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Bone marrow failure (BMF) has become one of the most studied autoimmune

disorders, particularly due to its prevalence both as an inherited disease, but also

as a result of chemotherapies. BMF is associated with severe symptoms such as

bleeding episodes and susceptibility to infections, and often has underlying

characteristics, such as anemia, thrombocytopenia, and neutropenia. The

current treatment landscape for BMF requires stem cell transplantation or

chemotherapies to induce immune suppression. However, there is limited

donor cell availability or dose related toxicity associated with these treatments.

Optimizing these treatments has become a necessity. Polymer-based materials

have become increasingly popular, as current research efforts are focused on

synthesizing novel cell matrices for stem cell expansion to solve limited donor

cell availability, as well as applying polymer delivery vehicles to intracellularly

deliver cargo that can aid in immunosuppression. Here, we discuss the

importance and impact of polymer materials to enhance therapeutics in the

context of BMF.
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1 Introduction

Bone marrow failure (BMF) is characterized by the immune-mediated destruction of

hematopoietic stem cells (HSCs) in the bone marrow. This results in a reduced number of

hematopoietic precursors and subsequent cytopenias. BMF can be classified into two types:

acquired and inherited. Inherited bone marrow failure (IBMF) refers to the failure of bone

marrow that is caused by genetic mutations inherited from parents or arising

spontaneously. Alongside the common symptoms of aplastic anemia, such as fatigue,

bleeding episodes, and recurring bacterial infections, patients with IBMF often exhibit

additional features specific to each syndrome (1). On the other hand, acquired bone

marrow failure is primarily idiopathic in nature. The first line of treatment is to undergo a

hematopoietic stem cell transplantation (HSCT) from a matched sibling donor. The first
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alternative for patients without a matching sibling donor is a

matched unrelated donor (MUD) at the allele level (2). Survival

rates after matched sibling or MUD hematopoietic stem cell

transplantation (HSCT) for aplastic anemia (AA) are currently

reported to be around 80% or even higher. Since AA is a

nonmalignant hematologic disorder, the risk of relapse after

HSCT is generally low. However, graft-versus-host disease

(GVHD) remains a significant cause of morbidity and mortality

in AA patients who undergo HSCT. GVHD is a complication after

HSCT when the graft’s immune cells recognize the host as foreign

and attack the recipient’s cells and tissues. GVHD can affect various

target organs, such as the skin and lungs, contributing to long-term

complications and further posing risks to the overall health of the

patients (3–5). Approximately 60-70% of patients do not find a

matching unrelated donor. Therefore, there is an ongoing need for

alternative HSCTs options (6, 7). One possibility is to utilize a

human leukocyte antigen (HLA)-mismatched unrelated donor

whose genetic makeup differs from the patient at one allele.

Another option involves utilizing umbilical cord-blood (CB) from

unrelated donors, or haploidentical (haplo) familial donors which

offers greater flexibility in terms of HLA compatibility (8).

Alternative HSCTs can potentially provide a curative solution for

certain patients. However, it is important to consider that these

alternative methods carry higher risks compared to matched sibling

or matched unrelated donor HSCTs. These risks include graft

rejection, infectious complications, and GVHD. Factors such as

patient age, comorbidities, and specificities related to the alternative

HSCT methods are important issues in transplantation decision (9).

Recent advancements in cord-blood transplantation have

broadened its potential applications by incorporating techniques

such as double cord-blood grafts and ex vivo expansion methods

(10). In a study performed by Milano et al. (2016), patients with

pre-transplantation minimal residual disease had a higher

likelihood of overall survival when they received a transplant

from a cord-blood donor compared to receiving a transplant

from an HLA-matched unrelated donor. Additionally, the cord-

blood group had a lower probability of relapse compared to graft

recipients from HLA-matched unrelated donors or HLA-

mismatched unrelated donors (11). Although cord blood is a

viable option, its availability remains scarce.

Other therapies for BMF also include drugs that can stimulate

colony factors, such as sargramostim (Leukine), filgrastim

(Neupogen), pegfilgrastim (Neulasta), and epoetin alfa (Epogen/

Procrit), all of which are approved by the United States Food and

Drug Administration (USFDA). Additionally, newer treatments

such as Eltrombopag increase the quantity of red blood cells and

enhance hematopoietic stem cells recovery. Apart from utilizing

drugs to improve anemia and aid in BM repopulation, it is also

crucial to suppress autoreactive immune cells. Immunosuppressive

therapies (IST) typically eliminate auto-reactive T lymphocytes,

which are the most common cells to attack HSCs. The USFDA has

approved two main IST drugs: anti-thymocyte globulin (ATG) and

cyclosporine (12, 13). Although immunosuppressive drugs can

enhance patients’ life expectancy, many eventually develop

resistance to this treatment and experience dose limitations due

to toxicity. Despite patients mainly suffering from liver toxicity and
Frontiers in Immunology 02
kidney failure, infections and pneumonia associated with IST are

the leading cause of deaths among BMF patients (12).

