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microenvironment correlate with
overall survival of NSCLC
Xu Liu1,2†, Zengfu Zhang3†, Jupeng Yuan2, Jinming Yu1,2,3*

and Dawei Chen1,2*

1Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical
University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 2Shandong First
Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China,
3Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
Background: Tumor-associated macrophages (TAMs) constitute a plastic and

heterogeneous cell population of the tumor microenvironment (TME) that can

regulate tumor proliferation and support resistance to therapy, constituting

promising targets for the development of novel anticancer agents. Our

previous results suggest that SHP2 plays a crucial role in reprogramming the

phenotype of TAMs. Thus, we hypothesized that SHP2+ TAM may predict the

treatment efficacy of non-small cell lung cancer NSCLC patients as a biomarker.

Methods: We analyzed cancer tissue samples from 79 NSCLC patients using

multiplex fluorescence (mIF) staining to visualize various SHP-2+ TAM

subpopulations (CD68+SHP2+, CD68+CD86+, CD68 + 206+, CD68+

CD86+SHP2+, CD68+ CD206+SHP2+) and T cells (CD8+ Granzyme B +) of

immune cells. The immune cells proportions were quantified in the tumor regions

(Tumor) and stromal regions (Stroma), as well as in the overall tumor

microenvironment (Tumor and Stroma, TME). The analysis endpoint was overall

survival (OS), correlating them with levels of cell infiltration or effective density. Cox

regression was used to evaluate the associations between immune cell subsets

infiltration and OS. Correlations between different immune cell subsets were

examined by Spearman’s tests.

Results: In NSCLC, the distribution of different macrophage subsets within the

TME, tumor regions, and stroma regions exhibited inconsistency. The

proportions of CD68+ SHP2+ TAMs (P < 0.05) were higher in tumor than in

stroma. And the high infiltration of CD68+SHP2+ TAMs in tumor areas correlated

with poor OS (P < 0.05). We found that the expression level of SHP2 was higher in

M2-like macrophages than in M1-like macrophages. The CD68+SHP2+ subset

proportion was positively correlated with the CD68+CD206+ subset within TME

(P < 0.0001), tumor (P < 0.0001) and stroma (P < 0.0001).
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Conclusions: The high infiltration of CD68+SHP2+ TAMs predict poor OS in

NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit M2-

phenotype polarization. And it provides a new thought for SHP2 targeted

cancer immunotherapy.
KEYWORDS

tumor microenvironment, SHP2, tumor-associated macrophages, spatial interaction,
NSCLC, os
1 Introduction

The advancement of immunotherapy has achieved significant

clinical outcomes (1–4); however, the heterogeneity of the tumor

microenvironment (TME) poses challenges in determining the

optimal individualized immunotherapy regimen (5, 6). Cellular and

stromal components including tumor cells, immune cells,

mesenchymal cells, cancer-linked fibroblasts, and extracellular

matrix, constituent tumor microenvironment (TME), which is

crucial for the regulation of tumor growth and treatment resistance

(7–9).. Tumor-associated macrophages (TAMs) constitute a

significant proportion of the tumor microenvironment, and many

experimental and clinical studies have demonstrated their substantial

correlation with tumor staging, invasion, metastasis, and drug

resistance (10–13). These factors ultimately impact the prognosis of

cancer patients.

The Src homology 2-containing protein tyrosine phosphatase 2

(SHP2) is a nonreceptor protein tyrosine phosphatase that is

ubiquitously expressed, primarily localized in the cytoplasm of

various tissues (14, 15). It has commonly been characterized as an

oncogene that governs the survival and proliferation of cancer cells,

primarily through activation of the RAS-ERK signaling pathway

(16). Consequently, significant advancements have been made in

the development of potent and highly selective SHP2 inhibitors

during the past decade. As of March 20, 2024, ClinicalTrials.gov

showed 37 clinical trials on SHP2. Here, we summarize the SHP2-

related drugs currently in clinical trials in Supplementary Table S1.

The noteworthy aspect is that SHP2 also plays an important role in

the regulation of immune responses (17–19). The involvement of

SHP2 in the downstream signaling of PD-1, a pivotal immune

checkpoint target for cancer immunotherapy, has been observed in

T cells (20). And SHP2 protein is widely recognized in B cells and

natural kill (NK) cells (21). The previous study conducted in our

laboratory has demonstrated that the inhibition of SHP2 can

effectively suppress the M2-like macrophages, thereby enhancing

the efficacy of immunotherapy (22). However, the precise role of

SHP2 in TME on TAMs remains unclear.

