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ATP-P2X7R pathway activation
limits the Tfh cell compartment
during pediatric RSV infection
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Background: Follicular helper T cells (Tfh) are pivotal in B cell responses.

Activation of the purinergic receptor P2X7 on Tfh cells regulates their activity.

We investigated the ATP-P2X7R axis in circulating Tfh (cTfh) cells during

Respiratory Syncytial Virus (RSV) infection.

Methods: We analyzed two cohorts: children with RSV infection (moderate,

n=30; severe, n=21) and healthy children (n=23). We utilized ELISA to quantify the

levels of PreF RSV protein-specific IgG antibodies, IL-21 cytokine, and soluble

P2X7R (sP2X7R) in both plasma and nasopharyngeal aspirates (NPA). Additionally,

luminometry was employed to determine ATP levels in plasma, NPA and

supernatant culture. The frequency of cTfh cells, P2X7R expression, and

plasmablasts were assessed by flow cytometry. To evaluate apoptosis,

proliferation, and IL-21 production by cTfh cells, we cultured PBMCs in the

presence of Bz-ATP and/or P2X7R antagonist (KN-62) and a flow cytometry

analysis was performed.

Results: In children with severe RSV disease, we observed diminished titers of

neutralizing anti-PreF IgG antibodies. Additionally, severe infections, compared

to moderate cases, were associated with fewer cTfh cells and reduced plasma

levels of IL-21. Our investigation revealed dysregulation in the ATP-P2X7R

pathway during RSV infection. This was characterized by elevated ATP levels in

both plasma and NPA samples, increased expression of P2X7R on cTfh cells,

lower levels of sP2X7R, and heightened ATP release from PBMCs upon

stimulation, particularly evident in severe cases. Importantly, ATP exposure

decreased cTfh proliferative response and IL-21 production, while promoting

their apoptosis. The P2X7R antagonist KN-62 mitigated these effects.

Furthermore, disease severity positively correlated with ATP levels in plasma

and NPA samples and inversely correlated with cTfh frequency.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1397098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1397098/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1397098/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1397098&domain=pdf&date_stamp=2024-07-09
mailto:arruvitol@gmail.com
mailto:larruvito@fmed.uba.ar
https://doi.org/10.3389/fimmu.2024.1397098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1397098
https://www.frontiersin.org/journals/immunology


Abbreviations: RSV, Respiratory Syncytial Virus; PBM

Mononuclear Cells; Bz-ATP, 2´(3´)-O-(4-benzoylbenzo

receptor; PICU, pediatric intensive care unit; CDSS, clinic

Tfh, T follicular helper; cTfh, circulating T fol

nasopharyngeal aspirate.
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Conclusion: Our findings indicate that activation of the ATP-P2X7R pathway

during RSV infection may contribute to limiting the cTfh cell compartment by

promoting cell death and dysfunction, ultimately leading to increased

disease severity.
KEYWORDS

children, RSV, ATP, Tfh cell, antibodies
1 Introduction

Respiratory syncytial virus (RSV) stands as the leading cause of

childhood hospitalization attributed to bronchiolitis, accounting for

3 million hospitalizations and over 100,000 deaths annually in

children under 5 years (1). Most fatalities occur in low- and

middle-income countries, where children lack proper access to

healthcare (2). Effective protection against severe RSV infection

can be achieved through the passive transfer of neutralizing IgG

antibodies targeting the RSV fusion (F) protein (3–5). After decades

of research (6), the first maternal vaccine against RSV has recently

gained approval, demonstrating its capability to prevent serious

illness in infants from birth to 6 months of age (7, 8).

Follicular helper T cells (Tfh) are essential for adaptive immune

response against viral infection and vaccination, helping B cells to

generate high-affinity antibodies and to differentiate into memory B

cells (9, 10). Both of these responses are strongly dependent on the

production of IL-21 by Tfh cells. While Tfh cells were initially

identified in tonsils, they can also be found in peripheral blood

(circulating Tfh, cTfh cells). Similar to tissue Tfh cells, cTfh cells are

capable of providing helper signals to B cells (11–13). Recent

reports have indicated that changes in the frequency, phenotype

and function of cTfh cells are associated with the quality of the

antibody response in infectious diseases (14). For instance, the

frequency of PD-1+CXCR5+CD4+ cTfh cells has shown to

correlate with the production of broadly neutralizing antibodies

in people living with HIV (15–17) while the disfunction of the cTfh

compartment identifies poor responders to influenza vaccine (18).

Notably, a significant expansion and activation of cTfh were

documented during the critical phase of Dengue fever (19). Our

recent findings also indicate that a low frequency of cTfh in children

with severe COVID-19 is associated with a poor antibody response

(20). Although neutralizing antibodies play a crucial role in

controlling RSV disease, the function of the Tfh cell compartment

during this infection has been relatively underexplored.
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Extracellular ATP is virtually absent in the interstitium of

tissues under physiological conditions but accumulates at sites of

tissue injury (21). Its effects are primarily mediated by plasma

membrane purinergic receptors (22). P2X7R, which encodes the

ATP-gated P2X7 receptor, stands out as a signature gene of effector

T cell subsets and is highly expressed on Tfh cells (23). Stimulation

of P2X7R promotes Th1/Th17 polarization of CD4+ T cells,

conversion of Tregs into Th17 cells and dysfunction of the Tfh

cell compartment (24–29). We hypothesize that the inflammatory

response induced by RSV infection might lead to the release of

extracellular nucleotides from stressed, damaged, or dying cells,

enabling the purinergic system to modulate the T cell compartment.

