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Exosome-shuttled miR-150–5p
from LPS-preconditioned
mesenchymal stem cells down-
regulate PI3K/Akt/mTOR
pathway via Irs1 to enhance M2
macrophage polarization and
confer protection against sepsis
Ting Zheng1†, Sipeng Li2†, Teng Zhang1, Wei Fu1, Shuchang Liu1,
Yuxin He1, Xiao Wang1 and Tao Ma1*

1Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China,
2Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University and
Shandong Provincial Qianfoshan Hospital, Jinan, China
Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective

measures in the current. Exosomes from mesenchymal stem cells (MSCs)

reported to alleviate inflammation during sepsis, and the preconditioning of

MSCs could enhance their paracrine potential. Therefore, this study investigated

whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert

superior antiseptic effects, and explored the underlying molecular mechanisms.

Methods: Exosomes were isolated and characterized from the supernatants of

MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated

exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory

response, and organ damage in an LPS-induced sepsis model. Macrophages

were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results

of the in vivo studies, and to explain the potential mechanisms.

Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines,

prevent organ damages, and improve survival rates of the septic mice to a greater

extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of

macrophages exposed to inflammation. miRNA sequencing and qRT-PCR

analysis identified the remarkable expression of miR-150–5p in LPS-Exo

compared to that in Exo, and exosomal miR-150–5p was transferred into

recipient macrophages and mediated macrophage polarization. Further

investigation demonstrated that miR-150–5p targets Irs1 in recipient

macrophages and subsequently modulates macrophage plasticity by down-

regulating the PI3K/Akt/mTOR pathway.
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Conclusion: The current findings highly suggest that exosomes derived from

LPS pre-conditioned MSCs represent a promising cell-free therapeutic method

and highlight miR-150–5p as a novel molecular target for regulating immune

hyperactivation during sepsis.
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1 Introduction

Sepsis is defined as a life-threatening organ dysfunction caused

by dysregulated host immune and inflammatory responses (1). It is

a common and major cause of morbidity and mortality in intensive

care units. Despite advances in critical care, the global incidence of

sepsis is estimated at 18 million cases per year, with a mortality rate

of between 30% and 50% for severe sepsis (2, 3). To date, no agents

have been reported to be specifically approved to treat sepsis. Thus,

effective treatment regimens remain elusive. Macrophages play a

crucial role in regulating the host’s immune balance and

inflammatory response in sepsis. In response to prevailing stimuli

within inflammatory microenvironments, macrophages can

become polarized toward either pro-inflammatory M1 or anti-

inflammatory M2 phenotype, respectively. M1 macrophages

exhibit a robust inflammatory response and are capable of killing

pathogens, while M2 macrophages promote tissue repair and

resolution of inflammation (4, 5). In sepsis, there is excessive

activation of M1 macrophages and inadequate activation of M2

macrophages, leading to persistent inflammatory response and

tissue damage (6, 7). Therefore, investigating the regulation of

macrophage polarization, especially new therapeutic strategies

that promote M2 macrophage polarization, is of research value

for the treatment of sepsis.

Mesenchymal stem cells (MSCs) have been shown to

possess immunomodulatory and tissue regeneration capacities,

and have emerged as a promising therapeutic approach in many

inflammatory disease (8, 9). However, the safety and immunological

rejection of MSCs transplantation limits its clinical application (10,

11). Currently, increasing data indicated that MSCs create an

optimal microenvironment for reducing inflammation through a

paracrine mechanism and that exosomes are crucial in this process
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(12), indicating that transfusion of exosomes may be an alternative

option for MSC-based therapy (13, 14).

Exosomes are a kind of extracellular vesicles with a diameter of 30

to 150 nm, which can delivery bioactive molecules to recipient cells

and modulate cellular activities and the phenotype of recipient cells

(15). Exosomes have been confirmed as the main player accounting

for the paracrine effects of MSCs. Similar functions to their parental

cells have been observed in MSC-exosomes, such as antimicrobial

effects, immunosuppression, and regeneration ability (16, 17).

Compared with MSCs, exosomes possess hypoimmunogenic

properties, low tumorigenicity, and higher stability (18, 19). Studies

have shown that exosomes play a therapeutic role in various

inflammatory diseases, primarily by delivering protein or miRNAs

(20, 21). Specifically, exosomal miR-30d-5p from Polymorphonuclear

neutrophils (PMNs) contributed to sepsis-related acute lung injury

(ALI) by inducing M1 macrophage polarization and priming

macrophage pyroptosis via NF-kB activation (22). Moreover, LPS

preconditioning improves the regulatory abilities of MSC-derived

exosomes for macrophage polarization by shuttling let-7b, which

hold significant immunotherapeutic potential for wound

healing (21).

