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As major components of the tumor microenvironment, both mesenchymal stem

cells (MSCs) and macrophages can be remodelled and exhibit different

phenotypes and functions during tumor initiation and progression. In recent

years, increasing evidence has shown that tumor-associated macrophages

(TAMs) play a crucial role in the growth, metastasis, and chemotherapy

resistance of hematological malignancies, and are associated with poor

prognosis. Consequently, TAMs have emerged as promising therapeutic

targets. Notably, MSCs exert a profound influence on modulating immune cell

functions such as macrophages and granulocytes, thereby playing a crucial role

in shaping the immunosuppressive microenvironment surrounding tumors.

However, in hematological malignancies, the cellular and molecular

mechanisms underlying the interaction between MSCs and macrophages have

not been clearly elucidated. In this review, we provide an overview of the role of

TAMs in various common hematological malignancies, and discuss the latest

advances in understanding the interaction between MSCs and macrophages in

disease progression. Additionally, potential therapeutic approaches targeting this

relationship are outlined.
KEYWORDS
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Introduction

Mesenchymal stem cells (MSCs) are a type of non-hematopoietic stem cells that can

self-renew and undergo multilineage differentiation. As an important component of the

bone marrow microenvironment (BMME), MSCs play a crucial role in regulating the

proliferation and differentiation of hematopoietic cells (1, 2).

Moreover, extensive research has indicated that MSCs significantly influence the

growth of various tumors (3, 4) (including hematological malignancies) and actively

participate in pathological and physiological processes, as well as disease progression in

leukemia, multiple myeloma (MM), and other related disorders (5, 6). In addition to
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providing direct support to tumors, MSCs also possess a diverse

range of immunomodulatory properties that can alter the local

tissue microenvironment through direct cellular interaction or

secretion of various immune-related molecules including

transforming growth factor-b (TGF-b), stem cell growth factor

(SCF), prostaglandin E2 (PGE2), and interferon-gamma (IFN-g),
thereby facilitating tumor immune evasion and progression (7, 8).

As a crucial component of the immune system, macrophages

play a pivotal role in the tissue microenvironment and actively

participate in tumor growth and metastasis (9–12). Due to their

plasticity and diversity, macrophages have gradually gained

recognition for their potential applications in the treatment of

numerous diseases. However, macrophages within the tumor

microenvironment (TME), which are also referred to as tumor-

associated macrophages (TAMs), exhibit distinct phenotypic

characteristics and immune functions that are primarily

characterized by their immunosuppressive properties and

promotion of tumor growth (10, 13). They impede the clearance

of abnormal cancer cells by secreting immunosuppressive factors,

weakening T lymphocyte activity, and interfering with other

immune effector organs (14–17).

In recent years, there has been a growing focus on the study of

MSCs and macrophages in inflammatory microenvironments, bone

healing and gastrointestinal neoplasms (18–22). However, there is a

dearth of research focusing on the impact of the interaction between

MSCs and macrophages in the context of hematologic

malignancies. This article reviews the intricate interplay between

MSCs and macrophages within the microenvironment of

myeloid malignancies.
Biology of macrophages

Typically, macrophages originate from hematopoietic stem cells

in the bone marrow and develop into monocyte progenitors under

the stimulation of multiple colony-stimulating factor (multi-CSF)

and granulocyte-macrophage colony-stimulating factor (GM-CSF)

(23, 24). Monocyte progenitors further differentiate into

premonocytes and enter the bloodstream, where they differentiate

into mature monocytes and eventually migrate to tissues to

differentiate into tissue-specific macrophages. These include the

skeletal system (osteoclasts), the central nervous system (microglia),

the lungs (alveolar macrophages), the liver (Kupffer cells), and

connective tissue (histiocytes), as well as the spleen, gastrointestinal

tract, and peritoneum (25, 26). In recent years, with the development

of lineage tracing technology, it has been found that microglia and

some other tissue-resident macrophages originate from the yolk sac

during embryonic development independently of hematopoietic stem

cells (24).

Macrophages play an indispensable role in immune and

inflammatory processes due to their plasticity and diversity (13,

27, 28). In addition to their well-known phagocytic function and

antigen-presenting ability, macrophages possess other important

functions. First, as key participants in regulating immune responses,

they can secrete various cytokines such as tumor necrosis factor-a
(TNF-a), interleukin-1 (IL-1), IL-6, IL-12, IL-10, transforming
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growth factor-b (TGF-b) and chemokines (CXCL8 and CCL5), to

modulate the activities of other immune-related cells in the immune

system (29, 30). These secreted molecules can activate other

immune cells and promote effective local tissue defence reactions.

Second, macrophages are also involved in tissue repair and

regeneration processes (29, 30). In summary, macrophages within

wounds exhibit anti-inflammatory properties by producing anti-

inflammatory factors such as IL-10 and arginase 1 (Arg1), as well as

TGF-b, vascular endothelial growth factor (VEGF), and EGF. This

promotes the resolution of inflammation in the wound and

facilitates tissue remodelling, fibrosis, and healing.

In response to various environmental stimuli, particularly

under pathological conditions, macrophages exhibit diverse

functions and morphologies known as macrophage polarization

(31, 32). This crucial immune response process plays a pivotal role

in the defence against infections and elimination of aberrant cells.

Activated macrophages are divided into two major phenotypes:

classically activated macrophages (M1) and alternatively activated

macrophages (M2) (32). In simple terms, M1 macrophages are

stimulated with lipopolysaccharide (LPS), interferon-gamma (IFN-

g), GM-CSF, or TNF-a. They are characterized by the secretion of

cytokines such as IL-1b, IL-6, IL-12 and TNF-a. In addition, they

express high levels of major histocompatibility complex class II

(MHC-II), CD68 markers and the costimulatory molecules CD80

and CD86. Studies have shown that M1 macrophages can activate

inducible nitric oxide synthase (iNOS) to produce NO by

upregulating the expression of intracellular suppressor of cytokine

signall ing 3 (SOCS3). Thus, M1 macrophages exhibit

proinflammatory or antitumor effects (33). In contrast, M2

macrophages activated by IL-4, IL-13, or CSF-1 can express Arg,

TGF-b, IL-10, metalloproteinases, and other factors, thus playing

important roles in tissue repair, immune suppression, or

angiogenesis (33–35). In fact, M2 can be further divided into four

types: M2a, M2b, M2c and M2d. M2a macrophages are induced by

IL-4 and IL-13 and express high levels of mannose receptor

(CD206), IL-1 receptor antagonist (IL1Ra), and Arg1. IL1Ra can

inhibit the generation of M1 macrophages and has an anti-

inflammatory effect. Arg1 activates the arginine pathway to

produce ornithine, which is a precursor of polyamines and

collagen that contributes to the production of extracellular matrix

and promotes tissue repair. M2b is induced by immune complexes

and some Toll-like receptor (TLR) agonists, such as LPS, and

simultaneously produces anti- inflammatory and pro-

inflammatory cytokines, such as IL-10, IL-1b and IL-6. M2c is

induced by glucocorticoids and IL-10, which release a large amount

of IL-10, downregulate the production of inflammatory cytokines

and inhibit the immune response. It produces profibrotic TGF-b,
which plays an important role in the process of tissue remodelling.

Finally, M2d macrophages, which are induced synergistically by

Toll-like receptor (TLR) agonists and adenosine receptor agonists,

secrete IL-10 and VEGF, thereby promoting angiogenesis and

exhibiting a strong association with tumor growth. The latest

review by Lazarov et al. provides comprehensive insights into the

origin, characteristics, and functions of macrophages (36).