In this study, we investigated the potential role of the ATP-P2X7R

pathway in the modulation of the cTfh cell compartment during

pediatric RSV infection.
2 Materials and methods

2.1 Study subjects

The study included 74 children under 24 months of age who

were admitted to the Hospital General de Niños Pedro de Elizalde,

Hospital Nacional Prof. Alejandro Posadas, and Clıńica del Niño de

Quilmes during the 2022–2023 respiratory seasons. Two main

cohorts were established: 1) children with confirmed RSV

determined by direct immunofluorescence of nasopharyngeal

aspirates (NPAs, n=51), and 2) healthy children (n=23) admitted

for minor scheduled surgery with no airway infections in the

preceding 4 weeks. Disease severity was categorized using the

clinical disease severity score (CDSS) as mild (0–5), moderate (6–

8), or severe (9–12) based on the modified Tal score at the time of

sampling. The CDSS for all admitted patients was ≥ 7. No children

with mild disease were included. Patient characteristics are detailed

in Table 1.
2.2 Sample processing

Blood samples (0.5–1 mL) were collected into EDTA tubes

within 1–4 days of hospital admission. After centrifugation at 1000

rpm for 10 minutes, the plasma fraction was separated and stored at
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-80°C until needed, while the remaining blood sample was

immediately utilized for cell isolation. When clinically

permissible, NPAs were collected from RSV children and

processed within 3 hours.
2.3 Isolation of peripheral blood
mononuclear cells

Peripheral blood mononuclear cells (PBMCs) were obtained from

blood samples by Ficoll-Paque gradient centrifugation (Cytiva). Cells

were washed, and suspended in culture medium (RPMI 1640, Sigma-

Aldrich) supplemented with 10% heat-inactivated fetal calf serum

(FCS, Sigma-Aldrich), 2 mM L-Glutamine (Sigma-Aldrich), and

penicillin-streptomycin (Sigma-Aldrich).
2.4 Cells and virus

HEp-2 cells (ATCC® CCL-23™) were cultured in DMEM

(GIBCO) containing 10% FCS, 2mM L-Glutamine, and penicillin-

streptomycin. Experiments utilized the human RSV subtype A, Long

strain, propagated in HEp-2 cells with DMEM supplemented with 2%

FCS. For virus isolation, infected cell monolayers were scraped, briefly

vortexed, pelleted, and resuspended in fresh medium. RSV was
TABLE 1 Characteristics of study cohorts.

RSV children Healthy
children

Moderate Severe

N=30 N=21 N=23

Demographic characteristics

Age, month,
median (range)

5 (1–23) 5 (1–21) 7 (4–20)

<6, n (%) 14 (47) 14 (67) 12 (52)

>6, n (%) 16 (53) 7 (33) 11 (48)

Female sex, n (%) 12 (40) 9 (43) 16 (70)

Days from
symptom onset
to admission,
median (range)

4 (1–6) 4 (1–6) NA

Days from
symptom onset
to sampling,
median (range)

6 (2–10) 6 (2–10) NA

Severity

CDSS, range a 7–8 9–12 NA

Comorbidities

None, n (%) 28 (93) 16 (76) 21 (91)

Renal disorderb,
n (%) 0

1 (5) 0

Prematurity,
n (%) 2 (7)

2 (9)
2 (9)

Genetic disorderc,
n (%) 0

1 (5)
0

Cardiac
disorderd, n (%)

0 1 (5) 0

Coinfections

None, n (%) 28 (93) 15 (71) 23 (100)

Viral, type, n (%) 1 (3) 4 (19) NA

Adenovirus, n 0 3

Rhinovirus, n 1 1

Bacterial, type,
n (%)

1 (3) 2 (10) NA

Staphylococcus, n 1 1

Pseudomonas, n 0 1

Clinical status

Pneumonia,
n (%)

5 (17) 7 (33) NA

PICU admission,
n (%)

0 15 (71) NA ****
Mod
vs Sev

(Continued)
TABLE 1 Continued

RSV children Healthy
children

Moderate Severe

N=30 N=21 N=23

Clinical status

Oxygen
requirement,
n (%)

6 (20) 13 (62) NA **
Mod
vs Sev

Mechanical
ventilation, n (%)

0 11 (52) NA ****
Mod
vs Sev

Laboratory

WBC, counts/
mm3, mean ± SD

9479 ± 3709 8909 ± 3523 10900 ± 3856

Lymphocytes, %,
mean ± SD

41.1 ± 14 38.9 ± 16 37.9 ± 10

CD4, %, mean
± SD

40.7 ± 14.9 37.3 ± 13.1 40.1 ± 12.4

CD19, %, mean
± SD

29.6 ± 9.6 30.4 ± 10.4 23.5 ± 12.9
frontie
CDSS, clinical disease severity score; NA, not applicable; PICU, pediatric intensive care unit;
RSV, respiratory syncytial virus; WBC, white blood cells. aCDSS was calculated using the
modified Tal score (0–5 mild, 6–8 moderate, and 9–12 severe); b renal insufficiency; cDown
syndrome; dCongenital heart disease. Fisher’s exact test, Chi-Square test or Kruskall-Wallis
test followed by Dunn’s multiple comparison test were used. Only significant p values are
shown. **p<0.01 ****p<0.0001.
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purified through ultracentrifugation on a 35% sucrose layer at 4 °C,

followed by resuspension in DMEM 10% trehalose (Sigma-Aldrich).