The recent advancements in multiplex immunofluorescence

(mIF) technology have enabled the simultaneous detection of

multiple targets within a single tissue section, thereby providing

important assistance in accurately identifying and quantifying
02
distinct subsets of immune cells (23, 24). Additionally, mIF-based

spatial proteomics analysis has been employed to quantitate subsets

of immune cells and assess their proximity to tumor cells, thereby

offering prognostic insights for NSCLC (25).

To investigate the impact of SHP2 on the TME, particularly

with regards to TAMs, we employed mIF analysis to examine the

infiltration of SHP2+ macrophage subsets in surgical tumor samples

from NSCLC patients. The objective of this study was to assess the

influence of these specific macrophage subsets on both the TME

and prognosis among NSCLC patients.
2 Materials and methods

2.1 Tissue microarray and patient cohorts

The NSCLC tissue microarray (TMA) was purchased separately

from Shanghai Outdo Biotech (Shanghai, China). The cohort

(HLivH180Su10) contained 92 cases of cancerous tissues. All

patients with primary NSCLC received radical surgery. Primary

outcomes were OS calculated from the date of surgery. OS was

defined as time from surgery to death or end of follow-up. The

NSCLC pathological data also included the results of EGFR and

ALK fluorescence in situ hybridization assay, as well as the

expression of PD-L1 in NSLCLC tissues. The detail of the

inclusion and exclusion criteria was shown in Supplementary

Figure S1.
2.2 Multiplexed
immunofluorescence staining

Multiplexed immunofluorescence staining of tissue microarray

(TMA) was performed using Opal Chemistry (PerkinElmer,

Waltham, MA, USA). The panel includes CD68, CD86, CD8,

CD206, Granzyme B, SHP2 and DAPI to clarify TAMs

polarization and interaction with cytotoxic T cells. Briefly, TMA

slide was deparaffinized, followed by antigen retrieval with

microwave (4min100% power, 15-20 min 20% power) in antigen

retrieval buffer. Blocking was performed with blocking/antibody

diluent for 10 min at room temperature, followed by incubation the
frontiersin.org
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primary antibody for 30–60 min. After removed primary antibody

and washed in TBST buffer, the slide was subsequently incubated

with HRP-conjugated secondary antibody for 10 min. Thereafter,

slide was incubated with Opal working buffer for 10 min at room

temperature and then washed in TBST buffer. For other antibodies,

the above steps were repeated, the antibodies were removed by

microwave treatment (45 s 100% power, 15-20 min 20% power),

and a new round of staining was performed. Details of antibodies

are described in Supplementary Table S2.
2.3 Multiplexed immunofluorescence
image analysis

Following a multistep process of validation and conjugation by

chromogenic immunohistochemistry analysis with individual

markers, both uniplex and multiplex IF staining were performed.

A Vectra Polaris Imaging System (Akoya Biosciences) was used for

slides scanning multichannel imaging. TMA slide was imaged at ×

200 magnification. These data were analyzed using QuPath V.0.4.3

(Queen’s University) (26). Tissue detection and segmentation into

stroma and tumor was based on the PAN-CK staining. Cell

segmentation was based on the presence of nuclear DAPI staining

using the inbuilt cell detection algorithm. Fluorescence staining

intensity of cells were measured for each marker. Cell phenotypes

were divided into different classes based on cytoplasmic or nuclear

staining intensity by positive thresholds for each marker set, and all

samples were reviewed. Cell count, density and percentage in

different regions were calculated for each phenotype. Quality

control (QC) of all processed data was subjected by a pathologist,

with the subsequent exclusion of the inappropriate regions from the

analysis as well as the confirmation of outlier results.
2.4 Phenotype density analysis

