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Background: Accumulating evidence reveals mitochondrial dysfunction

exacerbates intestinal barrier dysfunction and inflammation. Despite the

growing knowledge of mitochondrial dysfunction and ulcerative colitis (UC),

the mechanism of mitochondrial dysfunction in UC remains to be fully explored.

Methods: We integrated 1137 UC colon mucosal samples from 12 multicenter

cohorts worldwide to create a normalized compendium. Differentially expressed

mitochondria-related genes (DE-MiRGs) in individuals with UC were identified

using the “Limma” R package. Unsupervised consensus clustering was utilized to

determine the intrinsic subtypes of UC driven by DE-MiRGs. Weighted gene co-

expression network analysis was employed to investigate module genes related

to UC. Four machine learning algorithms were utilized for screening DE-MiRGs in

UC and construct MiRGs diagnostic models. The models were developed

utilizing the over-sampled training cohort, followed by validation in both the

internal test cohort and the external validation cohort. Immune cell infiltration

was assessed using the Xcell and CIBERSORT algorithms, while potential

biological mechanisms were explored through GSVA and GSEA algorithms.

Hub genes were selected using the PPI network.

Results: The study identified 108 DE-MiRGs in the colonic mucosa of patients

with UC compared to healthy controls, showing significant enrichment in

pathways associated with mitochondrial metabolism and inflammation. The

MiRGs diagnostic models for UC were constructed based on 17 signature

genes identified through various machine learning algorithms, demonstrated

excellent predictive capabilities. Utilizing the identified DE-MiRGs from the

normalized compendium, 941 patients with UC were stratified into three

subtypes characterized by distinct cellular and molecular profiles. Specifically,

the metabolic subtype demonstrated enrichment in epithelial cells, the immune-

inflamed subtype displayed high enrichment in antigen-presenting cells and

pathways related to pro-inflammatory activation, and the transitional subtype

exhibited moderate activation across all signaling pathways. Importantly, the
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immune-inflamed subtype exhibited a stronger correlation with superior

response to four biologics: infliximab, ustekinumab, vedolizumab, and

golimumab compared to the metabolic subtype.

Conclusion: This analysis unveils the interplay between mitochondrial

dysfunction and the immune microenvironment in UC, thereby offering novel

perspectives on the potential pathogenesis of UC and precision treatment of UC

patients, and identifying new therapeutic targets.
KEYWORDS

ulcerative colitis, mitochondria, immune infiltration, metabolism, bioinformatics
analysis, machine learning, unsupervised clustering
1 Introduction

Ulcerative colitis (UC) is an idiopathic chronic inflammatory

bowel disease (IBD) characterized by mucosal inflammation, which

starts in the rectum and generally extends continuously to proximal

segments of the entire colon (1). The global incidence and

prevalence of UC have been increasing, affecting millions of

patients across the globe (2). Despite the exact etiology is not

fully understood, it is regarded to be an interaction of multiple

factors, involving genetic predisposition, epithelial barrier defects,

microbiota, leucocyte recruitment, and dysregulated immune

responses (3, 4). The diagnosis of UC is confirmed by clinical

symptoms, endoscopic biopsy, and histological evaluation, and

there is currently no gold standard (4). UC has been classified as

proctitis, left-sided colitis or extensive pancolitis depending on the

Montreal classification (5). Levels of disease severity - mild,

moderate, or severe - is usually determined by the Mayo score (6)

or Lichtiger score (7). Nevertheless, neither of above two clinical

classifications, whether based on the inflammation extent or

severity, takes into account the molecular mechanism of UC,

which is a vital step forward in the drive towards precision

medicine. Currently, the mainstay therapeutic agents for UC

include 5-aminosalicylates, corticosteroids, immunomodulators

and biologics, among which, biological agents, such as the tumor

necrosis factor (TNF)-a inhibitors, infliximab (IFX) and

Golimumab (GLM) (8, 9), anti-a4b7 integrin antibodies,

vedolizumab (VDZ) (10) are the most classical and widely used

medications for patients with UC, all of which can induce and

maintain remission to promote mucosal healing (11). Additionally,

another new drug, ustekinumab (an IL-12/IL-23 inhibitor) (12) has

demonstrated efficacy in achieving clinical remission following the

failure of anti-TNF-a therapy (11). Despite expanding therapeutic

options, 10–20% of refractory patients still require proctocolectomy

due to adverse drug reactions and secondary loss of response (4).

The key to breaking through this therapeutic ceiling might be the

combination of therapeutics with personalized precision therapy
02
based on the identification of molecular subtypes that are unique to

individual patients.Therefore, there is a pressing need todetect reliable

diagnostic biomarkers and develop novel molecular stratification to

approach more effective therapeutic strategies of UC patients.

Emerging research has recently revealed that mitochondrial

dysfunction is implicated as a key factor in UC pathogenesis (13).