Recent studies have proven that exosomes from MSCs can

improve the outcome of sepsis, and appropriate preconditioning

can enhance the paracrine ability of MSCs to improve their

therapeutic potential (23–25). Here, we provide a new strategy to

effectively enhance the therapeutic effect of MSC-derived exosomes

against sepsis by preconditioning MSCs with lipopolysaccharide

(LPS) and elucidate the molecular mechanism.
2 Materials and methods

2.1 Culture and treatment of MSCs

Adipose-derived MSCs (ADSCs) were obtained from C57BL/6J

mice following the procedure previously reported (26). The isolated

cells were resuspended in Dulbecco’s modified eagle medium

(DMEM)/F12 (Gibco) containing 10% exosome-depleted fetal

bovine serum (FBS, Gibco) (160,000 ×g at 4 °C, overnight) (27),

and 100 U/mL penic i l l in/s treptomycin (Gibco) . The

immunophenotype of MSCs were detected using flow cytometry.

And their multilineage differentiation was confirmed by osteogenic
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and adipogenic differentiation. Cells at 3rd to 5th passages were used

for further experiments. Preconditioning with LPS (Sigma) was

performed once the cells reached 70–80% confluence. MSCs were

cultured in fresh medium supplemented with LPS (1 mg/mL) or PBS

for 48 h before supernatant collection.
2.2 Isolation and characterization
of exosome

Exosomes were isolated from the supernatants of MSCs and

LPS-treated MSCs using differential ultracentrifugation as

previously described (28). Cell supernatants were centrifuged at

350 ×g for 10 min to remove dead cells, 2,000 ×g for 10 min to

remove cell debris, and 10,000 ×g for 30 min at 4°C to remove

microvesicles. Next, the supernatant was filtered through a 0.22 mm
filter and centrifuged at 120,000 ×g for 70 min at 4 °C. The pallets

were re-suspended in PBS and centrifuged at 120,000 ×g for 70 min

at 4 °C again. The final pellets were re-suspended with PBS and

stored at -80 °C for further experiment.

The morphology of the isolated exosomes was observed with

transmission electron microscopy (TEM) (Hitachi, HT7700, Japan).

The particle size distribution and concentration of exosomes were

analyzed with nanoparticle tracking analysis (NTA) (Malvern,

NS300, UK). The specific markers CD9, CD63, and TSG101 were

detected using western blot. The protein concentration was

quantified using a BCA protein assay (Applygen).
2.3 Sepsis model and exosome therapy

C57BL/6J male mice, 6–8 weeks old, were purchased from Vital

River Laboratory Animal Technology (Beijing, China). All animal

experiments carried out in accordance with the National Institutes

of Health guide for the care and use of Laboratory animals, and

approved by the Animal Care and Use Committee of the General

Hospital, Tianjin Medical University.

The mice were randomly divided into groups and then

intraperitoneally injected with LPS (12.5 mg/kg), and the mice in

the control group were given the same dose of PBS. Two hours after

the LPS injection, mice were treated with LPS-pretreated exosomes

(LPS-Exo, 200 mg/mouse), normal exosomes (Exo, 200 mg/mouse),

or PBS through the tail vein injection. The same dose of PBS was

administered to the mice in the control group. Status of survival of

the mice were monitored every 6 h. Serum samples were collected

12 h after LPS injection. Mice were euthanized 48 h after LPS

injection, and organ damage was examined. Mice were anesthetized

with isopentane and sacrificed by cervical dislocation.
2.4 BMDMs culture and treatment

BMDMs were obtained from C57BL/6J mice as previously

described (29). The isolated cells were cultured in DMEM with

10% FBS, 100 U/ml penicillin/streptomycin, and 10 ng/mL M-CSF

(Pepro Tech) in 5% CO2 at 37 °C for 7 days. The BMDMs were
Frontiers in Immunology 03
stimulated with LPS (1 mg/mL) to establish an in-vitro sepsis model

and then treated with Exo, LPS-Exo, or PBS.

To trace the internalization of exosomes by BMDMs, exosomes

were labeled with DiI (MedChemExpress), washed with PBS,

ultracentrifuged and resuspended in PBS. After being incubated

with DiI-labeled exosomes for 12 h, the BMDMs were rinsed with

PBS, fixed for 30 min in 4% paraformaldehyde, and stained with

DAPI. Finally, the cellular uptake of exosomes was detected using a

laser-scanning confocal microscope (Zeiss LSM 800, Germany).
2.5 RNase and proteinase K treatment of
LPS-Exo

To investigate the molecular cargo of LPS-Exo which improved

sepsis. LPS-Exo was treated with proteinase K (100 mM/mL, Sigma)

for 30 min at 37 °C or with RNase A (100 mM/mL, Sigma) for 15

min at 37 °C. Exosome-free proteins or RNA was used for

further experiments.
2.6 Exosomal miRNA sequencing and
bioinformatics analysis

Total RNA of the exosomes was extracted using the miRNeasy

Serum/Plasma Advanced Kit (Qiagen). The final ligation PCR

products were sequenced using the Illumina NovaSeq 6000

platform (Echo Biotech, Beijing, China). miRNAs in Exo and

LPS-Exo were profiled in three biological replicates. The

expression differences between Exo and LPS-Exo were analyzed

with a t-test. Those with a fold change > 1.5 and a p-value < 0.05

were regarded as significantly different expressed.