The cells were phenotyped into the following subsets: CD68+, CD8+,

CD68+CD86+, CD68+CD206+, CD8+ Granzyme B +, CD68+SHP2+,

CD68+ CD86+SHP2+, CD68+ CD206+SHP2+ and tumor cell. Here,

CD8+ symbolizes the whole CD8+ T cell population, CD68+ symbolizes

the whole macrophages, CD68+CD86+ symbolizes the M1-like

macrophages, and CD68+CD206+ symbolizes the M2-like

macrophages. Granzyme B is allowed the designation of CD8+

Granzyme B + as cytotoxic T lymphocyte. Tumor areas and stroma

areas were histomorphologically analyzed.
2.5 Statistical analysis

The data were analyzed using R software (version 3.6.3) and

GraphPad Prism (version 8). Categorical variable frequency was

compared between groups using either the chi-square test or

Fisher’s exact test. Survival functions were investigated using the

Kaplan–Meier method, with the log-rank test applied to compare

survival distributions. For survival analysis of continuous data,

“Survminer” was used to divide patients into high (> cutoff value)
Frontiers in Immunology 03
or low (≤ cutoff value) groups, and then the log-rank test was

applied. Univariate and multivariate Cox proportional hazard

regression models were used to independently estimate the

prognostic value. Tumor Immune Estimation Resource

(TIMER2.0) (http://timer.cistrome.org/) (27) was used to analyze

the relationship between Ptpn11 transcriptional level and

macrophage infiltration in lung adenocarcinoma (LUAD).
3 Results

3.1 Clinicopathological features of the
NSCLC patients

Table 1 list the baseline clinicopathologic characteristics of 79

patients with NSCLC that were enrolled in this study. The mean age

at diagnosis was 62.74 ± 10.09 years and 42 (53.2%) patients were

women. Pathological grading and tumor staging were balanced. The
TABLE 1 Patients characteristic.

Total
79

(100%)

Low-
SHP2
61

(77.2%)

High-
SHP2
18

(22.8%)
p-

value

Gender 0.44

Male 37(46.8%) 30(49.2%) 7(38.9%)

Female 42(53.2%) 31(50.8%) 11(61.1%)

Age 0.08

<60 30(38.0%) 20(32.8%) 10(55.6%)

≥60 49(62.0%) 41(67.2) 8(44.4%)

Pathological
grading 0.11

II 48(60.8%) 40(65.6%) 8(44.4%)

III 31(39.2%) 21(34.4%) 10(55.6%)

Stage 0.34

I 29(36.7%) 25(41.0%) 4(22.2%)

II 20(25.3%) 14(23.0%) 8(44.4%)

III 26(32.9%) 20(32.7%) 6(33.3%)

IV 2(2.5%) 2(3.3%) 0(0.00%)

ALK 0.57

Positive 14(17.7%) 10(16.4%) 4(22.2%)

Negative 65(82.3%) 51(83.6%) 14(77.8%)

EGFR 0.93

Positive 17(21.5%) 13(21.3%) 4(22.2%)

Negative 62(78.5%) 48(78.9%) 14(77.8%)

PD-L1 0.95

Positive 61(77.2%) 47(77.0%) 14(77.8%)

Negative 18(22.8%) 14(23.0%) 4(22.2%)
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majority of patients were EGFR FISH-negative (62, 78.5%) and

ALK FISH-negative (65, 82.3%). And most patients were PD-L1-

Postive (61, 77.2%). The median OS time was 39 months (range

16.75 - 49.25). The patient cohort included 61 patients with high

proportion of CD68+SHP2+ macrophages (High-SHP2) and 18

patients with low proportion of CD68+SHP2+ macrophages (Low-

SHP2). The baseline of High-SHP2 and Low-SHP2 patients

was balanced.
3.2 Characteristics of the NSCLC tumor-
infiltrating CD68+SHP2+

macrophages distribution

To explore the landscape of SHP2+ related tumor-infiltrating

macrophage in NSCLC TMA, we analyzed 79 samples. Using

multiplex mIF staining, we quantified the related immune cells to

determine the proportions of each cell group within total cells

(indicating the degree of infiltration of cell subsets) and their

spatial location. We performed the multiplex determination of

subcellular expression for 8 proteins, and the analysis was depicted

in Figures 1A-C. A supervised image analysis system (QuPath

V.0.4.3) classified each image into tumor and stroma areas through

machine learning (Figures 1A, 2A), and the cell segmentation

revealed nuclear, cytoplasm and cell membrane. Cell phenotyping

was based on the positive and relative fluorescent strength of all

markers in a panel. We measured the cell proportion in the tumor

areas (Tumor) and stroma areas (Stroma), and overall tumor

microenvironment (Tumor and Stroma, TME).