The purified virus was stored at -80°C until use.
2.5 ELISA

To quantify plasma levels of PreF RSV protein-specific IgG

antibodies, we conducted an indirect ELISA following established

procedures (4). Nickel-coated 96-well plates (Pierce) were overnight

coated at 4°C with 2.5 mg/mL PreF protein (SC-TM, generously

provided by Dr. Mark E. Peeples). After blocking, plasma samples

were diluted 1:3,000 in blocking buffer and incubated for 2 hours at

RT. Following washing steps, plates were incubated for 1 hour at RT

with biotinylated anti-human IgG (1:20,000, Jackson

Immunoresearch) and streptavidin-HRP for 30 minutes at RT.

Then, TMB Substrate (BD Biosciences) was applied, and

absorbance was measured at 450 nm. Samples were normalized to

a calibration curve of intravenous immunoglobulin (IVIg, 50 mg/

mL, Laboratorio de Hemoderivados, UNC) and expressed as

arbitrary units. Plasma levels of P2X7R soluble form (sP2X7R,

Cusabio) and IL-21 (Biolegend) were determined following the

respective manufacturer’s instructions.
2.6 Neutralization assay

Neutralization assays were performed as previously described

(30, 31). Briefly, plasma samples were heat-inactivated (56°C for 30

minutes) and subjected to serial dilutions (1/2 to 1/1024). These

dilutions were then incubated at 37°C for 90 minutes in the presence

of purified RSV (MOI=0.02) in DMEM with 2% FCS. The resulting

mixtures were deposited onto 96-well plates, and 100 ml of 2x105

HEp-2 cells were added. After 4 days, cells were fixed with 4%

paraformaldehyde (Sigma-Aldrich) at 4°C for 20 minutes and stained

with crystal violet solution in methanol (Sigma-Aldrich). Absorbance

at 585 nm was measured using a SpectraMax i3 plate reader

(Molecular Devices) with 80 reads per well. The IC50 was calculated.
2.7 ATP measurement

ATP levels in plasma, NPA, and supernatant culture were

quantified using the CellTiter-Glo reagent (Promega) following

the manufacturer’s instructions by luminometry (SpectraMax i3X,

Molecular Devices) (32, 33).
2.8 Real-time quantitative RT-PCR

RNA fromNPAs was extracted using the Chemagic Viral DNA/

RNA kit following the manufacturer’s instructions (PerkinElmer).

RT-qPCR was conducted using the SARS-CoV-2 PLUS ELITe

MGB® Kit (ELITechGroup) on a CFX96 BioRad system.
Frontiers in Immunology 04
Detection of RSV (A and B) RNA was performed with human

RNase P serving as an endogenous internal control. Samples were

deemed positive when cycle threshold values (Ct) were below 38.
2.9 Cell culture

Freshly isolated PBMCs were used in all the experiments

performed. To assess ATP release by cells, PBMCs at a concentration

of 5x106/mL were stimulated with anti-CD2/CD3/CD28 coated beads

(0.3 mg/mL, Miltenyi Biotec) for 5 minutes, and the supernatant was

collected. For apoptosis testing, PBMCs at 1x106/mL were cultured for

24 hours in the absence or presence of 2’(3’)-O-(4-benzoylbenzoyl)

ATP (300 µM, BzATP, P2X7R agonist, Sigma-Aldrich) and/or KN-62

(1 µM, P2X7R antagonist, Sigma-Aldrich). For exploring the

proliferative response, 1x106/mL PBMCs stimulated with anti-CD2/

CD3/CD28 coated beads (0.75 mg/mL) were cultured for 3 days, with

or without BzATP (100 mM) and/or KN-62 (1 µM). For quantifying IL-

21 production, 1x106/mL PBMCs were treated or not with BzATP (100

mM) and/or KN-62 (1 µM) for 18 hours. Subsequently, cells were

stimulated with 50 ng/mL PMA and 1 mg/mL ionomycin (Sigma-

Aldrich) in the presence of monensin (Biolegend) for 5 hours. Doses

for BzATP and KN-62 were selected based on titration curves (28, 32).

