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Monocytes are pivotal immune cells in eliciting specific immune responses and can

exert a significant impact on the progression, prognosis, and immunotherapy of

intracranial aneurysms (IAs). The objective of this study was to identify monocyte/

macrophage (Mo/MF)-associated gene signatures to elucidate their correlation with

the pathogenesis and immune microenvironment of IAs, thereby offering potential

avenues for targeted therapy against IAs. Single-cell RNA-sequencing (scRNA-seq)

data of IAs were acquired from the Gene Expression Synthesis (GEO) database. The

significant infiltration of monocyte subsets in the parietal tissue of IAs was identified

using single-cell RNA sequencing and high-dimensional weighted gene co-

expression network analysis (hdWGCNA). The integration of six machine learning

algorithms identified four crucial genes linked to these Mo/MF. Subsequently, we

developed a multilayer perceptron (MLP) neural model for the diagnosis of IAs

(independent external test AUC=1.0, sensitivity =100%, specificity =100%).

Furthermore, we employed the CIBERSORT method and MCP counter to

establish the correlation between monocyte characteristics and immune cell

infiltration as well as patient heterogeneity. Our findings offer valuable insights into

the molecular characterization of monocyte infiltration in IAs, which plays a pivotal

role in shaping the immune microenvironment of IAs. Recognizing this

characterization is crucial for comprehending the limitations associated with

targeted therapies for IAs. Ultimately, the results were verified by real-time

fluorescence quantitative PCR and Immunohistochemistry.
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Introduction

IAs are focal deformities commonly found in branches of

cerebral arteries, with a prevalence of 2% - 5% of the total

population (1). IAs are usually in a stable state but may rupture,

with a lesion incidence of 1.2% per patient per year (2).

Subarachnoid hemorrhage caused by ruptured intracranial

aneurysms leads to serious complications and even life-

threatening conditions (3, 4). About 30% of IAs patients die from

Subarachnoid hemorrhage (5). Endovascular therapy and surgical

clamping are currently the primary means of treating aneurysms,

but they are expensive and carry a significant risk of complications

(6), and the use of medication may present a viable alternative for

individuals with a heightened susceptibility to undergoing invasive

surgical procedures (7, 8). However, therapeutic drug targets are

currently lacking. Therefore, there is a pressing need to find new

biomarkers that could help to explore the molecular mechanism of

the formation and progression of IAs, which will aid in developing

new treatment strategies.

The main histopathological characteristics of IAs include

immune infiltration, cell death, oxidative stress, lipid metabolism,

iron accumulation and proteolytic activity (9–11). The pathogenesis

of IAs has been extensively investigated, and numerous studies have

consistently demonstrated the involvement of various immune cell

types. The effects of macrophage-driven inflammation on the

aneurysm wall were summarized by Sajjad et al. (12), who also

discussed pharmacological strategies for modulating the

macrophage response during Internal carotid aneurysm formation

and rupture. Hajime et al. (13)induced intracranial aneurysms in

adult mice and subsequently administered a mast cell stabilizer

(sodium glycyrrhizinate) along with a mast cell activator (C48/80).

Their findings demonstrated that the pharmacological stabilization

of mast cells through sodium glycyrrhizinate significantly reduced

the incidence of aneurysm rupture. The increasingly significant role

of immune infiltration in aneurysms presents novel opportunities

for comprehending the development of IAs. In addition, CD4 T

cells (14) and lymphocytes (15) were also demonstrated. The

research on Mo/MF remains limited, with few studies conducted

thus far. Mo/MF plays a crucial role in the body’s non-specific

immune defense by presenting antigens, initiating immune

responses, and secreting a diverse array of cytokines to actively

participate in immune regulation. The key cytokines involved

include IL-1 and IL-12 (16). The field of Mo/MF-based therapies

has witnessed significant advancements over the decades,

establishing it as a pivotal avenue for future research.

While numerous studies have conducted comprehensive

experiments to elucidate the molecular mechanisms underlying

the formation and progression of IAs, only a limited number of

studies have utilized scRNA-seq to identify potential targets that

may play crucial biological roles in these mechanisms. RNA-seq

employs optimized next-generation sequencing techniques to

define the overall gene expression profile of individual cells,

thereby facilitating the dissection of heterogeneity within

previously concealed cell populations. In this study, we integrated

scRNA-seq data with batch RNA-seq data from IAs to discern
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differences between distinct cell clusters. We employed hdWGCNA

and machine learning approaches to characterize the immune

landscape and screen for immune-related hub genes implicated in

the development of IAs. Finally, we combined 4 key genes and 10

immune cell types to synthesize personalized portraits and establish

a gene immunoconvolutional neural network deep learning model

for precise diagnosis and treatment of IAs.
Methods

Data collection

The scRNA-seq date in GSE193533 and bulk-seq data in

GSE75436 and GSE122897 were downloaded from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/), A total of 61 IAs