In addition to M1 and M2 macrophages, there is another

subgroup called TAMs. TAMs are generally considered M2-like
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1397005
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1397005
macrophages, which play a role in promoting tumor cell

proliferation, survival, infiltration and metastasis, as well as

facilitating tumor angiogenesis (13, 37). However, there is still

ongoing debate regarding the phenotypic characteristics of TAMs

and their functions within the TME. Some studies have demonstrated

that TAMs exhibit gene expression profiles resembling those of both

M1 and M2-like macrophages (38, 39). The presence of M1 and M2

TAMs has been observed throughout all stages of tumor

development. During the early stage, TAMs predominantly exhibit

a proinflammatory and antitumor phenotype (M1). However, as the

tumor progresses, TAMs gradually transition towards an anti-

inflammatory and protumor phenotype (M2), with an increased

abundance of M2 TAMs indicating a poor prognosis. However,

although this M1-M2 paradigm is dominant in TAMs biology, it is

an oversimplification that fails to describe the multitude of

macrophage states in tumors.

Currently, an increasing number of scholars contend that

TAMs do not exist in a stable form but rather exhibit distinct M1

or M2 phenotypes under the influence of external factors (13, 40).

Furthermore, both subsets of macrophages coexist within tumor

tissues and exert dual effects on tumor growth. In recent years,

research on macrophages has focused predominantly on solid

tumors, whereas investigations into hematological malignancies

have been relatively scarce. The subsequent discussion will delve

into a more comprehensive exploration of the role of macrophages

in hematologic malignancies (Figure 1).
Macrophages in leukemia

In contrast to solid tumors, hematological malignancies exhibit

a unique immune microenvironment. TAMs within the leukemia

microenvironment are also referred to as leukemic-associated

macrophages (LAMs). In recent years, there has been an

increasing focus on the role of LAMs in various types of

leukemia, including acute lymphoblastic leukemia (ALL), acute

myeloid leukemia (AML), chronic lymphocytic leukemia (CLL),

and chronic myeloid leukemia (CML) (9, 41–44).
Acute lymphoblastic leukemia

The role of TAMs in adult T-cell leukemia/lymphoma (ATLL)

was first proposed by Komohara (45), which led to beginning of

research on macrophages in leukemia. This study demonstrated

that the proportion of CD163+ macrophages is associated with

clinical prognosis and that this proportion is an independent factor

influencing prognosis. Through in vitro co-culture, it was observed

that CD163+ M2 macrophages significantly promoted the

proliferation of leukemia cells. The study also demonstrateda

significant positive correlation between CD204+ TAMs and the

Ki-67 labeling index in ATLL, thus suggesting the potential

involvement of CD204+ TAMs in ATLL cell proliferation (46). To

elucidate the intricate mechanisms underlying chemoresistance in

ATLL cells, an inhibitor targeting M-CSFR was used to inhibit the

interaction between macrophages and leukemia cells (47, 48). The
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findings demonstrated that administration of the M-CSFR inhibitor

triggered apoptosis in ATLL cells while concurrently suppressing

PD-1 ligand expression in lymphoma cells and macrophages.

There is evidence of organ and temporal specificity of

macrophages in a Notch1-induced mouse model of T-ALL. Their

distribution and phenotype can differ in the bonemarrow, spleen and

liver during the development of leukemia (49–51). LAMs have been

shown to stimulate T-ALL cell proliferation and enhance the

migratory activity of ALL cells. Furthermore, LAMs in the spleen

can exert a more pronounced proliferative effect than those in the

bone marrow. In addition, researchers also analyzed the subsets of

hepatic and peritoneal macrophages and the expression of

phenotype-related genes in T-ALL mice. In hepatic LAMs, the

majority of M1-associated genes, including CCL5, CXCL1, IL-12b,
iNOS, and TNF-a, exhibit increased expression during leukemia

progression. Conversely, the expression of CXCL11 and IL-1b
decreased. Furthermore, the expression of most M2-associated

genes, such as Arg1, CCL3, CCL17, CD206, IL-10, and TGF-b
decreases with the infiltration of leukemia cells, whereas the

expression of MMP9 and VEGFa increases in the advanced stages

of leukemia. Additionally, in peritoneal LAMs, the expression of

CD206, CXCL9 and iNOS initially increases and subsequently

decreases as the tumor progresses, whereas the expression of IL-1b
and IL-6 first decreases and then increases. These findings suggest

that the functional and phenotypic characteristics of LAMs are

influenced by tissue-specific microenvironments.

The B-cell leukemia cell line Nalm-6 can enhance the

generation of immunosuppressive dendritic cells and shift M1-

like macrophages towards a less proinflammatory phenotype

through bone morphogenetic protein 4 (BMP4) signaling (52).

Similarly, overexpressing BMP4 in ALL cells enhances the ability

of these cells to induce immunosuppressive dendritic cells and

favors the generation of M2-like macrophages with pro-

tumor characteristics.

To further understand the effect of the leukemia

microenvironment on the gene expression of LAMs, hierarchical

clustering analysis was used to analyze the gene expression

characteristics of LAMs in the bone marrow and spleen of T-ALL

and AML (53). The findings demonstrated that metabolic pathways

and the cell cycle were enriched in LAMs from the bone marrow

and spleen of mice with T-ALL. By analyzing various genes

associated with the M1/M2 phenotype, including iNOS, TNF-a,
CXCL10, CXCL9, TGF-b1, IL-12b and IL-6, researchers found that

spleen LAMs exhibited more M2 characteristics in T-ALL and AML

mice, whereas bone marrow LAMs displayed more M1 features.

Further investigation revealed that the IRF7-SAPK/JNK pathway,

rather than the STAT1 or STAT6 pathway, was crucial for the

different polarization of LAMs. Therefore, the targeting of the IRF7-

SAPK/JNK pathway to induce M1-like characteristics may

contribute to prolonging survival in leukemia mice. However,

further validation is required to determine whether the activation

of the IRF7-SAPK/JNK pathway also leads to increased M1

characteristics in human macrophages.

Hohtari et al. provided a comprehensive characterization of the

immune cell composition within the BMME at the time of adult B-

cell precursor ALL diagnosis (54). The proportion of M1
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macrophages in the bone marrow of ALL patients was lower than

that in healthy controls; in contrast, the proportion of M2

macrophages was greater.

By utilizing a Notch1-induced model of T-ALL in wild-type

(WT) and CCR2-/- mice, Yang et al. elucidated that LAMs originate

from peripheral blood mononuclear cells (PBMCs) (55).

Furthermore, they highlighted the role of the leukemic

microenvironment in recruiting an increased number of
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monocyte-derived LAMs with more M1-associated features. In

the early stages of leukemia, a greater abundance of LAMs was

observed within the liver and spleen microenvironment.

Subsequent investigations demonstrated that CCR2-/- leukemia

mice exhibited a significant reduction in peripheral blood

leukemia cells, although no discernible difference was detected in

the bone marrow. Additionally, CCR2-/- leukemia mice displayed

less hepatosplenomegaly and fewer leukemia cells compared to WT
B

C

A

FIGURE 1

Schematic representation of the signals involved in the crosstalk between tumor cells and TAMs in leukemia (A), myeloma (B) and lymphoma (C).
Studies have demonstrated the significant impact of macrophages on various crucial pathways involved in the initiation and progression of leukemia,
myeloma and lymphoma, including anti-apoptosis and proliferation, immunosuppression, angiogenesis, extramedullary migration, tumor cell homing
and drug resistance. Tumor cell can induce a shift in monocyte polarization towards an inhibitory M2-like phenotype (mainly characterized by
upregulated CD206 and CD163 expression), thereby promoting their own survival.
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mice. Further comprehensive studies revealed that LAMs facilitate

the extramedullary distribution of leukemia cells through

modulation of the CCL8/CCL9-CCR1/CCR2 axis (55).