Our observation revealed higher proportions of CD68+ cells (P <

0.05) and Granzyme B + cells (P < 0.0001) in stroma compared to

tumor. Conversely, the proportion of CD8+ cells (P < 0.05) and
Frontiers in Immunology 04
CD206+ cells (P < 0.005) were higher in tumor. CD86+ cells showed

no significant differences between tumor and stroma (Figure 2B). The

distribution of CD68+SHP2+ cell subsets, the focus of this study, also

differed between these areas. The proportions of CD68+ SHP2+ cells

(P < 0.05) and CD68+CD206+ SHP2+ cells (P < 0.0001) were higher

in tumor than in stroma. Conversely, the proportion of CD68+CD86+

SHP2+ cells (P < 0.0001) was higher in stroma (P < 0.0001)

(Figure 2C). The presence and analysis of cytotoxic T lymphocytes,

a crucial subset of immune cells, were also detected. We found that

the proportion of CD8+ Granzyme B + cells was higher in

stroma (Figure 2D).
3.3 High infiltration of CD68+SHP2+

macrophages in tumor was an
independent risk factor for OS

As the focus of this study, we sought to detect whether the

CD68+SHP2+ macrophages were correlated with NSCLC OS. Using

the Kaplan-Meier method and Cox proportional hazard regression

model to assess the correlation between cell type infiltration and OS,

we observed that high infiltration of CD68+SHP2+ TAMs in tumor

correlated with poor OS (P = 0.048) (Figure 3A). In addition, low

proportions of CD68+SHP2+ macrophages within tumor, indicated

better OS (Figure 3B).

The Cox proportional hazard regression model was used to

evaluate the associations between clinicopathological factors (gender,

age, pathological grading, stage, ALK, EGFR, PD-L1 and CD68+SHP2+

subset proportion) and OS. Only low infiltration of CD68+SHP2+

subset proportion was an independent risk factor associated with OS

(P=0.031, HR = 0.198, 95%CI: 0.045-0.865) (Table 2).
B

C

A

FIGURE 1

The analysis and characterization of immune cells infiltrating tumors. (A) Schematic depiction of the experimental design and analytical methodologies
employed in this investigation. (B) Summary of each defined cell phenotype, (C) The examples of mIF image. Scale bar: 100mm. 50mm.
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3.4 The expression level of SHP2 was
higher in M2-like macrophages

TIMER2.0 was used to assess the association between Ptpn11

expression and total macrophage, M1-like macrophages and M2-

like macrophages infiltration in LUAD. The results showed that

Ptpn11 was correlated with infiltrating degree of total macrophage

(Rho = 0.261, P < 0.0001) and M2-like macrophages (Rho = 0.118,

P < 0.0001). However, there was no significant difference between

Ptpn11 expression and M1-like macrophages (Figure 4A).

An elevated proportion of M2-type macrophages indicates a poor

prognosis. To investigate the correlation between SHP2 in

macrophages and macrophage phenotype, we defined CD68+CD86+

macrophages as M1-like macrophages, CD68+CD206+ as M2-like

macrophages (Figure 4B). Subsequently, fluorescence staining
Frontiers in Immunology 05
intensity of SHP2 were measured in two subsets. The mean

fluorescence intensity (MFI) of SHP2 in CD68+CD206+

macrophages was significantly stronger than that in CD68+CD86+

subset, and the statistics of each sample showed that SHP2+

macrophages were mainly concentrated in CD68+CD206+ subset

(Figures 4C, D).

In order to further investigate the association between SHP2

and macrophages polarization, we analyzed the correlation between

CD68+SHP2+ macrophages and CD68+CD206+ macrophages.

Interestingly, the CD68+SHP2+ subset proportion was positively

correlated with the CD68+CD206+ subset within TME (r = 0.602,

P < 0.0001, Figure 4E), tumor (r = 0.618, P < 0.0001, Figure 4F) and

stroma (r = 0.618, P < 0.0001 Figure 4G). Our findings suggested

that SHP2 mediates the polarization of macrophages to M2

phenotype potentially.
BA

FIGURE 3

The relationship between the proportion of CD68+SHP2+ TAMs and OS within the tumor areas. (A)The relationship between the proportion of CD8
+, CD68+, CD86+, CD206+, Granzyme B+, SHP2+, CD8+ Granzyme B+, CD68+SHP2+, CD68+CD86+SHP2+ and CD68+ CD206+SHP2+ cells
subsets and OS within the tumor. (B) Kaplan-Meier analysis of OS based on the proportion of CD68+SHP2+ TAMs within the tumor. High-SHP2, high
proportion of CD68+SHP2+ macrophages; Low-SHP2, low proportion of CD68+SHP2+ macrophages.
B