samples and 21 control samples were included, GSE193533

contains two IAs samples and one control sample, and GSE75436

contained 15 IAs samples and 15 superficial temporal artery

samples. GSE75436 contains 44 IAs samples and 16 control

samples. Moreover, the GSE75436 dataset was designated as the

discovery dataset, and GSE122897 were utilized as the validation

datasets. The patient’s information is shown in Supplementary

Tables S1, S2.
scRNA-seq data processing

The scRNA-seq data was initially processed using the Seurat

package to preserve high-quality scRNA-seq data. Subsequently,

The original matrix of each cell was subjected to three filtering

measures: retaining a minimum of five genes expressed by single

cells, excluding cells expressing fewer than 100 genes, and excluding

any cells expressing more than 20% of mitochondrial genes. Next,

the initial set of 2,000 highly variable genes was identified using the

“Discover Variant features” function within the “Seurat” package.

Subsequently, principal component analysis (PCA) was conducted

on these 2000 highly variable genes using the “RunPCA” function to

reduce dimensionality in scRNA-Seq data. Cell clustering was

performed utilizing the “Find Neighbor” and “Find Cluster”

functions available in the Seurat package (17).
The pipeline of high-dimensional WGCNA

The hdWGCNAmethod was employed to construct a cell-type-

specific co-expression network, followed by the identification of

gene modules and co-expressed genes within the network (18).

Hierarchical clustering and dynamic cutting tree function were

utilized for module identification, with different branches

representing distinct gene modules. Hub genes were selected

based on their gene significance (GS) and membership degree

(MM) in the module. The analysis steps are as follows: firstly, the

gene expression data were preprocessed. Secondly, the gene co-

expression network was constructed. Thirdly, modules or clusters of
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highly correlated genes are identified, module signature genes are

calculated, and module preservation analyses are performed to

assess the robustness of the identified modules. Finally, in the

fifth step, the functional enrichment analysis is carried out.
Pseudotime analysis and cell
communication analysis

The Monocle2 algorithm was used to reveal the change rule of

key gene expression over time, and even the hidden change pattern

was found. The size factor and dispersion are first estimated, and

highly variable features are determined within the Monocle object.

The cell differentiation state was determined by the DDRtree

method, and then the cell differentiation trajectory was visualized.

To gain a comprehensive understanding of the specific cellular

interactions, we utilized the CellChat package to infer and analyze

cell-cell communication (19, 20). The analysis of cell-cell

interactions was conducted separately for IAs and normal groups,

with a focus on evaluating the major signal inputs and outputs using

CellChatDB (21).
Functional enrichment analysis

The highly correlated genes identified by hdWGCNA were

subjected to enrichment analysis using gene Ontology (GO),

Disease Ontology (DO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG). Functional enrichment was assessed utilizing

the “GOplot”, “Cluster Analyzer”, and “DOSE” packages in R.
Friends analysis and protein-protein
interaction analysis

The construction of an immune gene-associated PPI network

was facilitated using the STRING database (https://string-db.org/).

The Friends analysis method was employed to examine genes

exhibiting strong correlations with other genes within the same

pathway, and R-packet GOSemSim (21) was used to calculate

functional correlation scores between key genes.
Identification of potential key genes by
machine learning algorithms

The feature selection of disease diagnosis factors in this study

employed the machine learning algorithms random forests (RF),

support vector machines (SVM), least absolute shrinkage and

selection operator (LASSO), neural network (NNET), Boruta and

k‐nearest neighbor (KNN). LASSO regression is characterized by

fitting a generalized linear model and screening variables, which

analysis was realized by glmnet software package with 10-fold cross-

verification through a turning/penalty parameter (22). SVM-RFE is

a machine learning algorithm based on the maximum interval

theorem of SVM. It adopts the principle of minimizing structural
Frontiers in Immunology 03
risks and minimizing empirical errors, to strengthen the learning

performance (23). The SVM module was developed by the “e1071”

package. RandomForest is used to rank genes. The Boruta algorithm

is a supervised classification feature selection method utilized for

the identification of all relevant features in a classification task. The

NNET model implements a nonlinear mapping function that

effectively captures the relationship between input and output

data through learning, while also adaptively storing this

knowledge in its network weights. It exhibits robust

generalization capabilities and fault tolerance. On the other hand,

KNN is a non-parametric delayed learning architecture that

leverages Euclidean distance to classify instances based on their

proximity to K neighboring data points (23). Ultimately, we

combine six machine learning modes to further screen the most

significant feature genes. The expression levels of these candidates

were subsequently validated to assess their potential as

diagnostic biomarkers.
The functionally-related genes

The initial selection of the top 20 genes interacting with the four

key genes was performed using machine learning techniques on

the GeneMANIA database (http://genemania.org/) with

default parameters.
MLP neural network architecture

The basic structure of MLP comprises three layers: the input

layer, the hidden layer, and the output layer. MLP neural networks

establish full connectivity between different layers, and the hidden

layer is divided into three layers. For the input layer and hidden

layer, The ReLU activation function is utilized for the model, while

the output layer utilizes the softmax activation function. The Adam

optimizer is employed with a learning rate of 0.0001., and the

classification cross-entropy loss function is used to evaluate

performance. Model accuracy is determined through analysis of

predicted versus actual class labels using a confusion matrix. Keras

was utilized for machine learning analysis (24).
The assessment and analysis of infiltration
by immune cells