Importantly, blockade of both the CCR1 and CCR2 receptors

effectively inhibited the extramedullary infiltration of leukemia

cells while alleviating hepatosplenomegaly symptoms.

The aforementioned studies provide valuable insights into the

role of LAMs in ALL.However, further comprehensive investigations

are warranted to elucidate the underlying regulatory mechanisms

between leukemia cells and macrophages.
Acute myeloid leukemia

Approximately ten years ago, Mussai et al. initially elucidated

multiple mechanisms through which AML exerts immunosuppressive

effects (56). Initially, they reported the ability of AML blasts to inhibit

the growth of murine and human hematopoietic precursors in vitro,

thus revealing that this effect was mediated by the secretion of the

arginase II enzyme. Further investigation demonstrateda significant

enrichment of CD206+ monocytes in the BM of newly diagnosed AML

patients (56, 57). Moreover, studies have demonstrated that high

infiltration of M2 macrophages is significantly associated with an

unfavorable prognosis in AML patients (56–60). Thus, CD206,

which is a marker gene of M2 macrophages, has the potential to

emerge as a novel prognostic indicator for AML. In two independent

cohorts of AML patients, elevated expression levels of CD206 were

indicative of poor overall survival (OS) and event-free survival (EFS)

(56, 58). Similarly, they observed a significant upregulation of YM-1,

which is a mouse M2 marker, in Ly6C+ monocytes derived from

the BM of NOD-SCID mice that were transplanted with human

AML blasts (56). Co-culture experiments demonstrated that

AML cells and their culture supernatant could induce a shift in

monocyte polarization towards an inhibitory M2-like phenotype

(characterized by upregulated CD206 and CD163 expression),

consequently suppressing T-cell proliferation and establishing an

immunosuppressive microenvironment (56, 59, 61). These effects

were found to be dependent on arginase II activity, as the

administration of inducible nitric oxide synthase (iNOS) inhibitors

(NOHA and L-NMMA) or exogenous arginine significantly attenuated

CD206 expression in co-cultured macrophages while restoring T-cell

proliferation (56). Collectively, these findings confirm the capacity of

AML blasts to generate an immunosuppressive microenvironment

within the BM and PB, thereby promoting their own survival (53,

56, 61).

Subsequent investigations revealed that AML induces the

infiltration of AML-associated macrophages (AAMs) into the

bone marrow and spleen of mice, thereby promoting their

proliferation and accumulation in recipient mice (57). Similarly,

there was a significant increase in the proportion of

CD163+CD206+ AAMs in the bone marrow of AML patients.

Compared with those derived from nonleukaemic mice, bone

marrow-derived macrophages (BMDMs) derived from different

leukemia mice exhibited an enhanced ability to expand AML cells

in vitro (57). The extent of macrophage infiltration in vivo was

correlated with the survival rate of the mice. They found that
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growth factor independence 1 (Gfi1), which is a transcriptional

repressor, plays a crucial role in macrophage polarization and that

its loss prevents macrophage polarization to a pro-leukemic state,

thus resulting in an antitumor state, both in vitro and in vivo (57).

The findings presented in this study offer novel insights into

potential therapeutic strategies for the treatment of AML.

To elucidate the potential role of nonmalignant macrophages

derived from bone marrow in promoting chemotherapy resistance

in AML blasts, researchers have discovered that the majority of

granulocytes (CD11b+F4/80-Ly6G+) and monocytes (CD11b+F4/

80+CD169-) were eliminated following treatment with cytarabine

and doxorubicin (60). However, a subset of macrophages

characterized by CD11b-F4/80+CD169+VCAM1+ expression

remained resilient to chemotherapy within the BMME. To further

investigate the possible role of these macrophages in the response of

AML blasts to chemotherapy, specific depletion of CD169+

macrophages was conducted in mice followed by treatment with

cytarabine and doxorubicin (60). The results showed that leukemia

mice depleted of CD169+ macrophages exhibited significantly

prolonged median survival compared to wild-type mice, which

was accompanied by notable reductions in leukemia burden

within both the blood and spleen. Furthermore, AML patients

with high expression of CD163 in macrophages have a shorter

survival period than those with low expression of CD163, whereas

the expression of CD68 has no significant effect on survival time

(53). This finding suggested that M2 macrophages, rather than total

macrophages, may contribute to a poor prognosis in AML patients.

Macrophages in the BM and spleen exhibit heterogeneity under

different microenvironmental influences. Specifically, compared

with BM macrophages, spleen macrophages exhibit more

functional characteristics associated with the M2 phenotype (53).

Furthermore, the level of IRF7 expression was greater in BM LAMs

than in spleen LAMs, thus indicating that IRF7 may be responsible

for the phenotypic differences between BM and spleen LAMs.

Similarly, in MLL-AF9-induced AML mice, peritoneal resident

macrophages also displayed an M2 phenotype (62). Subsequent

studies have confirmed that IRF7 can activate the SAPK/JNK

pathway in macrophages to promote their polarization towards

the M1 phenotype, thereby prolonging the survival time of leukemia

mice. Several studies have also demonstrated that the utilization of a

CSF1R inhibitor in combination with GM-CSF effectively induces

the polarization of pro-tumor M2 macrophages towards anti-tumor

M1 macrophages in the TME, thus reversing TAMs-induced tumor

resistance and promoting apoptosis of myeloblasts (61, 63). Moore

et al. initially proposed that LC3–associated phagocytosis of BM

macrophages serves as a major mechanism for mediating the

apoptosis of AML cells and can activate the stimulator of IFN

genes (STING) pathway in macrophages, thus enhancing their

phagocytic capacity and effectively suppressing AML growth (64).

These findings suggest that the elimination of macrophages may

lead to an increase in tumor burden in AML, which seems to

contradict the findings of previous studies. The observed

inconsistency may be attributed to the presence of diverse

macrophage subtypes in AML, each exhibiting distinct

mechanisms of action. Macrophages derived from AML exhibit

immunosuppressive and leukemogenic functions (59). Researchers
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have observed significant heterogeneity in macrophages among

AML patients, with a poor prognosis associated with a high

abundance of M2 macrophages. Furthermore, macrophages are

capable of driving the invasion of primary AML and acute

promyelocytic leukemia (APL) cells. These findings demonstrate

that AML-derived M2 macrophages drive leukemic transformation

by evading phagocytosis and enhancing mitochondrial metabolism.

Therefore, the targeting of mitochondrial energy production in M2

macrophages could impair their capacity to support AML blasts.

These results further highlight the heterogeneity of the macrophage

sub-population in AML.

Monocytic leukemia zinc-finger protein (MOZ) has been shown

to play an important role in the development and maintenance of

hematopoietic stem cells (HSCs), and its expression is significantly

reduced in patients with acute monocytic leukemia (AMoL) (65).

Further experiments showed that MOZ promoted the

differentiation of monocytes into macrophages and M1

polarization (65). In addition, MOZ knockdown increases the

resistance of AMoL cells to chemotherapy-induced apoptosis and

is closely associated with an unfavorable prognosis for

AMoL patients.
Chronic lymphocytic leukemia

TAMs in CLL are commonly referred to as nurse-like cells

(NLCs) because they have functions and characteristics similar to

those of nurse cells and exhibit high expression levels of CD68 and

CD163 (66–70). The number of CD68-positive NLCs was

significantly greater in the lymph nodes of CLL patients than in

those of controls, and increased CD68 expression was associated

with shorter overall survival (71)..