C D

A

FIGURE 2

The spatial distribution of immune cells within tumor and stroma regions in TME of NSCLC. (A) The example images of tumor and stroma areas of
NSCL. Scale bar, 100 µm,50 µm. (B) The proportion of CD68+, CD8+, CD206+, CD86+, Granzyme B+ cells within the TME, tumor, and stroma
regions. (C)The proportion of CD68+SHP2+, CD68+ CD86+SHP2+, CD68+ CD206+SHP2+ cells to CD68+ cells and (D) CD8+ Granzyme B+ cell
subsets to CD8+ cells within the TME, tumor, and stroma areas. Scale bar, 10µm. *P < 0.05, **P < 0.01, ****P < 0.0001.
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4 Discussion

In this study, our findings demonstrate a higher expression level

of SHP2 in M2-like macrophages, which is significantly associated

with a poorer prognosis in NSCLC patients. The SHP2 is recognized

as a dual-function molecule, as it not only exhibits oncogenic

properties in cancer cells but also governs the functionality of

immune cel ls , including T cel ls and marrow-derived

inflammatory cells (28–31). This study represents the first

comprehensive analysis of SHP2+ TAMs within the TME utilizing

TMA and mIF.

In previous studies, researchers have frequently observed the

infiltration of TAMs throughout the entire TME (5, 32, 33). In this

study, we divided the TME into stromal and tumor regions for more

in-depth analysis. The spatial analysis revealed that while TAMs

were more widely distributed in the stroma, CD206+ (a marker of

M2 macrophages) cells exhibited more infiltration in the tumor

area. This suggests a closer cross-talk betweenM2-like macrophages

and tumor cells, potentially contributing to tumor immune escape

within the TME.

Macrophages are usually divided into two major categories:

M1-like macrophages and M2-like macrophages. It is generally

believed that M1-like macrophages are mainly involved in pro-

inflammatory responses and M2-like macrophages are mainly

involved in anti-inflammatory responses (34–37). In this study,

we observed that neither CD68+CD86+SHP2+ TAMs nor

CD68+CD206+SHP2+ TAMs in tumor region were indicative of

prognosis within the patient cohort. Our spatial analysis revealed

that only high effective density-CD68+SHP2+ TAMs in tumor

region could predict poor OS. The findings imply that relying

solely on the M1 or M2 macrophage phenotype may not be

sufficient for predicting the prognosis of NSCLC patients.

However, it is worth noting that patients with elevated SHP-2

expression in total TAMs exhibited a poorer prognosis, suggesting

that CD68+SHP2+ TAMs could serve as a promising prognostic

marker in NSCLC. Additionally, investigating the role of SHP2 in

modulating the TME could provide valuable insights for developing

novel therapeutic strategies targeting TAMs in NSCLC. Overall,

these findings highlight the importance of considering the
Frontiers in Immunology 06
heterogeneity of TAMs in NSCLC and suggest that targeting

specific TAM subpopulations, such as CD68+SHP2+ TAMs, may

offer new opportunities for improving patient outcomes in NSCLC.

Previous studies have established the importance of SHP2 in

macrophages, particularly in the interaction between SIRPa and

CD47, which serves as a key mechanism for suppressing

macrophage phagocytosis. And the SIRPa receptors are capable

of transmitting inhibitory signals via SHP2, thereby attenuating the

“eat me” receptor signal on the surface of macrophages (38). RMC-

4550, an allosteric inhibitor of SHP2, drove direct, selective

depletion of protumorigenic M2 macrophages via attenuation of

CSF-1 receptor signaling and increased M1 macrophages via a

mechanism independent of CD8+T-cells or IFN-g (39).The

signaling pathways of SHP2 and PD-1-SHP2 inhibited the

differentiation of myelocytes, resulting in a myeloid landscape

that suppressed the immune response against tumors (40).

However, there is currently a lack of comprehensive research on

the relationship between SHP2 and macrophage polarization. We

observed a significantly higher expression of SHP-2 in M2-like

TAMs compared to M1-like TAMs, as indicated by the

detected fluorescence intensity. Additionally, we conducted an

analysis on the correlation between CD68+SHP2+ TAMs and

CD68+CD206+TAMs in TME, including stroma and tumor

regions, which yielded consistent results. The CD68+SHP2+

subset proportion was positively correlated with the M2 subset

within TME, tumor and stroma. Our study has identified a new

direction to effectively target SHP2 and inhibit M2 polarization of

macrophages. By targeting SHP2 to modulate the immune response

may potentially improve patient outcomes. Further research is

needed to fully understand the mechanisms underlying this

interaction and to optimize therapeutic strategies targeting SHP2

in M2 macrophages.