The CIBERSORT is a commonly used method for

deconvoluting immune cell expression matrices based on linear

support vector regression, enabling the quantification of infiltrated

immune cells through gene expression labeling (25). In our study,

we utilized marker gene expression and transcriptome data from 28

immune cell types to accurately determine the distribution values of

monocytes through CIBERSORT analysis. The infiltration level of

immune cells and immune-related pathways were assessed using

single sample gene set enrichment analysis (ssGSEA), based on the

expression profiles of 28 immune-related signals. Heat maps

depicting the distribution and changes in immune cell
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populations were generated using the “ggplot2” software package.

Additionally, Microenvironment Cell Population Counting (MCP-

cecter), a genomic signature-based approach, was employed to

estimate the abundance of infiltrating immune and stromal cells

from transcriptome data (26).
Gene set enrichment analysis

The GSEA analysis determines whether all genes in a gene set

exhibit clustering at the top or bottom of an ordered list, indicating

up-regulation or down-regulation of the gene set, respectively. The

expression matrix of IAs and the control group was subjected to

clustering using the R package GSEA. A significance level of FDR <

0.05 with 1000 random combination settings is considered

statistically significant.
Analysis of transcriptional factor
regulatory network

The Single-cell Regulatory Network Interference and Clustering

(SCENIC) tool enables the simultaneous reconstruction of gene

regulatory networks and the identification of stable cell states from

scRNA-seq data. The “GENIE3” package was used to infer gene co-

expression networks, the “RcisTarget” package was used to analyze

transcription factor binding motif, and the “AUCell” package was

used to identify cells with active gene sets (gene networks) in the

scRNA-seq data. This revealed the possible relationship between the

four genes screened by machine learning and IAs.
Patients and samples

A total of 10 patients diagnosed with IAs were recruited for this

study, and complete vascular wall tissue samples were collected

from the IAs patients who underwent microsurgical clamping. Ten

segments of the superficial temporal artery were obtained during

surgery for traumatic intracranial hemorrhage (controls matched in

terms of sex, age, and blood pressure), detailed methods and

matching data are provided in the Supplementary Material 1. The

basic characteristics associated with immune conditions are shown

in Supplementary Table S3. The tissue samples were rapidly frozen

in liquid nitrogen and promptly transported to the laboratory for

subsequent experiments. The study protocol obtained written

informed consent from each patient before the commencement of

the study and received approval from the Ethics Committee of the

Affiliated Hospital of Qingdao University, The series number of

approval documents is QYFY WZLL 28225.
Quantitative real-time PCR

The extraction of total RNA from tissue samples was performed

using Trizol reagents (Carlsbad, CA). The concentration of RNA

was determined by ultraviolet spectrophotometry. Reverse
Frontiers in Immunology 04
transcription was carried out using the superscript RT-PCR First

Chain Synthesis System Kit (Invitrogen) and random hmers. Real-

time PCR of cDNA was performed using the Mx-3000P

quantitative PCR system (Stratagene). The primer sequence for

PCR is as follows: LGMN, CCATGCCTACCAGATCATTCAC

(forward), GGTAACATCCTCTCCAGTGTAGTC (reverse); FN1,

ACCTGGAGCAAGAAGGATAATCG (forward), GCATCCCCAC

AGAGTAGACC (reverse); SRGN, CTTCCCACTTTCTGAGGAC

TAC (forward), CTAACTACATTGCCTGGTGTCA (reverse);

CXCL16, AGCGTCACTGGAAGTTGTTATTG (forward)

AGCTGGAACCTCGTGTAGTATAG (reverse). The data

visualization was performed using the GraphPad Prism 8 software.
Immunohistochemistry

The expression of key genes was determined through IHC

staining. Specifically, the sections were subjected to heat-induced

antigen retrieval by heating, dewaxing, and rehydration.

Subsequently, they were incubated overnight with antibodies

against LGMN, FN1, SRGN, and CXCL16 in a 4°C humidifier

box. Afterward, the slices were incubated at 25°C for 20 minutes

with rabbit anti-goat antibody labeled with horseradish peroxidase.

Following this step, the sections were stained using hematoxylin

(Gene Tech, Shanghai China). Finally, visualization was performed

using a Leica DM 2500 microscope. The specimens were subjected

to examination under a light microscope.
Statistical analysis

The unpaired T-test and Wilcoxon rank sum test were

employed to analyze the differences in the data. The correlation

of tissue expression levels was assessed using the Pearson

correlation test. The statistical P-values were calculated using a

two-tailed test, and p < 0.05 was deemed to be statistically

significant. All analysis was conducted using R software

version 4.1.3.
Results

Identification of IAs cell clusters

The process is depicted in the flowchart presented in Figure 1.