All experiments were analyzed by flow cytometry.
2.10 Flow cytometry

PBMCs (1x106 cells) were stained at RT for 20 minutes and

subsequently washed with PBS containing 1% BSA. The following

monoclonal antibodies were used: anti-CD4 (Brilliant Violet 711,

BD Biosciences), anti-CD45RA (FITC, Biolegend), anti-CXCR5

(Brilliant Violet 421, Biolegend), anti-PD-1 (Brilliant Violet 510,

Biolegend), anti-ICOS (APC, Biolegend), anti-CD19 (APC-Cy7,

Biolegend), anti-CD38 (PerCP, Biolegend), anti-CD27 (PE, BD

Biosciences), anti-P2X7R (Alexa Fluor 647, Santa Cruz) and

AnnexinV (FITC, Biolegend). For IL-21 detection, cells were fixed

and permeabilized using Cytofix/Cytoperm and Perm/Wash buffer

(BD Biosciences), followed by staining with an anti-IL-21 antibody

labeled with PE (BD Biosciences). For Ki-67 detection, a similar

procedure was followed using an anti-Ki-67 antibody labeled with

FITC (BD Biosciences) and the BD Pharmingen™ Human FOXP3

Buffer set (BD Biosciences) for fixation and permeabilization. Data

were acquired using a Northern Lights (Cytek) flow cytometer and

analyzed with FlowJo 10.6.2.
2.11 Statistical analysis

Clinical characteristics were summarized using descriptive

statistics. Categorical variables are reported as numbers and

percentages. Quantitative variables are reported as medians and

interquartile ranges and presented as medians and minimum to

maximum in the figures. The normality of experimental data was
frontiersin.org
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evaluated by the Shapiro-Wilk test. Two groups were compared

using the Wilcoxon signed-rank test or Mann-Whitney U test.

Three or more groups were compared using the Friedman test or

Kruskall-Wallis test followed by Dunn’s multiple comparison test

(the method used is stated in the figure legends). Proportions were

compared using the Fisher’s exact test and Chi-Square test.

Correlation between two continuous variables was calculated

using a Spearman correlation test. To try a multivariate approach,

we conducted a logistic regression model with the severity of disease

as dependent variable and including age, gender, cTfh frequency,

and plasma levels of ATP and sP2X7R as independent variables.

The regression model was implemented in the R environment (R

Core Team, 2021). Statistical significances are indicated in the

figures by asterisks as follows *p<0.05, **p<0.01, ***p<0.001 or

****p<0.0001. Analysis and visualizations were performed using

GraphPad Prism.v.8 (GraphPad Software) and SPSS software v.19.0

(SPSS Corp).
3 Results

3.1 Plasma levels of IgG antibodies directed
to RSV are lower in children with
severe disease

The levels of IgG antibodies targeting RSV were examined in

hospitalized children due to moderate and severe RSV infection

aged 1 to 23 months. No children with mild disease were included.

Blood samples were collected within 1–4 days after admission. Our

analysis revealed that the titers of IgG antibodies directed to the

PreF protein of RSV were significantly lower in children with severe

disease compared to those with moderate disease (p<0.01, see

Figure 1A). Additionally, we investigated the plasma neutralizing

activity against RSV. It was observed that 96% (n=25) of children
Frontiers in Immunology 05
with moderate disease and 75% (n=15) of children with severe

disease were positive for the presence of plasma neutralizing

antibodies (p<0.05; Figure 1B, left). Severe cases not only

exhibited a decreased rate of seropositivity but also showed lower

titers of neutralizing antibodies (p<0.05, Figure 1B, right).
3.2 Children with severe RSV infection
exhibit a diminished frequency of
circulating follicular helper T cells and
plasmablasts along with lower plasma
levels of IL-21

To investigate potential defects in the Tfh cell compartment

associated with RSV infection, we initially examined the frequency

of CXCR5+ cTfh cells (CD4+CD45RA-CXCR5+ T cells), as a

correlate of lymph node Tfh cells (11). The gating strategy is shown

in Figure 2A, left. The frequency of CD4+ T cells was comparable

among children with moderate or severe conditions and healthy

donors (Table 1, Supplementary Figure 1). Our results revealed a

decreased frequency of cTfh cells in RSV-infected children, with those

with severe disease displaying the lowest percentages (p<0.001 and

p<0.0001 for moderate and severe disease, respectively, vs healthy;

p<0.001 for moderate vs severe disease; Figure 2A, right). Similar

findings were observed when assessing the frequency of activated cTfh

cells, defined as CD4+CD45RA-CXCR5+PD-1+ICOS+ cells (p<0.05

and p<0.01 for moderate and severe disease, respectively, vs healthy;

p<0.05 for moderate vs severe disease; Figure 2B, left). Representative

dot plots are presented in Figure 2B (right). Additionally, a consistent

trend was noted in the analysis of plasma IL-21 levels (p<0.001 and

p<0.0001 for moderate and severe disease, respectively, compared to

healthy; p<0.05 for moderate vs severe disease; Figure 2C). We then

analyzed the circulating B cell compartment. There were no statistical

differences in the frequency of B cells among children with moderate or
BA

FIGURE 1

Antibody response in children with moderate and severe RSV infection. (A) Plasma levels of IgG antibodies directed to PreF protein of RSV of
moderate (n=26) and severe (n=20) RSV infected infants quantified by ELISA. (B) Left: Bar graphs showing the percentage of positive samples for
neutralizing activity against RSV (moderate, n=26 and severe, n=20). Right: Neutralization antibody titers against RSV determined by the reciprocal
IC50 in plasma from moderate and severe RSV infants. Dotted line indicates the limit of detection value. Median and min to max of n donors are
shown in A, B (right). P values were determined by Fisher’s exact test and Mann-Whitney U test. *p<0.05, ** p<0.01. UA., arbitrary units. Moderate
(green circle), severe (blue circle). Negative (white square), positive (purple square).
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severe RSV and healthy donors (Table 1, Supplementary Figure 1).