NLCs have been found to play a significant role in the

development and progression of CLL. These specialized cells,

which are typically present in the BMME, provide crucial support

to CLL cells by promoting their survival and protecting them from

chemotherapy-induced cell death (72).

Due to the expression of CD68 in non-myeloid cells, Boissard

et al. believe that using CD68 may overestimate the exact number of

NLCs (72). Therefore, they decided to use CD163 as the most

relevant marker for NLCs. They observed a significant increase in

the abundance of CD163+ cells within the TME during

chemotherapy, and there was a strong correlation between

elevated serum levels of soluble CD163 and unfavorable

prognostic markers. The findings from this study demonstrate,

for the first time, that aggressive CLL modulates the TME to

enhance monocyte differentiation into CD163+ cells.

Research has shown that NLCs from the blood of CLL patients

can activate the p44/42 MAPK signaling pathway within CLL cells

through the SDF-1a/CXCR4 pathway, thereby protecting CLL B

cells from apoptosis and promoting their survival in vitro (73).

When co-cultured with NLCs, CLL lymphocytes were not only able

to effectively escape spontaneous apoptosis; however, the presence

of NLCs significantly reduced the apoptosis induced by ibrutinib,

dexamethasone and chlorambucil (67, 74). Intriguingly, under

NLC-depleted culture conditions, most CLL lymphocytes died
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within 10 days. However, when co-cultured with NLCs, CLL cells

survived for up to 14 weeks (74). The investigators observed an

increasein the expression of genes encoding anti-apoptotic proteins

such as BCL2 and SURVIVIN in co-cultured CLL lymphocytes.

Additionally, these cells exhibited alterations in gene expression

related to cell cycle regulation, differentiation and transcription

processes. Conversely, genes associated with promoting apoptosis,

as well as growth factor/chemokine receptors were downregulated

in the context of co-culture (74). The interaction between NLCs and

CLL has been extensively evaluated, thus demonstrating that CLL

cells stimulate the differentiation of NLCs, whereasNLCs

reciprocally secrete factors that recruit CLL cells and enhance

their survival (71, 75, 76). NLCs protect CLL cells against

apoptosis through various cytokines, including a proliferation

inducing ligand (APRIL), B-cell activating factor (BAFF),

CXCL12, CD31, Plexin B1, CCL3 and CCL4 (73, 77–80). This

crosstalk appears to be independent of direct cell-cell contact, which

is not required for pro-survival signaling in NLCs (66, 74, 77).

However, it should be noted that it has been proposed that in vitro

CD14+ cell differentiation into NLCs requires contact with CLL cells

(68), which seems to contradict the findings of previous studies.

Future studies are needed to gain insight into the mechanisms

underlying the behavior of NLCs. Targeting therapies against these

cells will hopefully overcome the pro-survival effects of the TME in

CLL patients (81, 82).
Chronic myeloid leukemia

K562-derived exosomes can significantly up-regulate the

mRNA levels of TNF-a and IL-10 in macrophages, significantly

downregulate the mRNA level of the INOS gene, and promote the

polarization of macrophages to TAMs (83).

The expression levels of CD68, CD163 and CD206 in the bone

marrow of CML patients were significantly elevated compared to

those in the control group (84). Moreover, the positive expression of

these molecular gradually increased concomitant with disease

progression. CML red pulp macrophages (RPMs) are able to

produce a variety of cytokines and chemokines such as IL-10,

CCL3, CCL4, CCL5, CXCL1, TNF-a, and SCF, to sustain leukemia

initial cells (LICs) (85). RPMs constitute the microenvironment of

splenic leukemia and induce LICs quiescence. The depletion of

macrophages leads to reduced spleen weight, diminished total

leukemic cell count, and significantly decreased spleen leukemia

burden. In vitro experiments have demonstrated that RPMs

substantially enhanced the colony formation ability of LICs while

reducing their sensitivity to imatinib treatment.

Macrophages can protect CML cells from natural killer (NK)

cell attack in a state of chronic infection and inflammation. The co-

culture of macrophages (Mj), NK cells, and CML cells was

employed to elucidate the regulatory effects exerted by

macrophages and NK cells on CML cells activity. The data

revealed an upregulation in the expression of CD107a, which is a

marker indicative of NK cells activation, within the NK+CML co-

culture system, thereby contributing to a reduction in the CML

survival rate. Moreover, the proportion of CD107a+ NK cells within
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the Mj+NK+CML co-culture system was lower than that within

the NK+CML co-culture system, thus suggesting that macrophages

inhibit NK cells degranulation and cytotoxicity and consequently

promote CML cells survival. Ultimately, research has confirmed

that macrophages exert a protective effect on CML by modulating

the expression levels of CD16 on NK cells membranes, thereby

inhibiting NK cells degranulation and cytotoxicity (86).
Macrophages in multiple myeloma

At present, the role of TAMs in the growth of MM has been

extensively explored (87–89). Numerous studies have demonstrated

the significant impact of macrophages on various crucial pathways

involved in the initiation and progression of MM, including tumor

cell homing (90, 91), proliferation and survival (92, 93),

immunosuppression (94, 95), angiogenesis (96, 97), and drug

resistance (98, 99). MM cells can secrete various chemokines, such

as CCL2, CCL5, CXCL1, CXCL12 and CXCL13, which specifically

recruit peripheral blood monocytes to promote their homing,

proliferation, and polarization (100, 101). CD206+MERTK+ M2-

like macrophages were significantly increased in the bone marrow

of MMmice, leading to a significant increase in CXCL13 levels (100).

Specifically, MM cells upregulate the expression of CXCL13 in

macrophages through the BTK signaling pathway, while

macrophages promote the expression of CXCL13 within MM cells

through the TGF-b signaling pathway (100). High levels of CXCL13

can promote the proliferation of MM cells and the polarization of M2

macrophages and are potentially associated with extramedullary

involvement in MM. Li et al. performed single-cell RNA

sequencing on samples from various stages of MM and

characterized the reprogramming of macrophages during disease

progression (102). They also emphasized the strong correlation

between CD47 and macrophage inhibitory factor (MIF) expression

with disease advancement and unfavorable prognosis. By employing

a dual-targeting TAMs strategy involving anti-CD47 antibodies and

MIF inhibitors, they successfully stimulated phagocytosis and

facilitated TAMs repolarization, thereby exerting potent anti-

tumor effects.

Research findings have indicated that the accumulation of total

CD68+ macrophages and the upregulation of CD206+ M2

macrophages in the bone marrow are associated with an

unfavorable prognosis in patients with MM (103, 104).

Furthermore, the clustering of CD163+ M2 macrophages is also

correlated with shorter overall survival and is considered an

independent adverse prognostic factor (105). Subsequent studies

have corroborated these results, as elevated levels of soluble CD206

(sCD206) and CD163 (sCD163) in serum also serve as indicators of

poorer overall survival (106, 107).

MM is an incurable cancer that relies on signals obtained from

the BMME to promote survival and proliferation (108, 109).

Initially, IL-6 was believed to be secreted by malignant plasma

cells (110). However, subsequent research has indicated that IL-6

primarily originates from BM-MSCs within the niche and plays a

crucial role in the survival and proliferation of MM cells (93, 111).

Kim et al. identified macrophages as being a supplementary source
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of IL-6, thus providing an optimal environment for tumor cell

growth (93). IL-6 is a pleiotropic inflammatory factor that is

associated with poor prognosis of MM (112, 113). Studies have

shown that IL-6 can promote MM cell proliferation and inhibit

apoptosis through the Ras/Raf/MAPK and PI3K/AKT pathways in

MM cells, and induce osteoclast generation through the JAK2/

STAT3 axis.