The expression profile was used for this analysis, which contained 3

samples (GSM 5813881, GSM 5813883 and GSM 5813885), after

filtering the unqualified cells, 14,809 core cells were obtained for

subsequent analysis (Figures 2A, B). The UMAP algorithm was

used to cluster their cells to obtain 24 clusters (Figure 2C), which

were later translated to known cell types (Figure 2D). Subsequently,

to transform to known cell types, annotated using standard cell

markers (Figures 2E, F). The line plots show the composition and

changes of each cell in IAs and sham (Figure 2G). The visualization

of key marker genes for each cell type was achieved through the

utilization of bubble plots (Supplementary Figure 1A).
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Heterogeneity between cell clusters of IAs

We compared the difference in the proportion of cell types in

the IAs and sham groups using UMAP diagrams. We further

dissected the monocyte subpopulation and showed that not all

monocytes were universally upregulated, with only cluster 0

demonstrating a significant increase (Figures 3A, B). We

performed fine-resolution clustering and annotation and applied

the miloR tool to quantify shifts in the abundance of all cell types

between groups (Figures 3C, D). The cell-cell communication

analysis was performed using the cellchat pipeline. In detail, the

frequency and intensity of interactions between IA_Monocyte and

Pericyte, between VSMC and fibroblasts, and between

other_Monocyte and DC cells were high (Figure 3E). Figure 3F

shows that IA_Mono and Other_Mono exhibit enhanced output

and input interaction strength. Moreover, IA_Monocyte sent and
Frontiers in Immunology 05
received more signals to other cells mediated by INF-1, while

Other_Monocyte sent more signals to other cells mediated by

IGE and received more signals mediated by CX3C (Figure 3G).

We then analyzed and compared the specific pathways by which

various cell types exhibit stronger interactions (Figure 3H), the

results showed that fibroblasts sent stronger signals to IA_Mono in

the Spp1-related pathway compared to Other_Mono, and

IA_Mono sent stronger signals to IA_Mono in the CCL-related

pathway compared to Other_Mono.
HdWGCNA identifies hub genes associated
with Mo/MF

To investigate the intrinsic functions and properties of Mo/MF,

we constructed a co-expression network based on single-cell data
FIGURE 1

The complete workflow of this study.
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using an optimal soft threshold of 12, as illustrated in Figure 4A.

Nine gene modules were generated (Figure 4B). Figure 4C presents

the top 10 hub genes for these nine modules. Genes highlighted in

yellow and brown within the gene modules exhibited a higher

likelihood of expression in clusters 0 and 1, respectively,

demonstrating a significant positive correlation (Figure 4D). In

addition, the blue module shows A strong positive correlation in the

red module, the pink module shows a strong positive correlation

with the yellow and brown module, and the turquoise module has a

strong positive correlation with the magenta module (Figure 4E).

We then scored the genes of the top 25 hub genes ranked by kME in

each module (Figure 4F).
Pseudo-time and trajectory analysis

To determine the transcriptional characteristics of Mo/MF at

different stages of development, we performed a pseudo-temporal

analysis. Cells that have similar states are grouped, and branch
Frontiers in Immunology 06
points divide cells into different states. Notably, cluster 0 Mo/MF
are mainly located at the end of the pseudo-time locus (Figure 5A).

We further applied CytoTRACE analysis predict the origin of Mo/

MF by integrating Monocle2 (Figure 5B). Then the relationship

between cpredicted ordering by cyto trace and cell phenotype was

analyzed (Figure 5C). Gene expression analysis of IAs sample in

cluster 0 compared with control sample showed that SLC7A11,

CXCL16, SRGN, FABP5, CD14 and CYBB genes were significantly

up-regulated in IAs (Figure 5D). Finally, Heat maps showed that

most genes were up-regulated in the IAs group and down-regulated

in the control group (Figure 5E).
The genes in the yellow and brown
modules was analyzed for
functional enrichment

The function of genes in the yellow and brown modules was

investigated by conducting an enrichment analysis on the top 50
A B

D E

F G

C

FIGURE 2

Analysis of single-cell RNA sequencing. (A) The sequencing depth from 3 IAs samples. (B) UMAP plot of 14,809 cells from 3 primary IAs samples.
(C) UMAP plot colored by various cell clusters. (D) The cell types are identified by marker genes. (E) Dot plot showing representative marker genes
for each cell type. (F) The proportion of each cell type from IAs and sham is shown, as indicated. (G) The line plots show the composition and
changes of each cell in IAs and sham.
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hub genes within these modules, resulting in a total of 100 genes