Lastly, we examined the frequency of plasmablasts, characterized by

CD19+CD27hiCD38hi phenotype, as illustrated in Figure 2D (left).

While plasmablast frequency was diminished in RSV-infected children

compared to healthy counterparts, no significant differences were

observed between children with severe and moderate infections

(p<0.05; Figure 2D, right).
Frontiers in Immunology 06
3.3 Children with severe disease show
increased levels of extracellular ATP and
P2X7R expression on cTfh

Previous studies have indicated that Tfh cells express

heightened levels of P2X7R on the plasma membrane, rendering

them susceptible to cell death upon exposure to ATP (23, 34).
B

C D

A

FIGURE 2

Frequency of cTfh cells and plasmablasts in RSV and healthy children. (A) Left: Gating strategy of cTfh cells defined as CD4+CD45RA-CXCR5+ cells.
Right: Frequency of cTfh cells in healthy children (n=24) and RSV children (moderate, n=25 and severe, n=17) analyzed by flow cytometry. (B) Left:
Frequency of activated cTfh cells defined as CD4+CD45RA-CXCR5+PD-1+ICOS+ cells in healthy children (n=21) and RSV children (moderate, n=25
and severe, n=11) analyzed by flow cytometry. Right: Representative dot plots of a donor from each cohort is shown. (C) Plasma levels of IL-21 in
healthy children (n=22) and RSV children (moderate, n=25 and severe, n=15) quantified by ELISA. (D) Left: Gating strategy for plasmablasts is shown.
Right: Frequency of plasmablasts defined as CD19+CD27hiCD38hi cells in healthy children (n=14) and RSV children (moderate, n=14 and severe,
n=10) analyzed by flow cytometry. Median and min to max of n donors are shown in A (right), B (left), C, D (right). P values were determined by
Kruskall-Wallis test followed by Dunn’s multiple comparison test and Mann-Whitney U test. *p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001.
Moderate (green circle), severe (blue circle), healthy (white circle).
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Consequently, we investigated whether the alterations observed

in cTfh cells, as detailed above, were associated with increased

extracellular ATP levels. Our analysis revealed elevated plasma ATP

levels in RSV-infected children compared to healthy donors, with

severe children exhibiting the highest values (p<0.05 and p<0.0001

for moderate and severe disease, respectively, vs healthy; p<0.01 for

moderate vs severe disease; Figure 3A, left). Furthermore, indicative

of T cell activation during RSV infection, we observed that upon

stimulation, PBMCs from infected children released higher

amounts of ATP compared to healthy children, with the most

pronounced production observed in patients with severe disease

(p<0.05 and p<0.001 for moderate and severe disease, respectively,

vs healthy; p<0.05 for moderate vs severe disease; Figure 3A, right).

Analysis of NPA samples revealed that children with severe RSV

infection exhibited higher viral loads (p<0.05; Figure 3B, left) and

elevated ATP levels (p<0.0001) compared to those with moderate

infection (Figure 3B, middle). Notably, an inverse relationship

between RSV Ct values and ATP concentrations was observed in

NPA samples (Figure 3B, right).

The P2X7 receptor subtype is the most critical regulator of T cell

development and function among the P2X family members (35).

Our initial observations revealed a significant increase in P2X7R

expression on CD4+ T cells from children with RSV compared to

controls (p<0.05 and p<0.01 for moderate and severe disease vs

healthy; Figure 3C). In addition, we observed higher frequencies of

cTfh P2X7R+ cells in children with both moderate and severe

disease compared to healthy controls (p<0.05 for moderate disease

and p<0.01 for severe disease vs. healthy controls). Of note, the

increase in P2X7R expression was significantly greater in children

with severe RSV related to those with moderate disease (p<0.05,

Figure 3D, left). Representative dot plots are illustrated in Figure 3D

(middle). Moreover, a positive correlation was established between

the percentage of P2X7R+ cTfh cells and plasma ATP levels (r=0.56,

p<0.001; Figure 3D, right).

It is well known that full-length P2X7R can be released from

immune cells into the circulation during inflammatory conditions,

by proteolytic cleavage or associated with microvesicles derived

from the membrane of different cell types (36, 37). We observed

elevated levels of sP2X7R in the plasma of children with moderate

disease compared to healthy donors, but such elevation was not

observed in the plasma of children with severe infection (Figure 3E,

left). Moreover, higher levels of P2X7R soluble form were detected

in NPA samples from children with moderate disease compared to

those with severe disease (p<0.001; Figure 3E, right).
3.4 P2X7R stimulation modulates the cTfh
cell compartment in RSV infected children

Considering both the fact that P2X7R stimulation by ATP in

Tfh cells promotes cell death and our own results indicating

increased expression of P2X7R in cTfh cells from children with

severe infection, we investigated whether Tfh cells from these

children exhibited heightened susceptibility to cell death upon

P2X7R stimulation. For this purpose, PBMCs obtained from

children with moderate or severe disease were exposed or not, for
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24 hours, to BzATP (300 µM), a potent P2X7R agonist, in the

absence or presence of the P2X7R antagonist KN-62 (28, 32).