In addition to promoting proliferation, TAMs also facilitate

chemoresistance in MM. After co-culturing with different MM cell

lines, it was found that both MSCs and macrophages effectively

inhibited the apoptosis of MM cells (93). However, when co-

cultured with MSCs alone, there was no significant change in the

apoptosis level of primary MM cells. In contrast, when co-cultured

with macrophages or simultaneously with MSCs and macrophages,

the degree of apoptosis in primary MM cells significantly decreased.

The interaction between macrophage selectin and its ligand PSGL-1

promotes melphalan resistance in MM cells (98). Additionally,

ICAM-1/CD18 are crucial molecules involved in mediating

chemoresistance (98). The phosphorylation of Src and Erk1/2

kinases and the activation of the C-myc pathway enable

macrophages to promote the drug resistance of MM cells.

Bortezomib, which is a pioneering proteasome inhibitor, has

emerged as a widely employed therapeutic agent for the treatment of

MM and mantle cell lymphoma (MCL) in clinical settings (104, 114).

However, recent studies have shown that some patients develop

resistance to bortezomib, which is due to the release of IL-1b by

TAMs, leading to an increase in the number of MM initiating cells

(104). In addition, macrophages promote the survival of MM cells by

activating the NF-kB pathway through the expression of BAFF,

thereby preventing bortezomib-induced apoptosis.

In fact, an increasing body of research has demonstrated that

MM-associated macrophages predominantly exhibit M2-like

characteristics and exert immunosuppressive effects by inhibiting

T-cell proliferation, thereby facilitating immune evasion of MM

cells (115–117). As antigen presenting cells (APCs), M1

macrophages express high levels of major histocompatibility

complex class II (MHC II), thus facilitating more efficient

pathogen recognition by the adaptive immune system. However,

due to the dysregulation of MHC II expression in MM-associated

macrophages, T-cell function is suppressed, thereby weakening the

anti-tumor response (94). IL-10, a crucial immunosuppressive

cytokine primarily secreted by TAMs, can inhibit MHC II

molecule expression and pro-inflammatory cytokine production,

thus effectively suppressing cytotoxic T-cell activation (117–119). In

addition to its immunosuppressive effects, IL-10 also plays a pivotal

role in the survival, proliferation, and angiogenesis of patients with

MM (96). Elevated levels of IL-10 in serum have been associated

with an unfavorable prognosis in MM patients. In addition,

macrophages in MM suppress the proliferation and activation of

T cells by inhibiting the secretion of IFN-g (115). In summary,

macrophages associated with MM secrete a variety of signaling

molecules that exert inhibitory effects on T-cell function (93,

94, 120).

Accumulated evidence suggests that angiogenesis plays a crucial

role in the development and adverse prognosis of MM.

Macrophages are a source of pro-angiogenic factors, such as
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vascular endothelial growth factor (VEGF), fibroblast growth factor

2 (FGF 2) and IL-8, which can promote neovascularization and

vascular remodeling (121, 122). When treated with VEGF and FGF,

macrophages derived from the TME exhibit a vascular, endothelial

phenotype. In addition, IL-10 derived from TAMs is positively

correlated with angiogenic factors such as VEGF, angiopoietin-2,

and proliferation markers. Zhang and colleagues discovered that B-

cell specific moloney murine leukemia virus integration region 1

(BMI1) is upregulated in macrophages of MM (123). BMI1, a

member of polycomb-group proteins, is directly involved in the

regulation of cell growth and proliferation and is required for the

self-renewal of adult stem cells and leukemia stem cells (124–126).

Studies have confirmed that the occurrence and development of

various human tumors, such as leukemia, breast cancer, gastric

cancer, lung cancer, bladder cancer, colorectal cancer and

esophageal cancer, are related to abnormal expression of the

BMI1 gene. BMI1-knockout macrophages exhibit reduced

proliferation ability and suppressed expression of angiogenic

factors, leading to the loss of their ability to protect MM cells

from chemotherapy-induced cell death (123). The Hedgehog-c-

Myc axis regulates BMI1 expression, and activation of the hedgehog

signaling pathway leads to excessive c-Myc expression in

macrophages, thereby promoting BMI1 expression. Upregulation

of BMI1 activates survival signals, such as proangiogenic and

chemotherapeutic resistance signals, in MM cells (123).
Macrophages in lymphoma

Classic Hodgkin lymphoma

Initially, researchers identified macrophage-expressed genes

associated with adverse clinical outcomes in patients with

advanced classical Hodgkin lymphoma (CHL) through gene

expression analysis (127). These genes included ALDH1A1, LYZ,

and STAT1. STAT1-positive macrophages were closely related to

adverse prognosis, and the expression of macrophage markers, such

as LYZ and ALDH1A1, suggested that TAMs play an important

role in this process. However, the functional interplay between

macrophages and their impact on treatment outcomes remains

elusive. Steidl et al. initially demonstrated that an increased

abundance of CD68+ macrophages was significantly associated

with unfavorable outcomes in CHL (128). Furthermore, they

found that the clinical relevance of CD68+ macrophage content

extended to both initial diagnosis and relapse cases, making it a

valuable predictor for outcome following primary and

secondary interventions.

Subsequently, the role of TAMs in lymphoma has attracted

widespread attention. These findings align with previous findings

demonstrating that Hodgkin Reed-Sternberg (HRS) cells can

stimulate the polarization of macrophages towards the tumor-

promoting M2 phenotype through cytokine secretion (129).

Conversely, M2-type TAMs support the survival of HRS cells.

Currently, the majority of studies have indicated a positive

correlation between CD68+ or CD163+ TAMs and shorter overall

survival in patients (130–132), although certain studies have failed to
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replicate these findings (133, 134). Besides, high levels of CD206 may

lead to stromal remodeling and lymphoma dissemination (135).

Interestingly, other studies have demonstrated that a moderate

number of macrophages is associated with favorable outcomes in

most cases, while patients with either insufficient or excessive

macrophages exhibit poorer outcomes (136). Therefore, the

authors propose the “excitatory hypothesis” of TAMs, suggesting

that a relative deficiency of TAMs may promote HL growth,

whereas an increasing number of macrophages demonstrate

inhibitory effects. However, beyond a certain threshold, TAMs

may once again support tumor growth.

Further studies have shown that TAMs can express

programmed death-ligand 1 (PD-L1) (137, 138). These PD-L1

positive macrophages co-localize with HRS cells and closely

interact with PD-1 positive T cells, thereby facilitating immune

evasion and promoting tumor progression through binding to PD-1

molecules on T cells and NK cells. HL-associated macrophages also

express indoleamine 2,3-dioxygenase 1 (IDO-1), which is a

tryptophan catabolizing enzyme that inhibits effector T cells and

enhances regulatory T cells activity (139). A high proportion of

CD68+ PD-L1+ and CD68+ IDO-1+ TAMs is associated with a poor

prognosis, while the presence of PD-L1+ tumor cells, total TAMs,

PD-L1- TAMs, or IDO-1- TAMs does not affect the prognosis.

These findings further support the notion that in CHL, the adverse

prognostic impact of TAMs is linked to immune checkpoints.
Non-Hodgkin lymphoma

Similar to other hematological malignancies, CD163+ TAMs are

linked to poor prognosis in diffuse large B-cell lymphoma (DLBCL),

follicular lymphoma (FL), cutaneous T-cell lymphoma (CTCL) and

splenic marginal zone lymphoma (SMZL) (140–144). There is a

positive correlation between CD163+ TAMs and the CD163/CD68

ratio in relation to the clinical outcome of DLBCL (145). An

increase in the number of CD163+ macrophages can promote

angiogenesis and is associated with an unfavorable prognosis in

FL and DLBCL (146–148). Additionally, the presence of CD204+

macrophages in patients with refractory malignant lymphoma

undergoing allogeneic hematopoietic cell transplantation was

found to be associated with an unfavorable prognosis, which is

potentially due to the immunosuppressive properties of these

macrophages leading to impaired effector T-cell function and

diminished graft-versus-lymphoma effects (149).