Mitochondrial dysfunction can lead to energy deficiency to cause

abnormal energy metabolism, such as tricarboxylic acid (TCA)

cycle, fatty acid catabolism, and amino acid biosynthesis, often

impair the epithelial barrier function by increasing susceptibility to

TNF-a-induced cell death, reducing secretory barrier function

(especially Paneth cells and goblet cells), and responding to

regenerative capacity for damaging stimuli (14–16). Thus, the

colonic epithelia of UC patients might have a uniquely high

susceptibility to mitochondrial dysfunction, which can be revealed

by the immune microenvironment of the colonic mucosa to affect

the response to immunotherapy. Mitochondrial damage is able to

affect the phenotype and activation of infiltrating immune cells,

especially dendritic cells (DCs), macrophages, and B cells, via

metabolic reprogramming, which contributes to the maintenance

of an inflammatory milieu for abnormal innate and adaptive immune

responses, then in turn further exacerbatesmitochondrial dysfunction

in the colonicmucosa (17, 18).A comprehensive comprehensionof the

mechanisms underlyingmitochondrial action inUCmay provide new

insights into unraveling the complexity and heterogeneity of UC,

facilitate the identification of optimal treatment strategies for UC

patients for better outcomes, and aid in the discovery of novel

therapeutic targets.

In our study, the most comprehensive colonic mucosal tissue

transcriptomic data by integrating the publicly available UC

transcriptome datasets to date were utilized to explore the

mechanisms underlying mitochondrial action in UC through

comprehensive bioinformatics analysis. Based on a variety of

machine learning algorithms, UC genes diagnostic model was

developed. Unsupervised clustering was applied to identify genes

subclassification in UC patients to comprehensively characterize the
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molecular and clinical characteristics of the subtypes. Furthermore,

the patients in different UC subclassification showed different

performance in the efficacy of the four biological agents,

infliximab (IFX), ustekinumab (UST), vedolizumab (VDZ) and

golimumab (GLM), respectively. These may provide new ideas for

the clinical precision therapy of UC patients from the perspective of

disease heterogeneity.
2 Materials and methods

2.1 Data acquisition and processing

Figure 1 depicts a comprehensive flowchart of the research

procedure. The microarray and RNA-seq datasets analyzed in this

study were obtained from the Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/) database. The final participants

included 17 independent UC datasets, comprising a total of 1891

samples, with 1695 UC samples and 196 healthy control samples.

The training cohort consisted of 941 UC patients from 12

microarray datasets (GSE66407, GSE87466, GSE75214,

GSE47908, GSE48634, GSE212849, GSE92415, GSE206285,

GSE73661, GSE16879, GSE12251, GSE23597), while the

validation cohort included 754 UC patients from 5 RNA-seq

datasets (GSE174159, GSE193677, GSE165512, GSE128682,

GSE72819). Detailed explanations for all datasets are presented in

Supplementary Table S1. The mitochondria-related genes (MiRGs)
Frontiers in Immunology 03
were collected from MitoCarta 3.0 database (https://

www.broadinstitute.org/mitocarta/mitocarta30-inventory-

mammalian-mitochondrial-proteins-and-pathways) (19) and the

gene set enrichment analyses (GSEA, http://www.gsea-

msigdb.org/gsea/index.jsp)(Supplementary Table S2) (20, 21). For

genes represented by multiple probes, only the probes with maximal

signal were used for the further analysis. All microarray data were

normalized using the “limma” R package (22). The raw count data

from RNA-seq experiments were first transformed into the

transcript per million (TPM) formats, followed by log2 (TPM+1)

transformation, to achieve normalization. To remove batch effects

of different data sources, the “ComBat” function within the “sva” R

package (23) was utilized for batch correction.
2.2 Identification of differentially expressed
mitochondria-related genes in UC

The “limma” R package was applied to identify differentially

expressed genes (DEGs) between UC and HC samples (22). All

analyses were adjusted for false positive results using False

Discovery Rate (FDR) correction. Adjusted P-value < 0.05 and |

logFC | > 0.58 were set as the threshold. Volcano plots and heat

maps generated by the “ggpubr” and “pheatmap” packages,

respectively, were used to visualize the screened DEGs.

