PRRSV vaccination also resulted in reduced induction of an

immune response to CSFV vaccination (223). Therefore, secretion

of IL-10 by Tregs may act as an indicator of vaccine failure for

ASFV and PRRSV. This relationship has not been observed or well

characterized following vaccination against FMDV, CSFV, BTV, or

LSDV. Further research is needed to elucidate the role of Tregs in

protective immunity for disease discussed in this review.
7 Discussion

Substantial progress has been made in identifying protective

immune features to various vaccine formulations for the high-

consequence viral livestock diseases addressed in this review. Nabs

are an established CoP for many of these viruses, and a wealth of

research has also implicated Type I IFNs and CMI in early vaccine-

mediated protection and protection against heterotypic strains of

these viruses (i.e., cross-protection) (Table 1). However, direct

analysis of the correlation to the level of protection for many of
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these immune features has not been fully established (Table 1).

Furthermore, the quantitative level of protection for most immune

features—except for protective Nab titers against CSFV, FMDV,

and PRRSV (Table 1)—is not established. The role of an immune

feature in protection can be cemented by performing vaccine dose

escalation studies in the natural host and correlating level of

protection with the immune feature (Figure 1). Furthermore,

research into the protective role of antibody Fc effector functions,

antigen-specific T-cell responses, and cytokine responses to new

and existing vaccines is limited. CoP studies in the context of high-

priority livestock viral diseases is restricted by reagent availability,

lack of protective animal models, and limits to the scale; such

experiments can typically be performed due to the practical

constraints of large animal studies, compared to human vaccine

clinical trials or mice pre-clinical vaccine work. While these

limitations are a hurdle for livestock vaccine development,

inspiration can be derived from human immune assay

development and assessment of vaccine CoPs. Such lessons can

be drawn from SARS-CoV-2 research (203, 224–230).

Identification of CoPs has three key applications within a

biosecurity system, and these are discussed below. Firstly,

identified CoPs can be used to guide the rationale for vaccine

development (Figure 1F). This can be observed in the abundance of

vaccine candidates being developed to generate CMI using DNA or

viral vector vaccines against the viruses discussed in this review

(122) (Table 1). Furthermore, because of high levels of antigenic

diversity of strains/genotypes for these high-priority livestock

diseases, vaccines are being designed to induce CMI to more

conserved proteins to improve cross-protection (87, 231, 232).

CoPs in combination with international vaccine standards, which

set the minimum requirements for a vaccine, and DIVA capacity

should be considered from the beginning of the vaccine

development pipeline (233). Secondly, identification of CoPs

facilitates selection of an appropriate immune feature to measure

for immune surveillance. For example, Nab titers are easy to

quantify and protective thresholds can be defined for vaccines

that have established Nab titers as a CoP. Nab titers ≥50

following CSFV vaccination in pigs are sufficient to stop virus

transmission from wild-type virus challenge, while titers <32 are

inadequate to prevent transmission and clinical signs (110).

Immune surveillance can be performed to determine the immune

status of animals to be transported or exported during an outbreak,

identify vaccine failures, and identify at-risk animals that need to be

vaccinated (Figure 1F). Immune surveillance can be paired with

assays to differentiate infected from vaccinated animals to further

ensure biosecurity is maintained during trade with regions free of

the virus. Finally, a general understanding of the CoP and the level

of protection can inform the implementation of a vaccine program

(Figure 1). For example, the Nab titer of current FMDV vaccines is a

reliable indicator of protection against matched strains; however,

the correlation between FMDV Nab titers and protection is less

predictive of protection to non-matched or heterologous strains (62,

234), thus highlighting the importance of correctly matching the

vaccine strain to circulating strains for effective vaccination. This is

especially important to consider in regions where multiple virus

genotypes or serotypes are circulating (235, 236).
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7.1 Conclusion

With the emergence, re-emergence, and global movement of

high-priority viral diseases of mammalian livestock, understanding

CoPs and their applications to biosecurity programs is critical.

Identification of CoPs can provide an evidence-based scientific

framework to guide next-generation vaccine development and

immune surveillance and maintain biosecurity in the livestock

industry. Furthermore, a comprehensive understanding of CoPs

can facilitate the identification of sub-optimal vaccines or vaccine

failures, thus ensuring resilience of livestock populations,

promoting global trade, protecting public health, and contributing

to sustainable agricultural practices. However, for many important

livestock viral diseases, an in-depth understanding of CoPs is

lacking, making it difficult to develop improved next-generation

vaccines and implement effective vaccination programs for

biosecurity. Livestock research needs to take a holistic and

comprehensive approach to identifying CoPs using current and

novel technologies to drive vaccine development for successful

implementation of vaccines in biosecurity strategies.
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