Following treatment, the cells were stained with AnnexinV. We

observed a similar increase in apoptosis of cTfh cells in both groups

of children upon exposure to BzATP, an effect prevented by the

addition of KN-62 (p<0.01 and p<0.05 for BzATP vs untreated and

BzATP vs BzATP plus KN-62, respectively; Figure 4A, left).

Representative histograms are shown in Figure 4A (right).

Consistent with these observations, we found that the

proliferative response of this cell subset induced by TCR-

stimulation was substantially lower in the presence of BzATP

(p<0.01), in both moderate and severe disease, and that the

addition of KN-62 partially rescued the proliferative response

(p<0.05; Figure 4B, left). Remarkably, the proliferative response of

cTfh cells upon TCR-stimulation was reduced in children with

severe disease respect to children with moderate disease (p<0.05).

Representative dot plots are shown in Figure 4B (right). Finally, we

investigated whether the production of IL-21, primarily mediated

by cTfh cells, was affected by BzATP. A significant inhibition was

observed (p<0.05 and p<0.001 for moderate and severe disease,

respectively), partially rescued by KN-62 (p<0.05 and p<0.01 for

moderate and severe disease, respectively; Figure 4C, left).

Importantly, we observed a more significant decreased of IL-21 in

children with severe disease compared to those with moderate

symptoms (p<0.05). Representative dot plots are shown in

Figure 4C (right).
3.5 Frequency of cTfh cells, plasma levels
of sP2X7R, and ATP are related to
disease severity

Significant gaps persist in our understanding of biomarkers that

define severe disease and predict clinical outcomes during RSV

infection. Our findings reveal a negative correlation of CDSS with

both cTfh cell frequency (r= -0.47, p<0.001; Figure 5A, left) and

sP2X7R plasma levels (r= -0.47, p<0.001; Figure 5A, right).

Conversely, CDSS positively correlates with ATP levels in both

plasma (r=0.53, p<0.0001; Figure 5B, left) and NPA (r=0.58,

p<0.0001; Figure 5B, right). To compare disease severity as

outcome, we performed a logistic regression analysis adjusting for

age, gender, cTfh frequency, and plasma levels of sP2X7R and ATP

as independent variables. This logistic regression model (n=42)

suggested that severity of disease is associated with cTfh cell

frequency (B=-0.294, p<0.05) and plasma ATP levels (B=0.877,

p<0.01, Supplementary Table 1).
4 Discussion

In this study, we present findings indicating that acute RSV

infection in children is linked to a decline in the frequency of cTfh.

Moreover, changes in the activation state of cTfh during RSV infection

are demonstrated by a reduced percentage of PD-1+ICOS+CXCR5+

cTfh in infected children compared to healthy donors. Interestingly,

both cTfh and activated cTfh cell frequencies reach their lowest levels
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FIGURE 3

Extracellular ATP levels and P2X7R expression in RSV and healthy children. (A) Left: Levels of ATP in plasma from healthy children (n=21) and RSV
children (moderate, n=25 and severe, n=18) measured by luminometry. Right: PBMCs (5x106/mL) from healthy children (n=8), and RSV children
(moderate, n=16 and severe, n=10) were stimulated with anti-CD2/CD3/CD28 coated beads (0.3 mg/mL) for 5 minutes. Levels of extracellular ATP
were measured in the supernatant by luminometry. (B) Left: RSV Ct value distribution in NPA from moderate (n=12) and severe (n=16) RSV children
quantified by RT-qPCR. Middle: Levels of ATP in NPA from moderate (n=16) and severe (n=26) RSV children measured by luminometry. Right: Graph
showing the correlation between levels of ATP in NPA and RSV Ct values of RSV children (n=26). (C) Frequency of CD4+ T cells expressing P2X7R in
healthy children (n=7) and RSV children (moderate, n=10 and severe, n=11) analyzed by flow cytometry. (D) Left: Frequency of cTfh expressing
P2X7R in healthy children (n=7) and RSV children (moderate, n=10 and severe, n=11) analyzed by flow cytometry. Middle: Representative dot plots of
P2X7R expression in a donor of each cohort is shown. Right: Graph showing the correlation between levels of ATP in plasma and the frequency of
cTfh P2X7R+ cells of RSV and healthy children (n=28). (E) Levels of P2X7R soluble form in plasma (left; healthy children, n=11, moderate, n=18 and
severe, n=21) and NPA (right; moderate, n=13 and severe, n=17) quantified by ELISA. Median and min to max of n donors are shown in A, B (left and
middle), C, D (left) and E. P values were determined by Kruskall-Wallis test followed by Dunn’s multiple comparison test, Mann-Whitney U test and
Spearman correlation test. *p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001. Non-severe (green circle), severe (blue circle), healthy (white circle).
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in children with severe infection, contrasting with those withmoderate