Additionally, Venn diagram was exploited to display common

genes in both DEGs groups and MiRGs (24).
FIGURE 1

A comprehensive flowchart of the research procedure. Part of the cartoon graphical were drawn by Figdraw.
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2.3 WGCNA and machine learning
algorithms identified the diagnostic
feature genes

Weighted correlation network analysis (WGCNA) is commonly

used to reveal disease-related gene networks and identify co-

expressed gene modules. To screen for co-expressed gene

modules associated with UC, we performed WGCNA analysis

using the “WGCNA” R package (25) for the top 25% of

differentially ranked expressed genes. A soft threshold of b = 10

was selected for scale independence. The cluster height of module

feature genes was set at 0.25, indicating a similarity greater than

0.75. Module and phenotypic data were utilized to evaluate gene

significance (GS) and module significance (MS), and to investigate

the correlation between modules and models. The most significant

module genes, positively and negatively correlated with UC, were

chosen for further analysis. To achieve the most effective feature

subset, four machine learning algorithms were employed for feature

selection: the Boruta algorithm, least absolute shrinkage and

selection operator (LASSO), recursive feature elimination (RFE),

and random forest (RF). The “Boruta” R package was used for the

Boruta feature selection analysis, with 1000 significant runs

(maxRuns = 1000). The LASSO algorithm, implemented through

the “glmnet” R package (26), utilizes l (lambda) as a penalty value

or shrinkage operator to generate a penalty function. This function

compresses the regression coefficients of variables in the model,

effectively addressing the covariance issue and mitigating

overfitting. The optimal composition of signature genes is

determined by selecting the level of minimum cross-validation

prediction error (lambdam.min). The backward feature

elimination technique, known as RFE, is employed to eliminate

feature vectors generated by SVM in order to identify the most

optimal variables (27). In this study, we utilized the “caret” R

package to implement the RFE algorithm for feature gene ranking

and dimensionality reduction. Additionally, the “randomForest” R

package (https://cran.r-project.org/web/packages/randomForest/)

was utilized to construct the random forest tree of the feature

genes, calculate their importance scores, and rank them

accordingly. Only genes identified by the aforementioned four

machine learning feature selection algorithms were deemed as key

genes for subsequent analysis.
2.4 Construction and validation of a UC
diagnostic model based on key MiRGs

A total of 1137 samples (UC: HC = 941:196) were randomly

divided into a training set (UC: HC = 659:138) and a test set (UC:

HC = 282:58) using the “caret” R package at a 70% to 30% ratio. The

training cohort was balanced using the SMOTE algorithm from the

“smotefamily” R package to address data imbalance and prevent

overfitting. SMOTE is an oversampling method that creates new

minority instances based on existing minority instances using the k-

nearest neighbor algorithm. Logistic regression (LR), RF, and

support vector machine (SVM) were employed to develop a

diagnostic model in the training cohort. The LR algorithm was
Frontiers in Immunology 04
implemented using the “glm” function from the R package

“glmnet”. To mitigate the risk of overfitting, a 10-fold cross-

validation approach was employed. Furthermore, the model’s

robustness was assessed by validating it in both the test cohort

and an independent RNA-seq dataset, serving as an external

validation cohort.
2.5 Molecular subtypes of UC driven by
genes associated with mitochondria

To enhance our comprehension of the molecular attributes of

genes associated with mitochondria in UC, we attempted to uncover

the molecular heterogeneity associated with mitochondria in UC.

Unsupervised consensus clustering algorithm analysis of 1000

iterations based on the identified MiRGs in the training cohort via

R package “ConsensusClusterPlus” (28). The clustering algorithm

was configured to employ the “km” method, while the similarity

between samples was assessed based on the euclidean distance. The

determination of the optimal number of clusters was based on the

cumulative distribution function (CDF) and the relative change in

the area under the CDF curve. Principal component analysis (PCA)

plots were generated using the “ggord” R package to verify the

consensus clustering outcomes. The expression of MiRGs in different

subtypes was visualized using the R package “pheatmap”.
2.6 Cibersort and Xcell immune cell
infiltration analysis

The immune infi l trat ing cel ls within the immune

microenvironment of the colonic mucosa of patients with UC and

HC were analyzed using the Cibersort algorithm (29). The

infiltrating abundance of 22 immune cells infiltrating were

evaluated and compared through the utilization of the Wilcoxon

test. Additionally, the Spearman correlation was employed to

investigate the associations between the expression levels of the

identified core genes and the Cibersort scores of the 22 immune

infiltrating cell types. To investigate the infiltration of cells in the

immune microenvironment of the colonic mucosa in patients with

UC, we employed Xcell analysis (30). This analysis utilized xCell’s

standard 64 cell type signatures and was conducted through the

“xCell” R package. The objective was to ascertain the abundance

score of infiltrating immune cells and stromal cells in colonic

mucosal tissues of distinct ulcerative colitis subtypes driven by

mitochondrial genes.
2.7 Enrichment analyses and gene set
variation analysis

In order to ascertain potentially enriched pathways for DEGs

linked to mitochondrial disorders in colonic mucosal tissue from

patients with UC compared to healthy individuals, the pathway and

process enrichment analyses were employed to assess the cellular

component (CC), biological process (BP), molecular function (MF),
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and Kegg pathways associated with UC using the Metascape

platform (Metascape, http://metascape.org) (31). To identify the

MiRGs-driven UC subtypes and their corresponding biological

differences, we utilized the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/mgs/) and employed the C2: CP: KEGG

gene sets and C5: GO gene sets as input files for Gene set Variation

Analysis (GSVA) (32). Furthermore, we utilized the single-sample

gene set enrichment analysis (ssGSEA) to assess the relative

enrichment score of biological pathways across different subtypes.