HSCT from a related or unrelated donor can lead to high

survival rates, it is important to note that these results are

dependent on age. Survival outcomes vary based on age, with

older patients >40 years experiencing the least favorable results

with HSCTs or ISTs. Additionally, there is a reported risk of older

patients >34 years developing GVHD. While IST therapy can

provide sustained remission, it is associated with a risk of relapse

and late clonal abnormalities. The decision should also consider

whether the patient has other health issues (comorbidities). If

HSCT is likely to interfere with these other health issues, then

ISTs would be the preferred line of treatment as they offer sustained

remission (9).

In the absence of next generation drug and transplant therapies,

polymeric materials have the potential to revolutionize the BMF

therapeutic landscape. Polymers can be employed as novel cell

culture matrices to successfully expand hematopoietic stem and

progenitor cells (HSPCs) (14, 15). Additionally, there are polymer-

based delivery vehicles that can efficiently intracellularly deliver

diverse cargo, including antibodies to interrupt signaling pathways

(16) or gene editing components to impede target gene

transcription in pathogenic T cells (17). These strategies present a

promising alternative avenue for traditional HSCT and

immunosuppression therapies.
2 Polymer materials to enhance
current therapeutics

Polymer based materials have been used in diverse biological

applications, ranging from therapeutic delivery agents (18), sensors

(19), implants (20), and imaging tools (21). Their popularity is

mainly attributed to their easily tunable chemistry, architecture, and

relatively simple synthesis techniques (22–24). Recent work has

shown that three dimensional (3D) polymer matrices are better for

cell culturing and expansion than their two dimensional

counterparts (i.e. polystyrene plates) (25). Polymer materials are

also attractive for intracellular drug delivery applications as they are

capable of delivering diverse cargo (antibodies, proteins, genetic

material, small molecule therapeutics, etc.) while also generally

improving cargo performance (pharmacokinetics) (26–28).

Polymer materials have the potential to significantly improve the

BMF treatment landscape by facilitating stem cell expansion and

intracellular therapeutic agent delivery.
2.1 Stem cell expansion

Hematopoietic stem cell destruction is the hallmark of BMF (1).

Symptoms of BMF, such as anemia and infections, can be reduced if

the BM niche is repopulated with new HSCs. However, most

patients lack compatible donors for HSCT, but cells derived from

cord blood tend to be a more universal match (29, 30). Using HSCs

derived from cord blood for transplant can help repopulate the BM,

reduce the risk of rejection, and decrease disease relapse (11).
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However, HSCT therapy using cord blood cells is restricted by

limited availability of donors (15), as well as by the absolute

numbers of stem cells present in each collected sample. Polymer-

based expansion methods provide innovative means to overcome

these limitations by expanding stem cell populations from cord

blood, or other hematopoietic stem cell sources, to potentially

increase HSCT access.

3D polymer-based cell matrices have been gaining in popularity

for stem cell culture and expansion (31–35). Increasing attention

focuses on the numerous tunable variables that can be incorporated

in a polymer matrix, such as chemical identities, mechanical

properties, and bulk matrix architecture (Figure 1). The diverse

structures allow for discrete environmental manipulation and can

tolerate cytokine and growth factor loading, which in turn affects

cell growth, function, and differentiation (34).

A recent study explored the expansion of CD34+ cells isolated

from cord blood in a 3D polymer matrix (15). Here the authors use

a zwitterionic hydrogel composed of poly(carboxybetaine) and

crosslinked using click chemistry and degradable crosslinkers.

Their designed zwitterionic gel (ZG), which incorporates both

negative and positive charges in a single monomer unit,

significantly outperformed gels made from poly(ethylene glycol)

(PEG), a common non-charged polymer used for many biological

applications. In additional grafting studies, cells cultured in the ZGs

showed similar engraftment levels than the non-cultured controls,

but with 100-fold fewer cells. The authors ultimately show clinically

meaningful expansion both of CD34+ cells isolated from cord blood

and bone marrow derived HSPCs in their 3D zwitterionic hydrogel.