miRanda and RNAhybrid were used to predict the target genes

of the differentially expressed miRNAs. GO categories of the predict

target genes were performed using the DAVID bioinformatics

database. Pathway analysis was performed using the KEGG

database and the 20 most enriched signaling pathways were listed

to identify the most relevant signaling pathways.
2.7 qRT-PCR

Total RNA of the exosomes was extracted using the miRNeasy

Serum/Plasma Advanced Kit. Total RNA of the cells was extracted

using the TRIzol reagent. The isolated RNA was reverse transcribed

using a cDNA synthesis kit (Qiagen). PCR was performed in a CFX

Connect (BIO-RAD) system using SYBR Green PCR Master Mix

(Qiagen), using GAPDH or U6 as an internal control. The primer

and probe sequences are listed in Table 1.
2.8 miRNA transfection

miR-150–5p inhibitor and negative control (NC) were

purchased from GenePharma and diluted with DEPC water. For

miR-150–5p inhibition, BMDMs were transfected with miR-150–
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5p inhibitor or NC at a concentration of 50 nM using

Lipofectamine3000 (ThermoFisher) before treated with Exo or

LPS-Exo. MSCs were transfected with miR-150–5p inhibitor or

NC at a concentration of 50 nM using Lipofectamine3000 for 6 h

and then cultured in fresh medium with LPS (1mm/ml) for further

48 h (30). The exosomes were extracted after transfection as

previously described. The transfection efficiency was evaluated by

qRT-PCR.
2.9 ELISA and NO assay

The concentration of TNF-a, IL-6, and IL-10 in serum and the

supernatant of cells was determined using commercial ELISA kits

(Biolegend). The levels of NO in the supernatant of the cells were

determined using NO kits (Beyotime).
2.10 Histological examination

Lung, liver, and kidney tissues were obtained and fixed with

10% paraformaldehyde, embedded in paraffin, and then cut into 5-

mm sections. After that, the sections were stained with hematoxylin

and eosin for evaluation. Injury areas were analyzed as previously

described (31).
2.11 Western blotting

Cells and exosomes were isolated and lysed with ice-cold

radioimmunoprecipitation assay lysis buffer containing protease

and phosphatase inhibitors (Applygen). Protein concentration was

tested by a BCA assay. Equal amounts of proteins from each sample

were used for immunoblot analysis as previously described (32).

Data were analyzed using the ImageJ software. The primary

antibodies employed for western blotting are listed in Table 2.
2.12 Luciferase assay

HEK293T cells (1×105 cells/well) were seeded into a 12-well

plate 24 h before transfection. Then, 1 mg pmir-GLO vectors

containing a wild-type (WT) or mutant (MUT) fragment of the

IRS1 3’UTR, 50 nM miR-150–5p mimic or NC were co-transfected
Frontiers in Immunology 04
using Lipofectamine3000. Luciferase activity was detected using a

Dual-Glo luciferase assay system 24 h after transfection.
2.13 Statistical analysis

Data were analyzed using GraphPad Prism 9.0 and presented as

mean ± standard deviation. A t-test was used to compare the

significance between two groups. Survival rates between the

groups were compared using the log-rank test. A p-value < 0.05

was considered to be significant.
3 Results

3.1 Extraction and identification of MSCs
and exosomes

We first obtained MSCs from the subcutaneous adipose tissue

of C57BL/6 mice. The MSCs were exhibited a spindle-shaped

morphology under the light microscope (Supplementary Figure
TABLE 1 Primer sequences.

Name of Primer F Sequences (5’-3’) R Sequences (5’-3’)

miR-150–5p TCT CCC AAC CCT TGTA GAA TAC CTC GGA CCC TGC -

U6 AAA GCA AAT CAT CGG ACG ACC GTA CAA CAC ATT GTT TCC TCGGA

Arg1 CATTGGCTTGCGAGACGTAGAC GCTGAAGGTCTCTTCCATCACC

iNOS GAGACAGGGAAGTCTGAAGCAC CCAGCAGTAGTTGCTCCTCTTC

GAPDH CCG CAT CTT CTT GTG CAG TG ACC AGC TTC CCA TTC TCA GC
F forward; R reverse.
TABLE 2 Antibodies.