In NHL, including FL, MZL, MCL, Burkitt lymphoma and

DLBCL, PD-L1 expression is primarily observed in macrophages

and rarely on tumor B cells (150–152). This finding is consistent

with the observations made in CHL (138, 139). Although the

negative impact of PD-L1 on prognosis has been established in

solid tumors, McCord et al. suggested that PD-L1 may be associated

with a better prognosis in newly diagnosed DLBCL patients

receiving chemo-immunotherapy (150). This could be attributed

to differences in patient populations or more complex biological

processes involving PD-L1 within this heterogeneous disease. High

infiltration of PD-1 positive lymphocytes in tumor tissues is

associated with a favorable prognosis in patients with FL (152).
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Patients with lower levels of PD-1positive cells face an increased risk

of early transformation into DLBCL, which leads to shortened

overall survival.

In conclusion, these reports underscore the intricate

interactions between lymphoma cells and TAMs within the

immune microenvironment, unveiling the heterogeneity of

macrophages and their distinct roles in lymphoma. By

comprehending these interactions and underlying mechanisms,

novel targeted therapeutic strategies can be developed to

specifically target the tumor microenvironment in patients with

relapsed or refractory lymphoma.
MSC-mediated immunoregulation
of macrophages

The TME plays an important role in the occurrence and

development of tumors. Recently, Visser et al. have provided

comprehensive insights into the fundamental composition of the

tumor microenvironment, its functional regulators, and the

dynamic evolution process during cancer development (153).

Notably, MSCs and TAMs represent two cell types within the

TME that exhibit plasticity and heterogeneity (3, 44). MSCs exert

immunomodulatory effects on macrophages through direct cell-cell

interactions, paracrine signaling mechanisms, as well as exosome-

mediated communication (20, 154). Conversely, macrophages

reciprocally regulate the functionality of MSCs (155, 156). The

present article provides a comprehensive overview of the role of

macrophages in different hematological malignancies and explores

the intricate interplay between mesenchymal stem cells and

macrophages to elucidate their crucial roles in the occurrence and

sustained progression of malignant tumors (Figure 2).

Research on the immunomodulatory function of MSCs began in

2002 (157, 158). In that year, two teams independently discovered the

powerful immunosuppressive ability of MSCs. This discovery has
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since led to progress in MSCs therapy in immune diseases, thus

fueling researchers’ efforts to delve more deeply into the

immunomodulatory function of MSCs. Under the stimulation of

inflammatory cytokines, MSCs are capable of expressing various

immunosuppressive factors, including prostaglandin E2 (PGE2),

TGF-b, CCL2/CXCL12, TNF-stimulated gene 6 (TSG-6) and IDO,

as well as induce macrophage polarization towards the anti-

inflammatory M2 phenotype (159, 160).

In 2009, it was discovered that MSCs induce macrophage

polarization through the secretion of PGE2 (161). This

polarization is characterized by a significant increase in IL-10

secretion, while the circulating levels of TNF-a and IL-6 are

markedly decreased. Subsequently, studies have revealed that

MSCs rely on the COX2-PGE2 pathway to regulate monocyte

differentiation into macrophages and polarize them towards an

M2 phenotype (with increased expression of CD163 and CD206)

(162, 163). This process inhibits the production of pro-

inflammatory factors such as TNF-a and IL-17 while promoting

the release of anti-inflammatory factors such as IL-10 and TGF-b
(163, 164). Ultimately, this effect is achieved by suppressing effector

immune cells and inducing regulatory T cells (Tregs) to suppress

immune responses (165).

TGF-b is another important immunosuppressive factor secreted

by MSCs that can induce macrophage M2 polarization and inhibit

immune responses (166). MSCs-derived TGF-b downregulated the

expression of M1 markers, upregulated the expression of M2

markers, and attenuated excessive activation of the inflammatory

response. A recent study revealed the presence of a unique type of

MSCs (known as slow-cycling ADAM12+PDGFRa+ MSCs) at tumor

edges in melanoma, pancreatic cancer, and prostate cancer mouse

models (167). These MSCs promote macrophage efferocytosis and

polarization through TGF-b signaling, thereby inducing pathological

angiogenesis and immune suppression.

BM-MSCs secrete a large number of chemokines, including

CCL2 and CXCL12, which are the main chemotactic factors for
FIGURE 2

Schematic of the potential mechanisms of action mediated by MSCs on macrophages. MSCs can polarize macrophages via direct cell–cell contact
or indirectly, such as through soluble factors and extracellular vesicles (including exosomes). In addition, healthy MSCs implantation could induce the
activation of Arg-1+ macrophages in the bone marrow of ALL mice and repair damaged BMME. TA-MSCs play a crucial role in promoting tumor
growth by recruiting monocytes/macrophages. Two distinct subpopulation of MSCs, namely AIF1+CSF1R+ MSCs and ADAM12+PDGFRa+ MSCs,
respectively promote macrophage recruitment or enhance macrophage phagocytosis, and induce macrophage polarization towards
immunosuppressive phenotypes, thereby driving tumor progression.
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monocytes and macrophages (168–170). CCL2 plays a crucial role

in regulating the migration and invasion of monocytes/

macrophages (168). Whelan et al. discovered that wild-type MSCs

can induce polarization of M2 macrophages in mouse wounds

through CCL2, resulting in reduced inflammation, enhanced

epithelial regeneration, and accelerated wound healing (171).

Besides, BM-MSCs can secrete CCL2 and CXCL12, which form

heterodimers that promote macrophage polarization towards the

M2 phenotype. This process also mobilizes IL-10+ T cells and B cells

in the intestine, resulting in a suppressive effect on colitis (172).

MSCs exposed to inflammation are also capable of secreting

TSG-6, which is a multifunctional protein with anti-TNFa release,

anti-inflammatory, and tissue protective properties (173, 174). Choi

H demonstrated for the first time that TSG-6 inhibits the activation

of the NF-kB signaling pathway within macrophages by binding to

the CD44 receptor on their surface, thereby weakening the pro-

inflammatory signals initiated by macrophages (175). TSG-6

derived from MSCs induces macrophage polarization in

inflammatory bowel disease (IBD) mice, which promotes the

release of more M2 macrophages into the colon and suppresses

inflammatory responses (176). In general, TSG-6 is capable of

reducing the number of M1 macrophages and promoting their

transformation to the M2 phenotype (177).

Similarly, IL-6 also has similar regulatory functions on

macrophages (178). Specifically, AML-MSCs secrete a substantial

quantity of IL-6 and induce epithelial-mesenchymal transition

(EMT)-like transformation in AML cells through the Jak2/Stat3

signaling pathway, potentially contributing to chemotherapy

resistance (179). Additionally, IL-6/Jak2/Stat3 signaling is

involved in the M2 polarization of macrophages, thereby

promoting brain metastasis in non-small cell lung cancer (180).

Furthermore, IL-6 can stimulate TAMs to produce CCL-20 and

attract CCR-6-expressing B cells and gd T cells for aggregation,

ultimately driving colorectal cancer progression (181).