The specific parameters used in this analysis were method =

“ssgsea” and kcdf = “Gaussian”.
2.8 Protein-protein interaction network
construction and module analysis

Utilizing the outcomes of machine learning feature selection,

the chosen feature genes were employed to establish a protein-

protein interaction (PPI) network using the string database (33),

aiming to elucidate the intricate regulatory associations among the

corresponding proteins of the feature genes. The visualization of the

co-expression network was accomplished utilizing Cytoscape

software (V3.10.1) (34). The module for Molecular Complex

Detection (MCODE) algorithm was employed to identify hub

genes (35). Genes were depicted as nodes, with the size of the

shape indicating the MCODE value, while the lines represented the

interactions between the genes.
2.9 Statistical analysis

Statistical analyses were conducted using R software (version

4.3.2, https://www.r-project.org) and associated R packages. The

Kruskal-Wallis test was employed to assess the statistical

significance among the three groups, while the Wilcoxon test was

utilized to evaluate the statistical significance between the two groups.

A significance level of p < 0.05 was deemed statistically significant.
3 Results

3.1 Identification of DE-MiRGs, functional
annotation, and pathway enrichment in UC

Principal Component Analysis (PCA) was employed to visually

represent the relative distances between datasets, thereby exposing

discrepancies between microarray and RNA-seqs datasets utilized

in this study (Figures 2A, C). Additionally, Figures 2B, D

demonstrates the effectiveness of the “ComBat” algorithm in

eliminating batch effects and data heterogeneity from the

integrated microarray datasets and integrated RNA-seqs datasets,

respectively. Differential expression analysis of the integrated

microarray dataset identified a total of 823 DEGs that exhibited

significant differential expression between UC and HC mucosa

samples, including 358 down-regulated genes and 465 up-

regulated genes in the training cohort (p < 0.05, |logFC| > 0.58);
Frontiers in Immunology 05
results are presented in a volcano plot (Figure 2E). The heatmap

shown visualizes the expression patterns of the top 20 up-regulated

and the top 20 down-regulated DEGs (Figure 2F). Subsequently, a

combined analysis of 2,030 MiRGs and the 823 DEGs was

performed to filter out 108 different expressed MiRGs (DE-

MiRGs) in UC mucosa samples, the intersection of which was

displayed as a Venn diagram (Figure 2G). We used Metascape to

carry out GO analysis and KEGG pathway enrichment analysis to

explore the potential biological roles of DE-MiRGs in UC. The

results of GO enrichment analysis indicated significant involvement

in mitochondrial molecular characteristics (mitochondrial

membrane and mitochondrial matrix), mitochondrial metabolism

of biological process (monocarboxylic acid metabolic process and

small molecule biosynthetic process), and oxidoreductase activity

(Figure 2H). In addition, an investigation of KEGG and the

Reactome pathway primarily suggested that these genes were also

significantly enriched in immune- and inflammatory-related

signaling pathways. These included the peroxisome proliferator-

activated receptor signaling pathway and interleukin-4 (IL-4) and

interleukin-13 signaling but not mitochondrial energy metabolism,

including metabolism of lipids, pyruvate metabolism, and the

metabolism of amino acids and derivatives (Figure 2I). The

terminologies were in alignment with established concepts of UC

pathophysiology, that suggests that MiRGs expression patterns

participate in the development and progression of UC.
3.2 Construction of MiRGs diagnostic
models based on machine
learning algorithms

Utilizing the WGCNA for module categorization, a total of

eight modules were identified (Figures 3A, B). We selected the pink

module (r = 0.69, p = 4e−161), which showed the most positive

correlation with UC, and the blue module (r = -0.46, p = 1e−59),

which showed the most negative correlation with UC as key

modules (Figure 3C). A total of 978 significant module genes

were screened for subsequent analysis, which were overlapped

with the 823 DEGs and 2030 MiRGs by the Venn diagram,

ultimately yielding 75 candidate genes (Figure 3D). Next, four

machine learning algorithms [Boruta (Figure 4A), LASSO

(Figures 4B, C), SVM-RFE (Figure 4D), and RF (Figure 4E)] were

used for feature selection in these 75 genes. Finally, we obtained 17

signature genes by taking the intersection of the results of the above

four algorithms (Figure 4F). Given the current limitations in tools

for clinical detection of UC, we constructed diagnostic models using

RF, SVM, and LR algorithms utilizing signature genes co-selected

by the abovementioned machine learning. The microarray datasets

were randomly partitioned into a training cohort and internal test

cohort at a ratio of 7:3, while RNA-Seq datasets were used as an

external validation cohort. The performance of RF, SVM, and LR

models was evaluated in all cohorts using diagnostic ROC curves. In

the training cohort, the prediction accuracy of the feature genes

screened by the RF algorithm was 99.98%, which was better than

those of SVM algorithm (98.29%) and the LR algorithm (98.48%)

(Figure 4G). Similarly, consistent results are observed in the test
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cohort that the RF algorithm achieved an AUC value of 98.76%,

while SVM and LR models achieved AUC values of 97.93% and

97.71% (Figure 4H). Nevertheless, in the validation cohort, AUC

values were 75.22% and 82.36%, 81.61%, respectively (Figure 4I).