Name
of antibody

Company
Ratio
of dilution

Catalogue
number

CD9 Abcam 1:1000 ab307085

CD63 Abcam 1:1000 ab217345

TSG101 Abcam 1:1000 ab125011

iNOS Affinity 1:1000 AF0199

CD206
Cell
Signaling
Technology

1:1000 24595T

Irs1 Abcam 1:1000 ab131487

Akt Abcam 1:1000 ab179463

p-Akt Abcam 1:1000 ab192623

PI3K Abcam 1:1000 ab191606

p-PI3K Abcam 1:1000 ab278545

mTOR Abcam 1:1000 ab134903

p-mTOR Abcam 1:1000 ab109268

GAPDH Applygen 1:1000 C1312
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S1A). Additionally, these cells were capable of differentiating into

osteoblasts and adipocytes (Supplementary Figures S1B, C). FACS

analysis demonstrated that these cells were positive for CD29 and

CD44, and negative for CD45 (Supplementary Figure S1D). These

data indicated that we successfully obtained ADSCs.

We then collected the supernatants of the LPS-pretreated or

non-pretreated MSCs and extracted the exosomes using differential

ultracentrifugation. TEM, NTA, and western blotting were

performed to verify the characteristics of exosomes. The TEM

images showed that LPS-Exo and Exo possessed a typical cup-like

appearance with double-membrane structures (Figure 1A). NTA

results showed that the diameters of Exo and LPS-Exo were between

50 and 200 nm (Figure 1B). Western blotting indicated that the

specific exosomal markers CD9, CD63, and TSG101 were expressed

in Exo and LPS-Exo (Figure 1C). These results revealed that LPS-

Exo and Exo share identical exosomal characteristics, including

shape, size, and biomarkers. However, using BCA and NTA assays,

we found significantly higher levels of proteins and particles in LPS-

Exo than in Exo, confirming that LPS preconditioning promoted

the secretion of exosomes from MSCs (Figures 1D, E).
3.2 LPS-Exo alleviates sepsis with
higher efficacy

We injected septic mice via the tail vein with LPS-Exo (200 mg/
mouse), Exo (200 mg/mouse), or PBS, and the effect on survival rate

was evaluated. Septic mice treated with LPS-Exo and Exo exhibited

significantly increased survival rates compared to mice treated with

PBS (53.3% vs. 6.7% and 33.3% vs. 6.7%, respectively; p < 0.05), and

the survival rate in the LPS-Exo group was the highest (Figure 2A).
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As expected, levels of IL-6 and TNF-a in the plasma were increased

in the setting of sepsis. Both LPS-Exo and Exo inhibited the increase

of these pro-inflammatory cytokines. After exosome treatment, IL-6

and TNF-a levels decreased by 91.4% and 76.8%, respectively, in

the LPS-Exo group as well as by 43.9% and 32.1%, respectively, in

the Exo group. The reduction of cytokines levels in the LPS-Exo

group was significantly greater than that in the Exo group

(Figures 2B, C).

Multiple organ dysfunction syndrome (MODS) is the most

common serious complication of sepsis, associating with high

mortality rates. The effects of LPS-Exo and Exo on sepsis-induced

MODS were evaluated using histological examination. Indeed, the

septic mice exhibited interalveolar septum thickening and alveolar

inflammatory cell infiltration in the lungs, diffuse hemorrhage and

inflammatory cell infiltration in the kidneys, and multiple hepatic

cell vacuolations and steatosis in the liver, as opposed to the control

mice (Figure 2D). Administration of LPS-Exo or Exo considerably

attenuated these organ injury scores, whereas the efficacy of LPS-

Exo was better than that of Exo (Figures 2E-G). These results

indicated that LPS-Exo possessed potent anti-inflammatory activity

and protected against sepsis with higher efficacy.
3.3 LPS-Exo strongly induces M2
polarization of macrophages in vitro

To explore the immunosuppressive mechanism of LPS-Exo, we

established an in vitro model of sepsis using BMDMs. First, we

demonstrated the uptake of LPS-Exo and Exo by BMDMs using

confocal microscopy (Figure 3A). Then, BMDMs were stimulated

with LPS and co-cultured with LPS-Exo, Exo, or PBS for 24 h. The
A

B D E

C

FIGURE 1

Characterization of Exo and LPS-Exo. (A) Representative TEM images of Exo and LPS-Exo. Scale bars: 50 nm. (B) Particle size distribution of Exo and
LPS-Exo determined by NTA. (C) Specific markers (CD9, CD63, and TSG101) were evaluated by western blotting. The enhanced secretion of
exosomes was detected by NTA (D) and BCA assay (E) after LPS pretreatment. Data are presented as the mean ± standard deviation. *p < 0.05,
***p < 0.001.
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expression levels of inflammatory cytokines in the supernatant of