In addition to the traditional paracrine mode, cell-cell contact

and vesicle transfer are also pathways through which MSCs trigger

M2 anti-inflammatory phenotypes and exert immune regulatory

functions (182–185). Extracellular vesicles (EVs) have been shown

to play an important role in intercellular communication. EVs

(including exosomes) can transfer many soluble cytokines and

molecules, (including proteins, nucleic acids and organelles), from

donor cells to recipient cells and can change the protein expression

of target cells (186, 187). Accumulating evidence suggests that

MSCs-derived exosomes play an important role in immune

regulation. Breast cancer-derived MSCs can induce monocyte

myeloid-derived suppressor cells to differentiate into M2-

polarized macrophages through exosomes and increase their

immunosuppressive activity, thereby accelerating malignant

progression (188). Furthermore, MSCs-derived exosomes have

been extensively investigated in many preclinical studies of

inflammatory diseases. In a study of inflammatory bowel disease

(IBD), exosomes derived from MSCs attenuated colonic mucosal

inflammation by polarizing macrophages to an M2b-like phenotype

with increased IL-10 production and secretion (189). Similarly,

MSC-derived exosomes have the ability to induce a phenotypic shift

in macrophages from pro-inflammatory to anti-inflammatory,
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myocardial injury (190), retinal injury (191), spinal cord injury

(192), and lung injury (193).
Therapeutic potential of targeting
MSCs or macrophages

Numerous research findings have consistently demonstrated

the safe and efficacious role of MSCs in the treatment of various

diseases, including graft-versus-host disease, autoimmune

disorders, cardiovascular diseases, as well as bone and cartilage

injuries (4, 194). The therapeutic principles underlying these stem

cells primarily involve their potential for multidirectional

differentiation, paracrine effects, immune modulation, and

intercellular substance transfer. Currently, the treatment strategies

for MSCs primarily include the following (4): 1) utilizing MSCs as

carriers for anticancer drugs and genetically modifying them to

express or secrete various tumor-inhibiting agents; 2) disrupting

paracrine signaling pathways to impede the interaction between

MSCs and tumor cells or immune cells; 3) reversing the pro-tumor

characteristics of TA-MSCs while synergistically enhancing

therapeutic effects with chemotherapy drugs; and 4) modifying

exosomes derived from MSCs to accomplish cell-free

tumor therapy.

Macrophages also play dual roles in the TME and represent

complex and pivotal targets for immunotherapy. Currently,

extensive research is being conducted on macrophages, with a

focus on four primary strategies: eliminating TAMs, inhibiting

TAMs recruitment processes, repolarizing TAMs to the M1

phenotype to augment their anti-tumor functions, and targeting

TAMs regulation. The role of macrophages in tumors and their

therapeutic potential were reviewed in more detail by Li et al. (44)

and Kloosterman et al. (40).

As mentioned above, CCL2 is an important regulatory factor in

the recruitment of macrophages and is involved in several key steps

of tumor formation and metastasis, including promoting

angiogenesis, recruiting myeloid-derived suppressor cells,

regulating cancer cell invasiveness, and inducing pro-survival

signals in different cancer cells (168, 172, 195). MSCs-derived

CCL2 plays a crucial role in the M1-M2 polarization of

macrophages, which is also a key feature of the therapeutic

response of MSCs. Compared to BM-MSCs, TA-MSCs exhibit

significantly elevated levels of CCL2 and can recruit TAMs to

enhance primary tumor growth, invasiveness, and metastatic

speed. Therefore, the MSCs-CCL2-monocyte axis has significant

physiological significance in tumor progression, and the blockage of

this interaction may be an effective strategy for targeted cancer

treatment based on MSCs.

The CXCL12/CXCR4 signaling pathway plays an important role

in maintaining normal hematopoiesis, and is essential for the homing

and bone marrow residence of AML and ALL cells (196, 197). TA-

MSCs can secrete a large amount of CXCL12 to activate the

overexpressed specific receptor CXCR4 on AML cells, thereby

guiding AML cells to migrate to the BMME and acquire drug

resistance signals (196). The CXCR4-CXCL12 axis also promotes
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TAMs differentiation into perivascular TAMs, increases vascular

permeability, and allows tumor cells to infiltrate blood vessels

(198). In addition, MSCs-derived CXCL12 can induce BMDMs to

transform into M2 phenotype, thus forming an immunosuppressive

microenvironment that enables malignant cells to evade immune

surveillance and promoting tumor growth and metastasis (198). It

has been proven that using CXCR4 antagonists can alter the

interaction between tumors and stroma, increase cancer cell

sensitivity to cytotoxic drugs, and alleviate the burden of tumor

growth and metastasis.Recently, researchers have identified a pro-

inflammatory subset of MSCs (referred to as AIF1+CSF1R+MSCs) in

rats with primary liver cancer (199). This particular subset is present

throughout the entire process of liver cancer development. The

findings from this study demonstrate that TNF-a derived from

macrophages upregulates sirtuin 1 expression in MSCs. Conversely,

educated MSCs secrete CCL5 to facilitate macrophage recruitment

and establish a chronic inflammatory microenvironment that drives

the occurrence of hepatocellular carcinoma (HCC). Depletion of

macrophages or knockdown of CCL5 weakens the promoting effect

of MSCs on hepatic inflammation and HCC occurrence, indicating

that the role of MSCs in HCC relies on infiltration by macrophages.

These discoveries enhance our understanding of the

immunomodulatory effects exerted by MSCs and shed light on the

mechanisms underlying liver cancer development. Furthermore,

these findings enrich our knowledge regarding the interaction

between MSCs and macrophages, providing valuable insights for

targeted therapy strategies involving stromal cells.

In addition, in various solid tumors, such as melanoma, a

population of slow-cycling ADAM12+PDGFRa+ MSCs exists

(167). These cells facilitate macrophage phagocytosis by

upregulating the gene expression of Gas6, Lgals and Csf1 and

induce macrophage polarization towards an immunosuppressive

and pro-angiogenic phenotype, thereby driving tumor progression.

TGF-b plays a pivotal role in this process by inducing the

expression of ADAM12. The specific knockout of TGF-bR2 in

ADAM12+ cells significantly impeded tumor growth while

enhancing T-cel l infi l trat ion and promoting vascular

normalization. This further underscores the regulatory influence

of slow-cycling ADAM12+MSCs on the tumor microenvironment

through the TGF-b signaling pathway.

In addition to modifying TA-MSCs for therapy, non-gene-

edited healthy MSCs can also be utilized in the treatment of

leukemia. Recent research suggests that umbilical cord MSCs

promote AML cell differentiation and apoptosis through the

transfer of vesicles rich in neutrophil elastase (NE), thereby

exerting an anti-AML effect (200). Activation of the vitamin D

receptor (VDR) plays a crucial role in NE release within vesicles.

The combined administration of MSCs and 1,25D3 (a VDR

activator) synergistically enhances AML cell differentiation,

reduces leukemia burden, and significantly improves survival

rates in AML mice. Another study showed that healthy MSCs

implantation could induce the activation of Arg-1+ macrophages in

the bone marrow of ALL mice, repair damaged BMME, and delay

the progression of leukemia (201). This effect seems to be

inconsistent with the immunosuppressive function of MSCs in

promoting macrophage-mediated tumor progression, which may
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be attributed to differences in disease states, sources and injection

quantities of MSCs. This study also highlights the complexity of the

interplay between MSCs and macrophages in the TME. The

abovementioned results provide a new perspective on the use of

healthy MSCs for the treatment of leukemia. However, there is

currently relatively limited research on the regulatory effects of

implanted healthy MSCs on immune cells such as macrophages.

In summary, the primary interaction between MSCs and

macrophages is predominantly mediated by secretory factors.