infection. Consistent with these observations, plasma levels of IL-21

were found to be diminished in infected children compared to healthy

donors, with the lowest levels detected in children with severe

infection. Tfh cells provide help to B cells, supporting the formation
Frontiers in Immunology 09
of germinal centers and promoting the production of high affinity IgG

antibodies and memory B cells (11). While typically found in

secondary lymphoid organs, circulating Tfh (cTfh) cells can also be

detected in human blood. Sequencing of their TCR transcripts reveals

significant clonal overlap with tonsillar Tfh cell subsets, providing
B

C

A

FIGURE 4

Modulation of viability and function of cTfh cells via P2X7R stimulation during RSV infection. (A) Left: PBMCs (1x106/mL) from RSV moderate (n=9)
and severe children (n=8) were incubated with BzATP (300 µM), BzATP plus KN-62 (1µM) or nontreated for 24 hours. Percentage of apoptosis of
cTfh cells was analyzed by flow cytometry. Right: Representative histograms showing Annexin V+ cTfh cells in a donor of each cohort are depicted.
(B) Left: PBMCs (1x106/mL) from RSV moderate (n=10) and severe children (n=8) were stimulated with anti-CD2/CD3/CD28 coated beads (0.75 mg/
mL) and treated or not with BzATP (100 mM) and/or KN-62 (1µM) and cells were culture for 3 days. Frequency of cTfh Ki-67+ cells was evaluated by
flow cytometry. Right: Representative dot plots showing Ki-67+ cTfh cells in a donor of each cohort are shown. (C) Left: PBMCs from RSV moderate
(n=9) and severe children (n=10) were treated or not with BzATP (100 mM) and/or KN-62 (1µM) for 24 hours. Afterward, were re-stimulated with
PMA and Ionomycin in the presence of monensin for 5 hours. Percentage of cTfh IL21+ cells were analyzed by flow cytometry. Right: Representative
dot plots showing IL-21+ cTfh cells in a donor of each cohort are depicted. Mean ± SEM of n donors are shown in A (left), B (left) and C (left).
P values were determined by Wilcoxon, Friedman test followed by Dunn’s multiple comparison test and Mann-Whitney U test. *p<0.05, ** p<0.01,
*** p<0.001. Moderate (green squares), severe (blue squares).
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valuable insights into lymphoid tissue responses (13). The frequency

and phenotype of cTfh cell often undergo alterations under viral

infections. For instance, a subset of circulating memory PD-1+CXCR5

+CD4+ T cells has been found to correlate with the development of

broadly neutralizing antibodies against HIV in a large cohort of

individuals living with HIV (15). Moreover, this subpopulation has

been implicated in persistent HIV-1 transcription in treated aviremic

individuals (16). Children undergoing the acute phase of measles

infection also exhibited an abnormal expansion of cTfh cells, which

did not correlate with neutralizing IgG antibody levels (38). During

the critical phase of Dengue Fever, a significant activation of cTfh cells

and a positive correlation with plasmablasts have been noted (19).

Finally, our recent findings indicate a poor and delayed antibody

response associated with a low frequency of cTfh in children with

severe COVID-19 (20).

Despite the pivotal role that play neutralizing antibodies in

controlling RSV infection, there has been limited exploration of the

Tfh cell compartment’s function during this infection. Remarkably, a

recent study using a murine RSV infection model reported Tfh

dysfunction characterized by reduced IL-21 production and

diminished IL-21 receptor expression. The authors also demonstrated
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that blocking PD-L1 expressed by dendritic cells resulted in enhanced

IL-21 production by Tfh cells, reduced lung RSV load and disease

severity, and an overall improvement in the anti-RSV humoral

response (39). Our findings align with these results and suggest a

compromise in the Tfh compartment during human RSV infection.

The dysfunction in the Tfh compartment does not seem to be a

distinctive feature exclusive to RSV infection. Indeed, serum IL-21

levels, as well as the frequency of IL-21+ cTfh cells, were lower in

patients infected with HCV compared to healthy individuals.

Intriguingly, it has been shown that low frequencies of IL-21+

cTfh are associated with an exhausted phenotype in CD8+ T cells

during chronic HCV infection (40). Furthermore, examination of

postmortem thoracic lymph nodes and spleen from individuals

with acute SARS-CoV-2 infection revealed a reduced frequency of

Bcl-6+ Tfh cells and the absence of germinal centers (41).