BMDMs were evaluated at 12 h using ELISA. The results indicated

that the levels of pro-inflammatory cytokines (IL-6, TNF-a, and
NO) were significantly decreased and the anti-inflammatory

cytokine (IL-10) was remarkably increased in the LPS-Exo and

Exo groups compared with those in the PBS groups, whereas the

LPS-Exo had a stronger effect than Exo (Figures 3B-E). Western

blotting and qRT-PCR were performed to detected the phenotype

markers expression of BMDMs at 24 h. The results showed that

after treatment with LPS-Exo and Exo, M1 phenotype marker

(iNOS) expression was decreased, and the M2 phenotype marker

(CD206 and Arg1) expression were increased. And LPS-Exo had a

stronger effect than Exo (Figures 3F-H). These data indicated that

LPS-Exo and Exo treatment promoted M2 polarization and

inhibited M1 polarization and that LPS-Exo exhibited a stronger

effect than Exo.
Frontiers in Immunology 06
3.4 Expression pattern of miRNA in
LPS-Exo

Given that LPS-Exo possessed a better efficacy than Exo in

regulating macrophage polarization, which was primarily through

delivering miRNA or protein to recipient cells, we proposed that

LPS stimulation changes the composition of LPS-Exo cargo through

which it exerts its activity. Thereby, LPS-Exo was processed with

proteinase K or RNase to determine the molecular cargo responsible

for its immunomodulatory activity. Western blot analysis of iNOS

and CD206 showed that LPS-Exo was unaffected by proteinase K

treatment, whereas LPS-Exo failed to exert protective effects

following RNase treatment (Figure 4A). Similar results were

obtained using qRT-PCR (Figures 4B, C). These results

demonstrated that miRNA molecules in LPS-Exo responsibility

for its superior immunomodulatory properties.
A B

D

E F G

C

FIGURE 2

LPS-Exo alleviates sepsis with higher efficacy. (A) Survival rate changes of mice in different groups (n=15). Expression levels of IL-6 (B) and TNF-a (C)
in serum (n=6). (D) Representative H&E-stained sections of lung, liver, and kidney tissues from mice are shown at ×400 original magnification. Scale
bar 100 mm. (E-G) Pathological lung, liver, and kidney injury scores of representative samples from mice in different groups (n=4). Data are presented
as the mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, compared to the PBS group. ##p < 0.01, ###p < 0.001, compared to the
control group. ns: p > 0.05.
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The miRNA expression profiles of LPS-Exo and Exo were

sequenced and compared, and 31 significant differentially

expressed miRNAs were found (fold change > 1.5, adjusted p-

value < 0.05), shown in a hierarchical clustering plot (Figure 4D).

GO analysis revealed the influence of these differentially expressed

miRNAs on various biological functions (Figure 4E). KEGG

analysis revealed the most enriched signaling pathways relate to

these differentiated miRNAs, and our data indicated that the PI3K/

Akt and mTOR signaling pathways were within the 20 most

enriched pathways (Figure 4F).
3.5 LPS-Exo delivers miR-150–5p
alleviates sepsis

Among the markedly up-regulated differentially expressed

miRNAs, miR-150–5p ranked second, which was previously

reported to regulate macrophages polarization. We then rectified

that the expression of miR-150–5p in LPS-Exo was significantly

higher than that in Exo using qRT-PCR (Figure 4G). Additionally,

macrophages treated with LPS-Exo exhibited higher expression of

miR-150–5p (Figure 4H).

To investigate the functional role of miR-150–5p in LPS-Exo in

vivo, we transfected MSCs with miR-150–5p inhibitor or NC prior

to LPS stimulation. The exosomes were extracted and named

inhibitor LPS-Exo or NC LPS-Exo, and the transfection efficacy

was validated by qRT-PCR (Figure 5A). We then established an

LPS-induced sepsis model and treated via tail vein injection with
Frontiers in Immunology 07
inhibitor LPS-Exo, NC LPS-Exo, or PBS. The survival rate of septic

mice treated with the inhibitor LPS-Exo was significantly lower than

that of mice treated with the NC LPS-Exo (Figure 5B). ELISA also

showed that the protective effect of LPS-Exo on the release of

proinflammatory cytokines was blocked by miR-150–5p inhibition

(Figures 5C, D). Notably, pathological examination showed that

downregulation of miR-150–5p in LPS-Exo led to a notable

aggravation of the histological damage of organs (Figures 5E-H).

Collectively, these data demonstrated that LPS-Exo delivers miR-

150–5p alleviates sepsis.
3.6 Exosomal miR-150–5p modulates the
PI3K/Akt/mTOR signaling pathway via
targeting Irs1

To elucidate the mechanism through which miR-150–5p

mediates macrophage polarization, bioinformatics analysis was

performed to investigate the putative target genes of miR-150–5p.