Abundant cell-derived factors originating from MSCs possess the

ability to modulate the immune function of macrophages and

actively participate in disease progression, and vice versa. Due to

the complexity and diversity of these processes, further research is

imperative to identify novel strategies for stromal cell-

based immunotherapy.
Interaction between MSCs and
macrophages in malignancies

In addition to macrophages being reshaped by tumor cells,

MSCs can also be transformed into TA-MSCs. These TA-MSCs not

only directly interact with tumor cells but also regulate the TME

indirectly by interacting with surrounding immune cells, thereby

promoting tumor development (202, 203). Currently, there is

limited research on the interaction between MSCs and

macrophages in hematological tumors. We summarize their

interactions in hematological malignancies and discuss their

relevant studies in solid tumors (Figure 2).

To the best of our knowledge, Ren et al. first identified the

interaction between MSCs and immune cells within tumors in 2012,

providing evidence that TA-MSCs play a crucial role in promoting

tumor growth by recruiting monocytes/macrophages (168).

Research has found that lymphoma-derived MSCs (L-MSCs)

exhibit a more prominent role in promoting tumor growth

compared to BM-MSCs or skin MSCs. In comparison to BM-

MSCs, L-MSCs demonstrate significant advantages in recruiting

immune cells, specifically increasing the number of CD11b+Ly6C+

monocytes and F4/80+ macrophages in tumors and peripheral

blood. Additionally, L-MSCs can induce the polarization of

macrophages towards the M2 phenotype, characterized by high

levels of IL-10 expression and low levels of IL-2, TNFa, and MHC-

II expression. Ultimately, the results revealed that the elimination of

monocytes/macrophages could abolish the tumor-promoting effect

of L-MSCs. Furthermore, the pro-tumor effect relies on macrophage

recruitment and phenotypic switching through the CCL2-

CCR2 pathway.

CCL2 is the most significantly differentially expressed gene

between FL-MSCs and HD-MSCs and promotes the migration of

monocytes to tumor sites (147). FL-MSCs drive monocytes towards

TAMs-like differentiation, which promotes angiogenesis and

tumorigenic effects, while also synergistically supporting the

growth of FL B cells in vitro with TAMs. These results

demonstrate that CCL2 produced by FL-MSCs facilitates tumor

cell growth by attracting monocytes rather than by directly acting

on B cells.
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In addition, CXCL12 derived from BM-MSCs can induce

BMDMs to exhibit M2-like characteristics and inhibit their

phagocytic function, thereby promoting the growth of mouse

mammary tumors (204). Biswas et al. further confirmed that TA-

MSCs from breast cancer release exosomes that are rich in TGF-b,
C1q, and semaphorins (188). These exosomes promote the

overexpression of PD-L1 in immature myelo-monocytic

precursors and CD206+ macrophages, stimulating macrophages

to produce arginase-1 and IL-10 to suppress anti-tumor immune

responses and thereby accelerate tumor growth. Similarly, gastric

cancer-derived MSCs (GC-MSCs) activated the M2 polarization of

macrophages (increased CD204+/CD163+ cells) by producing IL-6

and IL-8 to activate the Jak2/Stat3 signaling pathway (205).

Consequently, pretreated macrophages enhance the migratory

and invasive capabilities of gastric cancer cells while significantly

promoting the EMT process.

In the microenvironment of ovarian tumors, BM-MSCs can

differentiate into cancer-associated-MSCs (CA-MSCs), leading to

carboplatin resistance in ovarian tumor cells (206). However,

injecting BM-MSCs into the peritoneal cavity did not inhibit

tumor progression in mice but rather suppressed the efficacy of

chemotherapy drugs. This observation also suggested that BM-

MSCs may be re-educated into CA-MSCs and exert an anti-

chemotherapy effect. The study revealed that CA-MSCs highly

express CXCR1/2 ligands such as CXCL1, CXCL2, and IL-8,

which promote monocyte differentiation towards a pro-tumor M2

phenotype, facilitating tumor progression and the acquisition of

chemotherapy resistance. IL-8-CXCR1/2 plays a crucial role in

initiating and promoting inflammation-mediated metastasis, as

well as tumor growth and dissemination. The inhibition of

CXCR1/2 leads to CA-MSCs-mediated loss of the M2 phenotype

in these activated macrophages, and these cells exhibit antitumor

effects. By utilizing CXCR1/2 inhibitors, the sensitivity of ovarian

tumor cells to carboplatin can be restored, thereby counteracting

the promoting effect of CA-MSCs on tumors.

Another study confirmed that healthy MSCs are able to

reprogram leukemic macrophages (L-Macs) to repair the

impaired BMME and inhibit leukemia progression (201). The

administration of healthy MSCs to leukemic mice significantly

reduced the tumor burden, stimulated megakaryocyte activation,

and improved the overall survival rate. In vitro co-culture

experiments showed that MSCs could significantly up-regulate

the expression of Arg1, a marker of tissue repair, in L-Macs, and

the expression of Arg1 in macrophages isolated from the bone

marrow of MSC-treated leukemia mice was also significantly

increased. Ultimately, when co-cultivated macrophages were re-

infused into leukemia mice, the quantity of bone marrow MSCs in

the mice significantly increased, and the co-cultivated macrophages

exhibited similar anti-leukemia effects.

However, the regulatory mechanisms by which TAMs modulate

MSC function remain unexplored. After treatment with

conditioned medium derived from M1 macrophages, MSCs

(cMSCs) exhibited significantly enhanced transcription levels of

iNOS, monocyte chemoattractant protein 1 (MCP-1), IL-6, and

Cox-2 compared to those in untreated MSCs (156). Conversely,

cMSCs promoted tumor cell growth (including breast cancer,
Frontiers in Immunology 12
hepatocellular carcinoma and glioblastoma) through NO-

mediated immunosuppression and MCP-1- and IL-6 -mediated

macrophage trafficking and polarization towards an M2-like

phenotype. In summary, during the initiation stage of tumors,

polarization of M1 macrophages and release of inflammatory

factors occur, leading to functional remodeling of surrounding

MSCs. Subsequently, these remodeled MSCs tend to transform

macrophages into M2-like state and exert immunosuppressive

effects that promote tumor growth.

Taken together, these findings highlight the complexity of the

interaction betweenMSCs and macrophages in the TME. Currently,

there is a dearth of research on such interactions in hematologic

tumors, necessitating further investigation to identify potential

therapeutic targets.
Conclusion

In the past few decades, a large number of therapies based on

MSCs have emerged for preclinical research to treat various

pathological conditions, including neurological disorders,

myocardial ischemia, diabetes, bone and cartilage diseases, as well

as tumors. Furthermore, by reprogramming TA-MSCs, their pro-

tumorigenic attributes can be effectively reversed.

However, increasing evidence suggests that there are

interactions between MSCs and tumor cells that can result in

both the promotion and inhibition of tumor development. These

discrepancies may arise from differences in experimental tumor

models, sources of MSCs, dosage or timing of MSCs treatments,

methods of cell delivery, choice of control groups, and other

experimental conditions. In addition to directly affecting tumor

cells, MSCs also play an important immunomodulatory role and

indirectly participate in the pathological processes of tumors.

In summary, as major components of the tumor

microenvironment, both MSCs and macrophages can be remodeled

and exhibit different phenotypes and functions during tumor initiation

and progression. However, in hematological malignancies, the cellular

and molecular mechanisms underlying the interaction between MSCs

and macrophages have not been clearly elucidated. The

immunosuppressive effects of MSCs are still under investigation, thus

necessitating further exploration of the reciprocal interactions between

MSCs and macrophages to provide better therapeutic strategies.
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