(Supplementary Table S4) in the yellow and brown modules. The

consequences of DO analysis illustrate that these common genes are

relevant to, coronary artery disease, cell type benign neoplasm and

bacterial infectious disease (Figure 5F). The GO analysis revealed

that hub genes were significantly enriched in processes related to

neutrophil activation, neutrophil-mediated immunity, and immune

response involving neutrophil activation (Figure 5G). Additionally,

functional enrichment analysis was conducted for the candidate

genes, and KEGG analysis displayed that “Proteoglycans in cancer”,

“Lysosome”, “NF−kappa B signaling pathway” and “HIF−1
Frontiers in Immunology 07
signaling pathway” pathways depicted predominant enrichment

of genes (Figure 5H).
Visualize hub gene expression levels

Figure 6A shows the results of the friends analysis of these 100

hub genes. The results showed that the eight genes with the strongest

correlation were SRGN, CD63, CARD19, IL1B, MIF. We performed

PPI analysis of 100 genes through the STRING database and

visualized and mapped the results of protein interactions, 23 genes
A B

D E F

G H

C

FIGURE 3

Altered proportions of Mo/MF subpopulations in IAs. (A) The UMAP scatter plot illustrates the spatial distribution of the Mo/MF subtype. (B) The
stacked bar chart depicts the proportion of Mo/MF subtypes. (C) UMAP for scWB scRNA-seq differential abundance in samples from patients with
IAs compared to HCs, with sampled neighborhoods colored by statistical significance (spatial FDR < 0.05). Nhood, neighborhood. (D) Beeswarm
plots of differential cell abundance in scWB with cluster labels of neighborhoods depicted and compared for IAs and normal samples. (E) Strength
and number of interactions between key cells. (F) The IAs cell communication network is visualized in terms of signal communication. (G)
Interaction quantity and interaction weight/strength of various cells in the IAs in the communication network. (H) Bubble plots show specific
pathways by which different cell types exhibit stronger interactions.
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were found to have strong biological functional similarities

(Figure 6B). Next, we drew bar charts and volcano plot showing

how much of the hub genes was expressed (Figures 6C, D).
Identification and validation of hub genes
by machine learning

We select the 6 most important features and further screen the

key genes with the most diagnostic value according to the machine

learning algorithm. The LASSO analysis identified a total of 8 genes.

(Figure 7A). We then applied five machine learning algorithms, RF,

SVM-RFE, NNET Boruta and KNN (Figures 7B–F), and by
Frontiers in Immunology 08
overlapping them we ended up with 4 shared hub genes: LGMN,

FN1, SRGN and CXCL16 (Figure 7H). Figure 7G shows the top 50

relatively important genes in RF.
Assessment of the expression and
diagnosis significance of hub genes

To further verify the diagnostic and prognostic efficacy of each

shared central gene, we used ROC curve and expression curve for

evaluation. To confirm the previous findings, we validated the

expression differences of these four genes between samples of

different states in two downloaded datasets, and GSE 75436 was
A B

D

E F

C

FIGURE 4

hdWGCNA has revealed the key Mo/MF genes in the pathogenesis of IAs (A) Select a soft power supply suitable for running the hdWGCNA, the
mean value, median value and maximum connectivity of the topology network are shown respectively when different minimum soft thresholds are
selected. (B) Nine modules are identified as shown in the tree diagram. (C) Each module presents the top hub gene. (D) The feather plot depicts the
score for nine modules. (E) Correlation analysis between different models. (F) Bubble plot reveals the scores obtained by each module.
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used as the training set and GSE 122897 was used as the verification

set. We observed that in the training set, LGMN, FN1, SRGN, and

CXCL16 were significantly upregulated in the IAs group

(Figures 8A–C). The same results are obtained for the verification

set (Figures 8D–F). Subsequently, we found that the samples used

included both ruptured and non-ruptured IAs samples, so we

analyzed the differences between unruptured and ruptured

aneurysms, and the results showed that ruptured IAs samples had

higher levels of hub gene expression (Figure 8G).
Construction of the gene-gene interaction
network and correlation analysis of
hub genes

The gene-gene interaction network of central genes was initially

constructed, and the functional analysis of these genes was performed

using the GeneMANIA database. Surrounding the central nodes were
Frontiers in Immunology 09
20 additional nodes representing significant correlations with the

central genes (Supplementary Figure 2A). Subsequently, an in-depth

examination of the interrelationships among the four hub genes was

conducted (Supplementary Figure 2B).
Construction of the pre-biased multi-layer
perceptron neural network model

The convolutional neural networks were trained for 200 epochs

(Figure 9A). By integrating these selected feature inputs with the

initial weights, the feedforward structure of three hidden layers

facilitates easy classification of one of the four clusters in the

output layer (Figure 9B). The expression of these four genes was

significantly different in the IAs sample and the shame sample, and

the IAs sample and the shame sample could be distinguished by these

four genes, with an accuracy of 70% in the training group and 100%
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C