As predicted by miRanda and RNAhybrid databases, miR-150–5p

conserved the binding site in the 3’UTR of insulin receptor

substance 1 (Irs1) that was a positive regulator of the PI3K/Akt/

mTOR signaling pathway (Figure 6A). The dual-luciferase reporter

assay was conducted to validate our bioinformatic predictions, and

the results indicated that luciferase activity was significantly

decreased by miR-150–5p overexpression in Irs1 WT 3’UTR

group, but not in MUT 3’UTR group (Figure 6B). Furthermore,

the protein expression of Irs1 was decreased in LPS-Exo-treated
A B D

E F G H

C

FIGURE 3

LPS-Exo strongly induces M2 polarization of macrophages in vitro. (A) Cellular uptake of DiI-labeled exosomes (red) by BMDMs (DAPI blue). Scale
bar 100 mm. (B-E) Expression levels of IL-6, TNF-a, NO, and IL-10 in the supernatant of LPS-stimulated BMDMs after culturing with LPS-Exo, Exo, or
PBS for 12h (n=4). (F) Protein expression of iNOS and CD206 in different treatment groups was analyzed by western blot. Gene expression of iNOS
(G) and Arg1 (H) in different treatment groups was analyzed by qRT-PCR (n=4). All data are presented as mean ± standard deviation. *p < 0.05, **p <
0.01, ***p < 0.001, compared to the PBS group. ##p < 0.01, ###p < 0.001, compared to the control group. ns: p > 0.05.
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macrophages, which was reversed by transfection with miR-150–5p

inhibitors (Figures 6C, 7B). Altogether, these data suggested that

miR-150–5p could inhibit Irs1 by directly binding with the 3’UTR

of Irs1.

Studies have revealed the PI3K/Akt/mTOR signaling pathway is

strongly associated with macrophage polarization, which can be

positive regulated by Irs1. We hypothesized that miR-150–5p

modulates the PI3K/Akt/mTOR pathway by targeting Irs1, which

correspondently regulating macrophage polarization. To confirm

our hypothesis, we employed western blotting to examine the

expression levels of key proteins in the PI3K/Akt/mTOR pathway
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and noticed that the phosphorylation levels of PI3K, Akt, and

mTOR were decreased after LPS-Exo treatment (Figures 6C-F). In

contrast, transfection with miR-150–5p inhibitor (Figure 7A) prior

to culturing with LPS-Exo significantly increased the

phosphorylation of PI3K, Akt, and mTOR (Figures 7B-E). In

addition, the inhibition of miR-150–5p reversed the upregulation

of M2 macrophage markers and the downregulation of M1 markers

induced by LPS-Exo (Figure 7F). We demonstrated that LPS-Exo

transferred miR-150–5p to macrophage, and modulated the

polarization and inflammatory response of macrophage by down-

regulating PI3K/Akt/mTOR pathway via targeting Irs1.
A B

D

E

F G

H

C

FIGURE 4

Expression pattern of miRNA in LPS-Exo. (A-C) Efficacy of LPS-Exo under proteinase K and RNase treatment on BMDM polarization under LPS
stimulation (n=6). (D) The heatmap displaying the differentially expressed miRNAs between Exo and LPS-Exo. (E) GO categories analysis on
differentially expressed miRNAs. (F) KEGG analysis was performed based on the predicted target genes of the differentially expressed miRNAs in LPS-
Exo. The 20 most enriched pathways associated with signaling transduction are shown. (G-H) The qRT-PCR analysis demonstrated the differential
expression level of miR-150–5p in Exo, LPS-Exo, and recipient macrophages treated with Exo, LPS-Exo, or PBS (n=5). Data are expressed as the
mean ± standard deviation. *p < 0.05, ***p < 0.001, compared to the PBS group. ###p < 0.001, compared to the control group. ns: p > 0.05.
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4 Discussion

Sepsis is a life-threatening condition caused by dysregulation of

the host systemic immune and inflammatory response to infection,

and is the leading cause of morbidity and mortality of critically ill

and postoperative patients in intensive care units (2, 3). Effective

treatment strategy is urgently needed to improve clinical outcomes.

The data collected in our study attracted substantial attention for

developing exosome-based cell-free therapeutic strategies in the

treatment of sepsis and offer a novel molecular target for regulating

immune hyperactivation during sepsis.

MSC-based therapy is vital for physiological maintenance and

organ repair after injury (8, 9, 33). However, concerns regarding the

safety of using MSCs, particularly the risk of iatrogenic tumor

formation and immune rejection, remain unresolved (10, 11).

Recently, the therapeutic effect of MSCs has been attributed

mainly to paracrine signaling, namely, the secretion of exosomes
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and other bioactive molecules that influence the biological functions