Modulating matrix mechanical properties, such as stiffness and

elasticity, also plays a significant role in stem cell differentiation and

expansion (36). One study demonstrated how polyacrylamide gels
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with differing Young’s moduli (E, stiffness) affected mesenchymal

stem cell differentiation (MSC). For example, softer gels (E = 0.1-1

kPa) promoted neuronal type expression, while stiffer gels (E = 25-

40 kPa) promoted osteogenic differentiation (37). Gels can also be

synthesized to have dynamic moduli, where the stiffness changes

when exposed to certain stimuli, such as light, pH, or temperature.

These gels allow for cellular adaptation, being able to differentiate

into various cell types by simply changing the matrix modulus (38).

Tuning the bulk matrix architecture offers another variable for

control. The woodpile structure (Figure 1B, architecture) is

commonly employed in 3D matrices as it can be easily

manipulated to include diverse pore sizes and surface areas, both

of which are important for cell growth and migration (25). A recent

study investigated how gap sizes in a woodpile 3D matrix

significantly affected bone marrow derived MSC (BM-MSC)

migration (39). Matrices with larger gap sizes (100 mm) promoted

the highest BM-MSC migration and increased the number of viable

cells. Additionally, 3D cell matrices with submillimeter pore sizes

were found to enhance CD34+ cell proliferation more than the

nonporous matrices (33).
2.2 Therapeutic agent delivery

Polymers can also be used as intracellular delivery vehicles for

drugs and biomacromolecules to aid in cellular manipulation

(Figure 2A) (28). They are typically employed to help therapeutic

cargo traverse the cell membrane, either by direct conjugation of the

vehicle to the cargo, or by non-covalent complexation (40–42).

Polymer-based delivery vehicles can also be used to protect the

cargo from premature consumption or degradation. This aids in
A

B

FIGURE 1

(A) Cartoon schematic of cell expansion in a 3D polymer matrix. (B) The tunable variables of 3D matrices: chemical identity, mechanical properties,
and bulk architecture.
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cargo pharmacokinetics, typically by increasing the half-life of the

cargo or by increasing the toxicity threshold (27, 43).

Aplastic anemia (AA) is a form of bone marrow failure that is

typically inherited, but can also be caused by drugs, such as

hepatitis-C (HCV) treatments, and by diseases, such as the

human immunodeficiency virus (HIV) virus. It is characterized

by the bone marrow being incapable of producing enough blood

cells for normal bodily functions. Filgrastim is a granulocyte

colony-stimulating factor (G-CSF) used for hematopoietic cell

growth and is known to treat neutropenia, aplastic anemia, and

aids in myelosuppression after bone marrow transplantation (44–

46). However, G-CSF is administered by daily injections, which is

painful for patients and increases the risk of infection at the

injection site (44). One study has shown the oral delivery of G-

CSF mediated by a diethylene triamine penta acetic acid conjugated

chitosan and poly(g-glutamic acid) (gPGA-DTPA) nanoparticle

(Figure 2B, chitosan+gPGA-DTPA) (44, 47). They observed

increased availability of G-CSF when encapsulated in the

nanoparticle and delayed the maximum concentration release by

6 h, indicative of a sustained release rather than a burst release.

Additionally, neutropenia rat models were treated with a one-time

oral dose of the nanoparticle encapsulated G-CSF (NP-G-CSF) or

free-form G-CSF administered by daily injections. Both treatments

increased the absolute neutrophil count in the rats, but the NP-G-

CSF was only administered once, demonstrating the simplicity and

effectiveness of the nanoparticle platform to deliver G-CSF.

Alternative ISTs must be utilized to ensure patients have safe

and effective immune suppression without the occurrence of drug

resistance and dose related toxicity (12). One strategy to achieve

immunosuppression is to enhance regulatory T cell (Treg) function.

Tregs are T cells that suppress effector cell growth and division,

thereby limiting the immune response (48). FOXP3 is the hallmark

protein for Treg cell function, whereby elevated levels correlate with

enhanced suppressive function by Tregs (48–50).

It has been shown that protein kinase C theta (PKCq) enhances
effector T cell function, while limiting Treg differentiation. Many

studies have sought to inhibit PKCq function by using small

molecule inhibitors or by using gene editing technology, such as
Frontiers in Immunology 04
siRNA. Inhibiting PKCq yielded more suppressive Tregs and even

restored impaired Treg function (51). Alternatively, polymer

materials can be used as delivery vehicles for inhibitory

biomacromolecules, such as antibodies, providing a simple

pathway to achieve similar results. A recent study highlights a

designed polymer vehicle to intracellularly deliver an antibody

against PKCq into naïve CD4+ T cells and inhibit its function

(16). This polymer mimics the structure of the designed protein

transduction domain, Pep-1 (ChariotⓇ), by using a block copolymer

architecture with both hydrophobic and cationic blocks (Figure 2B,

MePh10-b-dG5) (52). This polymer has also been shown to

significantly outperform Pep-1 (53), an analog of the naturally

occurring cell penetrating peptide HIV1-TAT (54), and the

commercial delivery agent AbDeliverIN™ (55). The MePh10-b-

dG5 delivery vehicle successfully delivered an anti-PKCq antibody,

and yielded Tregs with elevated FOXP3 expression and suppressive

function (16). The exact mechanism by which these polymers carry

cargo across the cell membrane to enhance the therapeutic agent

delivery continues to be an area of active investigation.