FIGURE 5

Pseudotime analysis, trajectory analysis and analyses of functional enrichment of DEGs. (A) pseudotime distribution of the different macrophage
subtypes (B) Pseudotime analysis based on the monocle3 package shows the differentiation trajectory of IAs cell subtypes. (C) The box diagram
reflects the relationship between cpredicted ordering by cyto trace and cell phenotype. (D) Scatter plot showcasing differential analysis results
between high-risk cells and background cells within Mo/MF. (E) Heat maps showed the expression of genes in IAs group and sham group. (F) DO
analysis of co-expressed genes. (G) GO analysis of co-expressed genes. (H) KEGG analysis of co-expressed genes.
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in the validation group (Figures 9C, D, F, G). The MLP neural

network is constructed with 1467 features, which are selected by the

univariate Cox regression model and used as input to the nodes. The

model demonstrates excellent predictive accuracy in both datasets

(Figures 9E, H, training AUC = 0.756, testing AUC = 1.000).
Signaling pathways involved in
characteristic genes

The GSEA method was employed to conduct an analysis of the

specific signaling pathways associated with four hub genes. The

pathways associated with the central gene of utmost significance

were selected, as depicted in Supplementary Figure 2. The results

demonstrated a significant upregulation and enrichment of

CXCL16 in Viral protein interaction with cytokine and cytokine

receptor, Systemic lupus erythematosus, Renin−angiotensin system

and Pertussis (Supplementary Figure 3A). High expression of FN1

enriched in Nicotine addiction, Cocaine addiction, Insulin secretion

and Aldosterone−regulated sodium reabsorption (Supplementary

Figure 3B). Systemic lupus erythematosus, Asthma, Allograft

rejection and Intestinal immune network for IgA production

were mainly enriched in LGMN (Supplementary Figure 3C).

Pantothenate and CoA biosynthesis, Pertussis, Viral protein

interaction with cytokine and cytokine receptors, Graft−versus

−host disease and Legionellosis were mainly enriched in SRGN

(Supplementary Figure 3D).
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Correlation analysis between hub genes
and immune characteristics

The association of four central genes with immune cells was

analyzed by MCP-counter and the results were visualized, the

results were consistent with our expectation that monocytes were

highly correlated with CXCL16 and LGMN (Figure 10A).

Furthermore, immune characteristics were evaluated according to

immune checkpoint and immune cell infiltration expression

(Figure 10B), and the results illustrated that IRF8 signal

transduction pathway was highly correlated with the four keys,

and MAF signal transduction pathway was highly correlated with

CXCL16, LGMN, and SRGN. In addition, we calculated

correlations between the IAs samples and immune cells, and most

of the sites examined were significantly upregulated in patients with

IAs compared to the normal population (Figures 10C, D). Finally,

the relationship between the experimental group and the control

group and the immune pathway was compared by heat

maps (Figure 10E).
Validated the expression of the four
model-related genes

RT-qPCR was employed to detect the mRNA expression levels

of relevant genes in 10 parietal tissues of IAs and 10 superficial

temporal arteries. The expression levels of LGMN, FN1, SRGN and
A B

D

C

FIGURE 6

The correlation analysis of yellow and brown module genes was carried out. (A) Friends analysis of genes in the yellow and brown modules, the total
score ranges from 0 to 1, with higher scores indicating more genes associated with it. (B) PPI of genes in the yellow and brown modules. (C) The
volcano map shows the expression analysis of potential characteristic genes between IAs and sham samples. (D) The bar chart shows the levels of
gene expression in the IAs group and the shame group. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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CXCL16 were found to be up-regulated in the parietal tissue of IAs

(Figures 11A–D). We performed IHC to evaluate LGMN, FN1,

SRGN and CXCL16 protein expression in IAs tissues and control

tissues. The results showed that LGMN, FN1, SRGN and CXCL16

protein were significantly overexpressed in IAs tissues compared to

neighboring normal tissues (Figures 11E–H).
Discussion

A growing body of research suggests that IAs is considered a

disease driven by chronic inflammation, with numerous studies

examining the upregulation of inflammatory mediators, disruption

of the elastic lining of the layer, and thinning of these mediators,

including parietal cell death (27, 28), cellular and molecular
Frontiers in Immunology 11
inflammation plays a significant role in both aneurysm formation

and rupture. Mo/MF play a significant role in the regulation of

immune microenvironment and exert a long-lasting influence

on the development and progression of IAs (29). Recent

research findings have demonstrated that monocyte chemotactic

protein-1 (MCP-1) serves as the principal chemotactic factor for

macrophages, genetic deletion or inhibition of MCP-1, as well as

pharmacological depletion of macrophages using clodronate

liposomes, significantly impede the development and expansion

of IAs (30, 31).