of neighboring cells (13, 14). Exosomes have functions similar to the

parental cell, such as antimicrobial and immunomodulatory

properties, and possess low immunogenicity, low tumorigenicity,

and high stability, making them a superior alternative therapeutic

for MSCs (34, 35). Although MSC-derived exosomes have emerged

as a safe and attractive mediator of immunomodulation and

regenerative effects in various diseases, their therapeutic are begin

and limited. MSCs have been shown to be stimulated by a variety of

different biophysical and biochemical stimuli, many of which can

increase the secretion and immunomodulation abilities of MSC-

derived exosomes (23–25). Increasing evidence indicates that

inflammatory cytokines may enhance the secretion and the

therapeutic efficacy of MSC-derived exosomes (21, 36), but little

is known about a sepsis environment on exosomes secretion and

their effects in sepsis. In this study, we demonstrated that LPS

stimulation increased the secretion of exosomes from MSCs and
A B D

E

F G H

C

FIGURE 5

LPS-Exo delivers miR-150–5p alleviates sepsis. (A) qRT-PCR analysis demonstrated the transfection efficacy of miR-150–5p inhibitor in LPS-Exo
(n=6). (B) Survival rate changes of mice in different groups (n=10). Expression levels of IL-6 (B) and TNF-a (C) in serum were measured at 12h after
LPS injection (n=6). (E) Representative H&E-stained sections of lung, liver, and kidney tissues from mice in different treatment groups are shown at
×400 original magnification. Scale bar 100 mm. (F-H) Pathological lung, liver, and kidney injury scores of representative samples from mice in
different groups (n=4). Data are presented as the mean ± standard deviation. **p < 0.01, ***p < 0.001, compared to the PBS group. ##p < 0.01,
###p < 0.001, compared to the control group. ns: p > 0.05.
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FIGURE 6

Exosomal miRNA-150–5p modulates the PI3K/Akt/mTOR signaling pathway via targeting Irs1. (A) The sequence alignment of miR-150–5p with its
predicted target gene Irs1. (B) Dual-luciferase activity assay was conducted to evaluate the binding affinity between miR-150–5p and Irs1. BMDMs
were stimulated with LPS (1 mg/mL) and then cultured with LPS-Exo, Exo or PBS for 24 (h) Representative images (C) and relative intensity of western
blot analysis for Irs1, PI3K, p-PI3K, AKT, p-AKT, mTOR and p-mTOR (D-F) (n=4). Data are presented as the mean ± standard deviation. *p < 0.05,
**p < 0.01, ***p < 0.001, compared to the PBS group. #p < 0.05, ##p < 0.01, compared to the control group. ns: p > 0.05.
A B

D E F

C

FIGURE 7

miRNA-150–5p is involved in LPS-Exo modified macrophages polarization by the PI3K/Akt/mTOR signaling pathway. BMDMs were transfected with
miR-150–5p inhibitor or NC for 6 h and then cultured with LPS-Exo for 24 (h) (A) The transfection efficacy was verified by qRT-PCR. Representative
images (B) and relative intensity of western blot analysis for Irs1, PI3K, p-PI3K, AKT, p-AKT, mTOR and p-mTOR (C-E) (n=4). (F) The distribution of
macrophages subtype M1 (iNOS) and M2 (CD206) were measured by western blotting. Data are presented as the mean ± standard deviation.
*p < 0.05, **p < 0.01, ***p < 0.001, compared to the PBS group. ##p < 0.01, ###p < 0.001, compared to the control group. ns: p > 0.05.
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that exosomes produced by LPS-stimulated MSCs possessed an

apparent advantage in improving the survival rate of septic mice,

reducing inflammatory response, and improving organ damages.

Nevertheless, the effects of the exosomes secreted from non-

stimulated MSCs were rather limited. Therefore, our data

highlighted that appropriate pre-conditioning of MSCs could

optimize the efficacy of MSC-derived exosomes in the treatment

of sepsis.

Sepsis is characterized by an overactivation of the innate immune

system in response to infection, which triggers a cytokine storm and

subsequent organ failure (31). As the primary effector of

inflammation, macrophage provide innate immune surveillance for

all tissue in the body. They are highly plastic and can be classically

activated (M1) or alternatively activated (M2) based on the

inflammatory cytokines and signals in the microenvironment (4,

5). Macrophage polarization regulation is particularly important for

maintaining host immune homeostasis (37, 38), and dysregulation of

immune responses during sepsis enhances unrestrained M1 cells but

impairs M2 cell polarization, producing pro-inflammatorymediators,

thus exacerbating the progression of sepsis (6, 7). Previous studies

have revealed that MSC-derived exosomes play a crucial role in

inhibiting M1 polarization and promoting M2 polarization to reduce

inflammation (39–41). In our study, we found that after treatment

with LPS-Exo, BMDMs expressed more anti-inflammatory cytokines

and fewer pro-inflammatory cytokines. Meanwhile, LPS-Exo

promoted the polarization of macrophage from M1 to M2 under

inflammatory stimulation in vitro. Therefore, we believed that

exosomes from LPS-preconditioned MSCs have a superior ability

to modulate the activation and balance of M1/M2 macrophages,

thereby improving sepsis.