Overall, the three machine learning models demonstrate excellent

predictive performance, with the SVM model exhibiting the best

performance and robustness, which suggests a satisfactory

diagnostic effectiveness of 17 MiRGs for a clinically precise

diagnosis of UC.
3.3 Immune-infiltrating landscape of UC

The CIBERSORT algorithm was employed to characterize the

abundance of 22 immune cell infiltration in the colonic mucosa of

UC and HC groups. Figure 5A shows the distribution of immune
Frontiers in Immunology 06
cell types in each sample for both groups, while Figure 5B illustrates

differences in the abundance of infiltrated immune cells between the

two groups. Compared with HC groups, higher levels of memory B

cells, follicular helper T cells, g & d T cells, M0 and M1

macrophages, activated dendritic cells, and activated mast cells

and neutrophils were found to be infiltrating the colonic mucosa

of patients with UC. This indicated a significant difference in the

immune microenvironment between UC and HC groups.

Spearman’s correlation analysis was used to investigate the

relationship among the 17 signature genes. We found that

SLC25A20, ACADM, ETFDH, SLC19A3, CPT1A, BSG, and other

genes exhibited predominantly positive correlations, while STOM,

PDPN, PLAUR, PLA2G2A, and OLFM4 showed mainly negative

correlations (Figure 5C). Subsequently, we constructed a PPI

network of these signature genes using a STRING database to

reflect their interaction. The result was visualized by Cytoscape,
B C D

E F G

H I

A

FIGURE 2

Screening of DE-MiRGs between UC and HC samples, and function enrichment analysis. PCA shows the batch effects of the twelve microarray
datasets before (A) and after (B) the removal of batch effects using the ‘ComBat’ function from the ‘sva’ package in R. PCA shows the batch effects
of the five RNA sequencing datasets before (C) and after (D) the removal of batch effects using the ‘ComBat’ function from the ‘sva’ package in R.
Volcano plot (E) and heatmap (F) show the DEGs in combined GEO microarray datasets of UC and HC in colonic mucosa samples. (G) The Venn
diagrams to demonstrate the extent of overlapping of DEGs and MiRGs. (H) GO enrichment analysis results of DE-MiRGs in BP, CC, and MF were
performed with Metascape. (I) KEGG and Reactom enrichment analysis results of DE-MiRGs were performed with Metascape.
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as shown in Figure 5D, in which four highly related hub genes were

identified, including SLC25A20, ACADM, CPT1A and ETFDH. To

clarify the potential association between hub genes and UC, we

assessed the correlation between the expression levels of four hub

genes and 22 immune-infiltrating cells in the colonic mucosa of

patients with UC. The result demonstrated that all four hub genes

showed a variety of correlation with immune infiltration. Such hub

genes exhibited a close negative link with most immune cells, such

as activated mast cells, memory B cells, M0 and M1 macrophages,

and activated DCs. The hub genes were positively associated with

M2 macrophages, activated NK cells, resting CD4 memory T cells,

resting mast cells, and CD8 T cells (Figures 5E–H). This finding is

consistent with our previous studies, and may facilitate

understanding the immunological features and molecular

mechanisms of UC.
3.4 Identification of three molecular
subtypes of UC with distinct cellular and
molecular features driven by MiRGs

In order to establish a more comprehensive definition of

mitochondria-related gene expression-driven subgroups in UC,

we performed an unsupervised cluster analysis on 941 UC colonic
Frontiers in Immunology 07
mucosal samples based on 108 DE-MiRGs. As a result, k = 3 was

identified as the optimal number of clusters to ensure the robustness

of clustering results, based on the CDF values and delta area

(Figures 6A–C). Consequently, we finally obtained three MiRGs

driven subtypes of UC, designated as UC-M (n = 192), UC-T (n =

399), and UC-I (n = 350) subtypes. The heatmap showed obvious

heterogeneity in the gene expression profiles of these 108 DE-

MiRGs among the three subtypes (Figure 6D). The PCA results

further confirmed a distinct separation between the three UC

subgroups (Figure 6E).