Many researchers have proposed an IAs correlation prediction

model based on scRNA-seq; however, the comprehensive analysis

of monocytes, particularly the investigation of monocyte

biomarkers using scRNA-seq to analyze IAs immune infiltration

and assess precision therapy, remains limited. In this study, we
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FIGURE 7

Identification and validation of hub genes by Machine learning. (A) LASSO regression shrunk the genes to 8. (B) The selection and validation of
biomarker signature genes were performed using the SVM-RFE algorithm. (C) Boruta screened 21 feature genes for importance sequencing. (D) The
correlation between the error rate of a random forest and the quantity of classification trees. (E) KNN algorithm was used for feature gene selection.
(F) NNET algorithm was used for feature gene selection. (G) The top 50 relatively important genes in random forest. (H) The Venn diagram illustrates
the common genes shared by LASSO, RF, SVM, NNET Boruta and KNN algorithms.
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employed scRNA-seq and hdWGCNA to identify specific subsets

associated with mononucleosis. The enrichment analysis of all

genes in the resulting module was subsequently conducted. By

conducting KEGG analysis, we have successfully identified the HIF-
Frontiers in Immunology 12
1 signaling pathway and NF−kappa B signaling pathway as pivotal

pathways associated with Mo/MF heterogeneity. Gao et al (32).

demonstrated that miR-4735 plays a pivotal role in the phenotypic

regulation of vascular smooth muscle cells. Downregulation of miR-
A
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C

FIGURE 8

To verify the correlation between four core genes and Mo/MF. (A) Box line plots compared gene expression levels in the training set. (B) ROC
curves of the feature genes in the training set. (C) The line plots compared gene expression levels in the training sets in the IAs and Shame groups.
(D) Box line plots compared gene expression levels in validation sets. (E) ROC curves of the feature genes in the validation set. (F) The line plots
compared gene expression levels in the validated sets in the IAs and Shame groups. (G) Differences in key fundamental expression between
unruptured and ruptured IAs samples.
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4735 expression in IAs tissues upregulates HIF-1 expression,

thereby inducing autophagy activation. Enhanced autophagy

facilitates cell proliferation and migration. This study has

significant implications for elucidating the mechanism underlying

IAs formation and suggests that targeting miR-4735 regulation, as

well as HIF-1-mediated autophagy, could serve as a potential

molecular therapeutic strategy to prevent IAs development. And

the pathogenic role of the NF−kappa B signaling pathway in IAs

involves various factors, which significantly contribute to the

process of vascular remodeling by promoting it (33). The

subsequent GO analysis revealed a strong association with

neutrophil activation, neutrophil activation involved in immune
Frontiers in Immunology 13
response, neutrophil mediated immunity and neutrophil

degranulation. The study conducted by Masaaki et al (34).

demonstrated that neutrophil extracellular traps (NETs)

can contribute to the rupture of intracranial aneurysms.

Pharmacological intervention targeting peptidyl arginine

deiminase 4 or the dissolution of pre-existing NETs could

potentially mitigate this effect.

Next, by utilizing six machine learning methods, we successfully

identified four characteristic genes for disease diagnosis and

immune microenvironment analysis, namely LGMN, FN1, SRGN,

and CXCL16. The four genes were subsequently assessed using

ROC curves and expression profiles, revealing significant up-
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C

FIGURE 9

MLP neural networks predict Cox regression of feature selection used in e novo clusters. (A) Training process of the gene-immune MLP model.
(B) Validation of the MLP neural network of the training group and validation group. (C, D) Summary of the samples utilized for validating the
performance of the MLP neural network model within the training group. (F, G) Summary of the samples utilized for validating the performance of
the MLP neural network model within the validation group. (E, H) ROC curves of the training group and validation group.
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regulation in the IAs samples of both the training set and the

validation set. The LGMN (Legumain) enzyme belongs to the

peptidase family C13 and functions as an asparagine-specific

cysteine endopeptidase (35). Extensive research has consistently

demonstrated high expression of LGMN in monocytes and

macrophages (M1 and M2) (36, 37), with its expression and

secretion increasing during the differentiation process from

monocytes to macrophages (36, 38), providing evidence for the

involvement of LGMN in biological immune processes. The

FN1 (fibronectin 1) is a crucial constituent of the extracellular

matrix within the arterial wall, playing a pivotal role in

pathological angiogenesis, embryonic blood vessel morphology,

and maintenance of arterial wall integrity (39, 40). The high

expression and localization of FN1 in IAs have been

demonstrated, and based on the ROC results, FN1 exhibits a

remarkable sensitivity and specificity in samples from IAs

patients (39, 41, 42). This suggests that FN1 may play a direct

role in the initiation and progression of IAs, thereby providing a

crucial foundation for guiding targeted therapy strategies. The

intracellular proteoglycan SRGN (serglycin) is synthesized by

inflammatory and stromal cells. The production of serglycin -/-

mice demonstrated the extensive effects of serglycin on the

functional properties of immune cells. The serglycin molecule

contains chondroitin sulfate chains, which are primarily sulfated

at the C4 position of N-acetyl-galactosamine. Interestingly, the

sulfation pattern of chondroitin sulfate in serglycin is regulated
Frontiers in Immunology 14
during monocyte differentiation into macrophages. CXCL16 is a

chemokine composed of 254 amino acids that is widely expressed in

immune cells such as monocytes, macrophages and B cells (43, 44).