As an important medium of intracellular communication,

exosome can be released by all kinds of cells and transfer bioactive

molecules from the parent cells to the recipient cells to exert their

modulatory effects (42, 43). Given than exosomes exert their

modulatory effects primarily through the delivery of miRNAs or

proteins (31), we first treated LPS-Exo with RNase and proteinase K

to eliminate the effects of proteins and RNAs in LPS-Exo,

respectively. We found that the effects of LPS-Exo were not affected

by proteinase K, whereas RNase eliminated the protective effects of

LPS-Exo, indicating that miRNAs were the key molecules responsible

for the sepsis-alleviating effect of LPS-Exo. Previous studies have

proven that exosomes are effective vehicles for delivering miRNAs

(44, 45), which are implicated in the pathogenesis of various

inflammatory diseases and emerged as novel targets for

intervention therapy (20, 46). In view of the better effect of LPS-

Exo on the modulation of macrophage plasticity compared to that of

Exo, we suggest that LPS precondition may change the miRNA

profiles of exosomes, some remarkably expressed miRNAs in LPS-

Exo account for their superior immuno-modulatory properties.

Therefore, the miRNA expression profiles of Exo and LPS-Exo

were compared through high-throughput sequencing and

bioinformatics analysis. And the results displayed that, compared

to Exo, LPS-Exo had 11 downregulated miRNAs and 20 upregulated

miRNAs. KEGG pathway enrichment analyses suggested that the

PI3K/Akt/mTOR signaling pathway was among the 20most enriched

pathways. Among the up-regulated differentially expressed miRNAs,
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miR-150–5p ranked second, which was previously reported to

regulate macrophages polarization. Although first detected in

chronic lymphocytic leukemia, recent reports have indicated that

miR-150–5p is associated with the activation and differentiation of

macrophages (47–49). Indeed, we validated that miR-150–5p was

highly expressed in LPS-Exo versus Exo, and transfection of miR-

150–5p inhibitors into BMDMs reversed the effect of LPS-Exo on the

activation and polarization of macrophages. Thus, these data indicate

that when transferred into recipient macrophages by exosomes,

miR-150–5p plays a crucial role in modulating recipient

macrophage polarization.

miRNAs are non-coding single-stranded RNAs, which can

negatively regulate gene expression by inhibiting or degrading

target genes at the post-transcriptional level through directly

binding with the 3’UTR of target genes (50). Bioinformatics

analysis showed that Irs1 was the putative target gene for miR-

150–5p, that is a key protein involved in insulin signaling (51, 52). It

can bind to proteins containing SH2 domains, such as PI3K and

GRB2, to mediate insulin-induced signaling and activate a range of

biological processes, including glucose uptake, fat synthesis, and cell

growth and differentiation (51–53). The result of dual luciferase

reporter assay further confirmed that miR-150–5p can directly bind

to Irs1 via base complementation. The protein expression of Irs1

was decreased in the LPS-Exo-treated macrophages, whereas miR-

150–5p inhibitors reversed the expression of Irs1. Furthermore,

previous studies have demonstrated that Irs1 positively modulates

mTOR signaling by promoting the phosphorylation of PI3K and

Akt (51, 53). In addition, the mTOR signaling pathway plays a key

role in regulating energy metabolism, which controls the

inflammatory response and differentiation of macrophages (54,

55). Actually, decreased phosphorylation of PI3K, Akt, and

mTOR were observed after LPS-Exo treatment, which were

reversed after inhibition of miR-150–5p. Moreover, the sepsis

model was applied to testify the functional effect of miR-150–5p

in LPS-Exo in vivo. Our data illustrated that miR-150–5p loss-of-

function markedly deteriorated proinflammatory responses and

survival rates in the experimental sepsis model treated with LPS-

Exo. These data indicate that exosomal miR-150–5p targets Irs1 in

recipient macrophages and subsequently modulates macrophage

plasticity by down-regulating the PI3K/Akt/mTOR pathway.
5 Conclusions

The data obtained in our study demonstrated that the exosomes

secreted by LPS-stimulated MSCs improved sepsis to a greater

extent than Exo. Moreover, LPS-Exo had a better ability than Exo to

promote macrophage M2 polarization in vitro. Further analysis

demonstrated that LPS-Exo functioned primarily through

transferring miR-150–5p into recipient macrophages, and

modulating the macrophage phenotype by down-regulating the

PI3K/Akt/mTOR pathway via targeting Irs1. Our findings

strongly suggest the cell-free therapeutic strategy using exosomes

derived from LPS pre-conditioned MSCs for the treatment of sepsis

and propose miR-150–5p as a novel molecular target for regulating

immune hyperactivation during sepsis.
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SUPPLEMENTARY FIGURE 1

Characterization of MSCs. (A) P3-MSCs in vitro showed typical spindle fibroblast-

like morphology under light microscopy. (B) Positive Alcian Blue staining of MSCs
assessed after osteogenic differentiation induction for 3 weeks. (C) Positive

Oil-Red-O staining of MSCs was assessed after adipogenic differentiation

induction for 2 weeks. (D) Immunophenotype of MSCs by flow cytometry.
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