To explore the possible molecular attributes and physiological

roles of three subtypes in the colonic mucosa of patients with UC, we

characterized different MiRGs related to the immune state across 64

cell signatures and immune-related pathways. The results of

differential abundance of immune cell infiltration revealed that the

UC-I subtype was highly infiltrated by most immune cells, especially

antigen-presenting cells (including DCs, monocytes, macrophages,

and B cells), while the UC-M subtype was distinctly enriched in

epithelial cells (Figure 7). GSVA analysis was performed to assess

differences in functions and pathways enriched in mitochondria gene

expression-driven subtypes. Figure 8 shows that the UC-M subtype

had a relatively high enrichment score in metabolism-related

pathways. For instance, these included the citrate cycle

(tricarboxylic acid [TCA] cycle), butyrate CoA ligase activity, fatty
B

C D

A

FIGURE 3

WGCNA reveals modules of co-expressed genes related to UC disease. (A) The scale-free fit index for various soft-thresholding powers (b) and the
mean connectivity for different soft-thresholding powers determine the final soft threshold of the WGCNA. (B) The heatmap of the WGCNA
module–trait association. (C) The dendrogram displays the clustering of dissimilar genes according to their topological overlap, along with the
corresponding merged module colors. (D) The Venn diagram shows the common intersection genes of DEGs, module genes identified by WGCNA,
and MiRGs.
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acid metabolism, and taurine and hypotaurine metabolism. In

comparison, immune- and inflammation-related pathways, such as

CXCR chemokine receptor binding, the NOD-like receptor signaling

pathway, Toll-like receptor signaling pathway, and FCgR-mediated

phagocytosis, were significantly enriched in UC-I subtype. Most

immune cells and immune-related pathways showed modest

activation in the UC-T subtype. These results suggest significant

differences in immune infiltration, biological function, and pathway

activity between different UC subtypes. Thus, utilizing these

molecular features, the UC-M subtype was defined as a metabolic

subtype enriched in epithelial cells, the UC-T subtype was described
Frontiers in Immunology 08
as a transitional subtype, and the UC-I subtype was defined as an

immune-inflamed subtype enriched in antigen-presenting cells. In

addition, DCs showed particular infiltration in this study, so their role

in UC deserves further investigation.
3.5 Validation of classification by
external cohort

The robustness of classification results was confirmed by

integrating five publicly available UC mucosal biopsy RNA-seq
B C

D E F

G H I

A

FIGURE 4

Feature selection and diagnostic model construction via several machine learning algorithms. (A) Candidate optimal genes selection based on the
Boruta algorithm. The horizontal axis represents the gene, while the vertical axis represents the Z-value of each gene. (B,C) The LASSO regression
used to select candidate optimal gene for UC. LASSO coefficient profiles of the 75 genes. Optimal parameter (lambda) selection in the LASSO model
used tenfold cross-validation via minimum criteria. (D) Optimal genes selection using the SVM-RFE algorithm with the highest accuracy and lowest
error obtained in the curves. (E) Optimal genes identified using the random forest algorithm. Genes importance in random forest assessed by mean
decrease in Gini index. (F) Venn diagram showed the intersection of Candidate optimal genes identified by the four algorithms. ROC curve of the
three machine‐learning diagnosis model based on 17 optimal genes in the training cohort (G), internal test cohort (H), and external validation
cohort (I).
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datasets. Patients were categorized into three subtypes using the

gene expression profiles of 108 DE-MiRGs (designated as UC-M

(n = 283), UC-T (n = 291), and UC-I (n = 180) subtypes

(Supplementary Figure 1). Our findings were consistent with the

enrichment scores of UC-related cell subpopulations and pathways

(Supplementary Figure 2,3). The UC-M subtype was characterized

by epithelial proliferation and mitochondrial metabolism, UC-T

was described as showing modest immune activation, and UC-I was

identified as an immune-inflamed type.
Frontiers in Immunology 09
3.6 The efficacy of biological agents was
significantly different between the three
UC subtypes

According to the latest IBD Treatment Guidelines 2023,

biological agents such as the tumor necrosis factor (TNF)-a
inhibitors, infliximab (IFX) and Golimumab (GLM), anti-a4b7
integrin antibodies, vedolizumab (VDZ), and the IL-12/IL-23

inhibitor, ustekinumab (UST), are approved for the treatment of
B

C D

E
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FIGURE 5

Immune infiltration analysis of UC. (A) Histogram showing the distribution of 22 immune cells infiltration between the UC samples and HC samples.
(B) The Boxplots represented proportion of the 22 typical immune cells infiltrating in the colonic mucosa immune microenvironment of UC samples
and HC samples based on the CIBERSORT algorithm. ns, not significant; **p <0.01; ***p<0.001. (C) Heatmap showing statistically significant
correlations between 17 optimal genes identified by the four machine‐learning algorithms based on Spearman’s correlation. (D) Further identification
of hub genes from the PPI network by using the MCODE algorithm. (E-H) The lollipop plots showing the correlations between 4 hub genes and 22
typical immune cells.
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UC and have been proposed as first-line treatment options for

moderate to severe UC. Thus, we evaluated the response to

treatment in different subtypes using the above four biologics

(Figures 9A–D). The proportion of favorable responses observed

for the UC-M and UC-T subtypes consistently exceeded that of the

UC-I subtype. All biological agents showed the highest response

rates in the UC-M subtype. It is worth mentioning that the UC-M

[69.23% and 39.29%] and UC-T [63.46% and 35.71%] subtypes

exhibited favorable responses for IFX and GLM, while the UC-I

subtype was completely unresponsive to VDZ. Moreover, UST

elicited relatively inadequate responses in all three subtypes.