CXCL16 is crucial for immune cell adhesion to the endothelium

and DC during inflammation. Numerous studies have

demonstrated that CXCL16 plays a pivotal role in regulating

immune response and mediating inflammation (45). Moreover, it

plays a pivotal role in various autoimmune disorders as well as the

regular functioning of the immune system (46). Additionally,

CXCL16 significantly contributes to the progression of

atherosclerosis (47), as evidenced by the observation that mice

deficient in both CXCL16 and LDLR (CXCL16−/− low density and

low intensity −/−) exhibit exacerbated atherosclerotic lesions

primarily due to impaired cholesterol efflux caused by

dysfunctional CXCL16 receptor activity (47, 48). A considerable

body of clinical research has demonstrated that atherosclerosis

constitutes one of the risk factors for IAs, and the presence of

atherosclerotic plaque within the aneurysm wall may contribute to

its degeneration and subsequent rupture (49, 50).

Finally, ROC curves and expression curves showed that LGMN,

FN1, SRGN and CXCL16 were significantly up-regulated in both

the training and validation sets. Subsequently, we further analyzed

the difference between unruptured and ruptured aneurysms, and

the results showed that ruptured IAs samples had higher levels of

hub gene expression. This suggests that key genes may be involved

in the formation and breakdown of IAs. We employed MCP-
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FIGURE 10

Immune infiltration correlation analysis of hub genes. (A) By using MCP-counter analysis, the heat map shows the correlation between the
expression levels of four genes screened by machine learning and the type of immune cells. (B) Correlation between hub gene expression and 28
immune pathways. *p < 0.05, **p < 0.01, ***p < 0.001, ns: no significance. (C) Correlation analysis of risk scores with significantly different immune
cells. (D) The abundance of 28 immune-related cells differs in IAs tissue and normal tissue. (E) Heat map compared the associations with immune
pathways in the experimental and control groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1397475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2024.1397475
counter to conduct an analysis on the correlation between 10

distinct immune cell types and stromal cells as well as hub genes.

Encouragingly, our findings aligned with our initial expectations,

revealing a strong positive association between monocytes and both

CXCL16 and LGMN. The subsequent analysis revealed that, in

comparison to normal samples, nearly all of the 28 immune-related

cells exhibited a significant upregulation in IAs samples, thereby

further substantiating the notion that inflammation plays a pivotal

role as an important pathogenic factor in IAs.

Although this study provides novel insights into targeted

therapies for IAs, there are inherent limitations that need to be

acknowledged. Firstly, In external validation, the accuracy was 70%

in the training group and 100% in the validation group, which may

be due to the small sample size in the dataset, so future models need

to be further validated in a larger aneurysm cohort. Additionally,

conducting more animal experiments is imperative to

comprehensively understand the biological functionality of key

genes. Then, this study only verified the expression of key genes

without further analyzing this subpopulation and demonstrating its

relevance to monocytes. Lastly, we only investigated the expression

of key genes, but the relationship with monocytes has not been

further confirmed; therefore, additional research is required to

explore the protein expression levels of prognostic genes.

In conclusion, our study successfully identified disease-specific

subgroups of Mo/MF and provided valuable insights into the

crucial role of monocyte-associated genes in immune infiltration

in IAs through the establishment of promising machine learning

and deep learning models.
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FIGURE 11

Expression of LGMN, FN1, SRGN and CXCL16 in IAs tissues and control tissues. (A-D) The mRNA levels of LGMN, FN1, SRGN and CXCL16 in control
group and observation group were detected by RT-qPCR. (E-H) The positive expressions of LGMN, FN1, SRGN and CXCL16 in the IAs tissues and
control tissues were detected by immunohistochemical staining. *p < 0.05, **p < 0.01, ***p < 0.001.
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SUPPLEMENTARY FIGURE 1

Single cell analysis of cell proportion changes. (A) Expression levels of marker
genes. (B) Bar plot indicates the cell proportion of all ten cell types in IAs

and shams.

SUPPLEMENTARY FIGURE 2

Construction of The gene-gene interaction network and correlation analysis

of hub genes. (A) The GeneMANIA database was utilized for the analysis of the

gene-gene interaction network involving hub genes. (B) Correlation analysis
of hub genes.

SUPPLEMENTARY FIGURE 3

GSEA identifies signaling pathways involved in the diagnostic marker genes.
(A) GSEA analysis of LGMN gene. (B) GSEA analysis of SRGN gene. (C) GSEA

analysis of FN1 gene. (D) GSEA analysis of CXCL16 gene.
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