Granzyme B, an essential protein known for its immunological

functions (41–44). We investigated the infiltration of total CD8+T

cells and cytotoxic T cells (CD8+ Granzyme B+) within the tumor

microenvironment. Initially, we observed that CD8+ T cells were

predominantly localized in the tumor region, while Granzyme B+

cells were primarily distributed in the stromal region. Consequently,

we further examined the distribution of cytotoxic T cells and
TABLE 2 Univariable and Multivariate Cox regression analysis for OS.

Univariable Multivariate

HR (95%CI) P HR (95%CI) P

Age (<60 vs ≥60) 1.407(0.531,3.728) 0.492 0.846(0.285, 2.508) 0.763

Gender (Male vs Female) 0.397(0.153,1.025) 0.056 2.82(0.986,8.067) 0.053

Pathological grading (II vs III) 0.767(0.295,1.995) 0.587 1.058(0.343,3.266) 0.922

Stage(I-II vs III-IV) 1.841(0.722,4.694) 0.201 2.386(0.783,7.273) 0.126

ALK (Positive vs Negative) 0.425(0.108,1.677) 0.222 2.107(0.470,9.443) 0.330

EGFR (Positive vs Negative) 0.771(0.238,2.498) 0.664 1.947(0.484,7.824) 0.348

PD-L1(Positive vs Negative) 0.796(0.381,3.520) 0.796 1.205(0.321,4.529) 0.783

CD68+SHP2+ Cell subset proportion (Low
vs High)

0.233(0.061,0.883) 0.032 0.198(0.045,0.865) 0.031
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discovered that cytotoxic T cells were mainly distributed in the

stroma region. Therefore, we guessed that CD8+T cell accumulation

within the tumor region may were exhausted CD8+ T cells

associated with poor prognosis for NSCLC. Regrettably, we could

not test further because of the limited number of mIF channels.

Significantly, due to involvement of SHP2 in the regulation of

multiple cancer-related processes, researchers have developed

highly selective inhibitors targeting SHP2 over the past few

decades. However, it is crucial to closely monitor the potential

side-effects associated with SHP2 inhibition. Due to their ability to

activate STAT3 (45), a significant cancer-promoting factor (46),

caution should be exercised when using SHP2 inhibitors. Therefore,

close attention should be paid to the phosphorylation level of

STAT3 when treating solid tumors related to this pathway.
Frontiers in Immunology 07
The following limitations are acknowledged within our study.

The first limitation is that the relatively small sample size used to

explore the therapeutic relationship between CD68+SHP2+ TAMs

and NSCLC. Furthermore, our investigation solely focused on SHP2+

TAMs cells and did not encompass other immune cell subtypes.

Therefore, future research should assess the significance of additional

cellular components within the NSCLC microenvironment. The

study only describes the correlation between SHP2 and M2

polarization in TAMs, necessitating further investigation into the

precise underlying mechanism of action.

In conclusion, our study underscores the significance of

functional status and spatial interaction of CD68+SHP2+ TAMs,

particularly within the tumor region. The assessment of

CD68+SHP2+ subset density facilitated patient stratification, and
B C D

E F G

A

FIGURE 4

The relationship between the CD68+SHP2+ TAMs and M2-like macrophages. (A) Association between Ptpn11 and macrophages infiltration
expression in LUAD. (B) Representative image for M1-like macrophages and M2-like macrophages. Scale bar, 50mm, 10mm. (C) The MFI of SHP2 in
M1-like and M2-like macrophages. (D) The expression of SHP2 in M1-like and M2-like macrophages. The correlation between CD68+SHP2+ TAMs
and CD68+CD206+ TAMs within TME (E), tumor (F) and stroma (G). MFI, mean fluorescence intensity; M1-like macrophages: CD68+CD86+ cells,
M2-like macrophages: CD68+ CD206+ cells, ***P < 0.001.
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high infiltration of CD68+SHP2+ TAMs predict poor prognosis in

NSCLC. Targeting SHP2 is a potentially effective strategy to inhibit

M2 polarization of TAMs.
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