However, due to insufficient sample size, these differences may

not have reached statistical significance. In conclusion, the efficacy

of biological agents in UC patients may be influenced by the unique

pathological characteristics of individual colonic mucosal tissues

and their molecular activity. Our study indicates that the diverse

molecular subtypes of colonic mucosa in ulcerative colitis could

impact the response to drug therapy, highlighting the importance of
Frontiers in Immunology 10
considering these factors in the clinical application of

these medications.
4 Discussion

Emerging evidence indicates that mitochondrial dysfunction

plays a role in the progression of UC by affecting the integrity of the

intestinal epithelial barrier and mucosal immune tolerance. This

study establishes a connection between mitochondrial-related genes

and UC, investigates potential pathogenic mechanisms, and

presents novel avenues for the diagnosis, categorization, and

management of the disease.

By conducting a thorough bioinformatics analysis of the largest

cohort of patients with UC to date, we identified 17 signature genes

associated with mitochondria that play a significant role in the

progression of the UC. We developed genetic diagnostic models for

UC using multiple machine learning algorithms that demonstrated
B C

D E

A

FIGURE 6

Unsupervised consensus clustering identified the subtype of UC driven by MiRGs. (A) Consensus matrix heatmap defining three clusters. The bars
between the dendrogram and the heatmap represent the molecular clusters. A stable and robust clustering of the samples is evident from the
boundary of the consensus matrix. (B) The Cumulative distribution function (CDF) curve of different K-values. When k = 3, the CDF curve with the
slowest downward trend represents the most stable clustering. (C) The Delta area plot of different K-values, indicating the relative change in area
under the CDF curve between K and K-1. (D) Gene expression heatmaps of 941 UC samples based on consensus cluster assignment. The colorful
scale of heatmap reflects the relative expression levels where blue represents low expression and red represents high expression. (E) Principal
components analysis (PCA) for the DE-MiRGs expression profiles showing the stability and reliability of the classification.
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strong predictive capabilities and clinical utility. Furthermore, a

systematic bioinformatic analysis was performed on the screened

genes to investigate the intrinsic relationship between gene-gene

and gene-disease. Our study identified a significant correlation,

either positive or negative, among the signature genes, indicating

potential synergistic or antagonistic interactions that may

contribute to the development and advancement of ulcerative

colitis. Four hub genes (SLC25A20, ACADM, CPT1A and

ETFDH) were subsequently identified by PPI network analysis.

As of now, there has been no comprehensive investigation into

the role of UC resulting from the activity of these four genes.

CPT1A, identified as a promising target for clinical therapy,
Frontiers in Immunology 11
catalyzes the transfer of a long-chain acyl group from an acyl-

CoA ester to carnitine, allowing fatty acids to enter the

mitochondrial matrix for oxidation (36). The DSS-induced mice

model of UC has been reported that downregulation of CPT1A can

protect UC partially by inhibiting PPARa signaling, which suggest

that the development of small molecule drugs targeting CPT1Amay

provide prospective therapeutic options for the UC clinical therapy

(37). Additionally, a Mendelian randomization analysis of the

specific MiRGs in IBD (38) indicated that genetically predicted

levels of ACADM methylation, expression, and the corresponding

protein were highly correlated with UC. Nevertheless, there is

limited evidence from observational epidemiological and
B C D
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A

FIGURE 7

Cell subpopulation-driven characterization of UC subtypes. (A–P) Box plots revealed cell subpopulation enrichment scores across the UC colonic
mucosa subgroups. Differences across the three subgroups were analyzed using the Wilcoxon test; ns, not significant; **p <0.01; ***p <0.001;
**** p<0.0001.
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experimental studies regarding the association between ACADM

and UC. Thus, ACADM is prioritized as a potential drug target for

UC, and needs to be validated in future trials. For inflammatory

UC, the study by Jan Söderman et al. showed that SLC25A20

has been documented downregulation in inflamed UC mucosa

but upregulation was detected in non-inflamed UC mucosa

(39). Therefore, we suggest that targeting SLC25A20 in

pharmacological application of our UC-I subtype has great

potential. A significant role for feasible therapy against ETFDH in

UC has not been reported. In the future, we will try animal

experiments or other measures to explore the role of ETFDH in

UC and the mechanisms of these four hub genes in UC treatment.