Additionally, a recent study has shown that the delayed

development of virus-specific Tfh cells correlates with disease

severity in COVID-19 patients (42). Similarly, a dysfunctional

antigen-specific Tfh cell compartment with an altered IL-21/IL-2

axis has been observed in individuals with impaired influenza

vaccine responses (18).
B

A

FIGURE 5

Relationship between disease severity and cTfh and purinergic signaling components. Graphs showing correlations between CDSS and frequency of
cTfh cells (A left), P2X7R soluble form plasma level (A right), plasma ATP level (B left), NPA ATP level (B right) of RSV infected children (n=42).
Spearman correlation test. CDSS, clinical disease severity score.
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Extracellular nucleotides and purinergic receptors play crucial

roles in various cellular processes during viral infections, serving

multiple functions. They can exert potent antiviral effects by

enhancing interferon signaling. For instance, extracellular ADP, by

activating the P2Y13 receptor, has been demonstrated to restrict the

replication of various viruses, including vesicular stomatitis virus,

herpes simplex virus 1, and murine leukemia virus (43). Furthermore,

studies have shown the involvement of the P2X7 receptor in

controlling Dengue virus infection (44, 45). However, in certain

scenarios, their activity can contribute to hyperinflammatory

responses and disease severity, leading to adverse outcomes, as

observed in influenza (46) and COVID-19 (33, 47). Lastly, viruses

such as HIV-1 use the purinergic system to favor their infection and

persistence within host cells (48).

Given that bronchiolitis induced by RSV infection is associated

with the sloughing and death of airway epithelial cells, along with the

induction of an acute inflammatory reaction promoting tissue injury

(49–51), we speculate that these processes might lead to the release of

extracellular nucleotides by stressed, damaged, or dying cells. This

release could enable the purinergic system to modulate the immune

response during RSV infection. In a murine model of RSV infection,

it was demonstrated that the infection of bronchoalveolar epithelial

cells induces the release of UTP. This UTP, acting through P2Y

purinergic receptors, leads to the development of bronchiolitis and

pneumonia (52). In this study, we provide the first demonstration

that plasma levels of ATP are elevated in children with RSV

compared to healthy children. Furthermore, we observed higher

levels of ATP in both plasma and NPA samples from patients with

severe infection compared to those with moderate infection. As

expected, we found a negative correlation between ATP levels and

RSV Ct values (RT-PCR) in NPA samples. The heightened

expression of the P2X7R on cTfh cells, coupled with the decrease

levels of its soluble form in plasma and NPA of children with severe

RSV, may suggest an up-regulation of this pathway leading to

prolonged stimulation and impairment of cTfh cells. P2X7R can be

released into the blood through proteolytic cleavage (53) and can also

be associated with microvesicles (36, 54). However, few studies have

investigated whether the levels of sP2X7R in plasma correlate with

disease severity. Garcia-Villalba et al. (37) demonstrated that plasma

levels of sP2X7R in COVID-19 patients are correlated with severe

disease. More recently, Vultaggio-Poma et al. (55) reported that

elevated sP2X7R levels in the early phases of COVID-19 predict

adverse clinical outcomes. They measured plasma levels of sP2X7R in

six subgroups of COVID-19 patients, including those with symptoms

at admission, those requiring transfer to the Pneumology Division,

those requiring ICU admission, those requiring mechanical

ventilation, patients who died during hospitalization, and patients

who died after hospital discharge. Elevated sP2X7R levels were found

in most of these subgroups, except in patients admitted to the ICU or

those who died after hospital discharge. Conversely, Di Vicenzo et al.

reported an inverse relationship between serum concentrations of

sP2X7R and levels of C-reactive protein, TNF-a, and IL-6 in obese

patients (56). Our results showed an increased expression of P2X7R

on the surface of cTfh cells from children with severe RSV, a

phenotype not associated with increased plasma levels of sP2X7R.
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Indeed, high levels of sP2X7R in both plasma and NPA samples were

found in patients with moderate disease but not in those with severe

disease. A deficiency in shedding mechanisms or in the transfer of

P2X7R could potentially explain the lower sP2X7R levels and the

exacerbated inflammation observed during severe RSV disease. Given

the limited information available, the pathophysiological significance

of P2X7R shedding and the mechanisms underlying this observation

remain to be elucidated.

Remarkably, upon stimulation with anti-CD2/CD3/CD28-coated

beads, PBMCs from infected children released higher levels of ATP

compared to healthy donors, with the maximum release observed in

PBMCs from children with severe disease. The involvement of the

ATP/P2X7R pathway in the modulation of Tfh compartment is

further supported by the increased frequency of P2X7R+ cTfh cells

in infected children. Additionally, the P2X7R agonist BzATP

demonstrated the ability to induce cTfh apoptosis and reduce the

expression of the proliferation marker Ki67 and IL-21 in cTfh from

infected children that were partially restored by the KN-62

antagonist. The positive correlation between disease severity and

ATP levels in plasma and NPA samples, coupled with the negative

correlation with cTfh frequency, suggests the potential involvement

of the ATP/P2X7R pathway in both modulating the antibody

response and promoting disease severity in children with RSV.

There are a number of limitations in our study. This study was

conducted in a specific region of our country, so we cannot assume

that our patient cohorts adequately represent the broader population

of the country. It is important to emphasize that our cohort did not

include any children under mild RSV infection. Additionally, the

small blood sample size collected from patients limited the ability to

perform multiple studies on the same specimen. We were also unable

to characterize the mechanism through which ATP might modulate

cTfh function in children infected with RSV. Finally, further studies

should address the pathological significance of sP2X7R levels.

These findings might be relevant not only for a comprehensive

understanding of the B cell response during RSV infection but also

for gaining insights into the production of neutralizing antibodies in

various infectious disease linked to tissue damage and the

extracellular release of ATP.
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