Gene therapy is another avenue for protein manipulation,

typically achieved by viral deliveries, such as lentivirus and

extracellular vesicles, or nonviral deliveries, such as microinjection,

electroporation, and polymeric vehicles (56). Viral delivery vectors

face significant limitations as they pose mutagenetic risks and suffer

from poor production yields (57). Microinjection and electroporation

are popular nonviral delivery methods for genetic materials, but are

harsh on cells, difficult to apply to large cell populations, and not

feasible for in vivo work, making these techniques inadequate for

clinical applications (56, 58, 59). Polymers such as poly

(ethyleneimine), poly(amidoamine), and poly(amino acids), are

promising as nonviral alternatives and have been successful at

intracellularly delivering DNA, mRNA, and other gene editing

technology (26, 60–62).

The CRISPR/Cas9 system has been widely adopted as an

efficient and effective gene editing technology (63, 64). Polymeric

delivery vehicles can be tailor-made for the desired cargo making

them ideal vehicles for intracellular CRISPR/Cas9 delivery.

Recently, poly(b-amino esters) (PBAEs) were synthesized to
A B

FIGURE 2

(A) Cartoon schematic of polymer delivery vehicles (represented by the box) being able to intracellularly deliver therapeutic cargo, such as gene
editing tools (CRISPR/Cas9), small molecule drugs, and antibodies. (B) Examples of polymer delivery vehicles discussed in this mini review.
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encapsulate the CRISPR/Cas9 system and transfect human CD34+

and CD14+ cells (Figure 2B, PBAE) (17). The transfection efficiency

of the CRISPR/Cas9/PBAE nanoparticles (NPs) were >90% and

maintained >86% cell viability. The NPs achieved 85% gene editing

efficiency, which was measured by CD33 knockout. The edited cells

were then injected into mice and the human cell engraftment was

measured. Overall, there was no difference in human cell

engraftment from the untreated control, both in the peripheral

blood and the bone marrow of the mice (17).
3 Concluding remarks and perspective

Polymer materials are becoming increasingly popular to combat

BMF because of their diverse chemical libraries, unique

architecture, and relatively easy synthesis techniques. Here we

have briefly highlighted some recent advances in these materials,

serving as 3D cell matrices or as delivery vehicles for therapeutic

cargo. Though these advancements are promising, there are other

factors that need to be considered. The BM niche is a complex

microenvironment that is difficult to accurately mimic synthetically.

Incorporating cytokines, growth factors, and other BM niche

components complicates the design for recreating a high-fidelity

matrix, as well as for effective cell expansion. Improvements are also

desperately needed to make these additional components

compatible with accessible matrix synthesis techniques, such as

3D bioprinting.

Targeting intracellular pathways that contribute to enhanced

Treg suppressive function have been shown to be promising

therapeutic strategies. Increased expression of specific proteins like

FOXP3, PRMT5, PD-1, and CTLA4 characterize highly suppressive

Tregs, and targeting these proteins or their pathways have the

potential to optimize outcomes in adoptive Treg therapy (65).

These and other proteins and signaling pathways are accessible to

polymers with cell penetrating properties that can deliver gene editing

tools (i.e. CRISPR/Cas9 or siRNA) or signaling disrupting agents (i.e.

inhibitory antibodies). Additionally, the BM microenvironment has

several unique enzymes, such as serine protease 57, elastase,

neutrophil expressed bactericidal permeability increasing protein,

defensin alpha 3, ribonuclease A family member 3, and surface

receptors such as olfactory receptor family 10 subfamily Z member
Frontiers in Immunology 05
1 (Atlas database). If polymer materials can bemodified to specifically

target these unique elements, then therapeutic drugs will be ensured

to solely reach the BM and thus limits off-target toxicity, which is

common in most small molecule therapeutics. Overall, expanding the

use of polymer materials promises to improve BMF therapies by

enhancing stem cell expansion and as delivery vehicles for

therapeutic agents.
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