Our research will also focus on elucidating the underlying drug-

gene interactions in order to identify potential therapeutic agents.
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Currently, anti-TNF-a drugs and other biological agents have been

used in UC for many years. It is urgent and essential to develop

specific drugs targeting MiRGs for refractory patients who do not

show an objective treatment response.

According to reports from the last few years, mitochondrial

dysfunction may underlie intestinal mucosal injury (40).

Mitochondrial metabolism is key to the regulation of the function

of the intestinal epithelial barrier function. For instance, due to

defective mitochondrial acetoacetyl CoA thiolase activity in UC,

disrupted b-oxidation of butyrate, the preferred energy source of

colonic epithelial cells (41), as first shown by Roediger (42), has

been implicated in the pathogenesis of UC. However, mitochondrial

dysfunction induces inflammatory responses in innate immune

cells by promoting the production of pro-inflammatory cytokines
B C

D E F

G H I

A

FIGURE 8

Pathway-driven characterization of UC subtypes. (A–I) Box plots revealed pathway activation scores across the UC colonic mucosa subgroups.
Differences across the three subgroups were analyzed using the Wilcoxon test; **** p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1396221
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1396221
(TNF-a, IL-1b, and interferon [IFN]-g) through excessive derived

reactive oxygen species and an active endogenous damage-

associated molecular pattern (43–46). In addition, mitochondrial

metabolism is also intimately linked to immune inflammation.

Studies have shown that the mitochondrial metabolic state of

immune cells can influence their phenotype, pro-inflammatory or

anti-inflammatory polarization states, and the efficacy of immune

responses (17). In the case of macrophages, M1 macrophage

polarization depends on anaerobic glycolysis, whereas M2

macrophage polarization relies on fatty acid metabolism and

OXPHOS (47). These are consistent with our subtype

classifications driven by mitochondrial gene expression.

Specifically, the UC-M subtype has a transcriptomic signature in

epithelial cell proliferative-related pathways, while the IC-I subtype

exhibits high enrichment in immune cells and proinflammatory

activation-related pathways. Expectedly, the UC-T subtype is

considered a transitional subtype.

The crucial role of the immune response in the UC pathogenesis

has been the focus of much attention. Our systematic evaluation of
Frontiers in Immunology 13
immune infiltration revealed that the expression levels of almost all

immune cells in UC were significantly higher than those in the HC

cohort, which is consistent with the results of many previous

studies. Magnusson et al. (48) found that increased numbers of

DCs and macrophages, activated upon Toll-like receptors, are

characterize the inflamed intestinal lamina propria in UC. This is

consistent with our observation of immune cell infiltration in an

immune-inflamed subtype. Notably, the metabolism of DC subsets

is intrinsically linked to their ability to control Th cell polarization

(49). Gut cDC1 produces more IL-12 to drive Th1 polarization than

any other DC subsets especially cDC2, which is responsible for Th2

differentiation in a variety of type 2 immune responses (50).

Paradoxically, high Th1 expression was observed in the metabolic

subtype in our study. This could possibly because the TCA cycle

supports Th1 cell proliferation and function through distinct

mechanisms. An example is promoting the production of IFN-g
by elevating cytosolic acetyl-CoA pools through mitochondrial

citrate export, which cooperated with TNF-a to induce apoptosis

of intestinal epithelial cells and damage to the intestinal mucosal
B

C D

A

FIGURE 9

Stacked bar graphs showing the response status of different subtypes to multiple biological agents. Response: responded to the biologics; non-
response: did not respond to the biologics. (A) Response/non-response to IFX: 69.23%/30.77% in subtype UC-M, 63.46%/36.54% in subtype UC-T,
and 10.34%/89.66% in subtype UC-I. (B) Response/non-response to UST: 21.43%/78.57% in subtype UC-M, 17.76%/82.24% in subtype UC-T, and
5.15%/94.85% in subtype UC-I. (C) Response/non-response to VDZ: 25.00%/75.00% in subtype UC-M, 22.22%/77.78% in subtype UC-T, and 0%/
100% in subtype UC-I. (D) Response/non-response to GLM: 39.29%/60.71% in subtype UC-M, 35.71%/64.29% in subtype UC-T, and 20.34%/79.66%
in subtype UC-I.
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barrier (51, 52). Moreover, IL-12 expression of DCs has been

demonstrated to be critically dependent on glycolysis (49). Such

prior studies all strongly support our findings. We further speculate

that DCs with different Th cell-polarizing properties have distinct

mitochondrial metabolic profiles. Additionally, gut DCs have been

reported to induce more IL-4 (Th2 cytokine) production but less

IFN-g (Th1 cytokine) and less IL-22 production by T cells. This

leads to an enhanced capacity to imprint gut-specific homing

properties on effector T cells, skewing gut-specific T cell

responses towards a Th2 profile (53, 54). This supports the

evidence of UC being a Th2-dominant disease.

In light of our analysis, the metabolic subtype exhibited a higher

abundance of epithelial cells and exhibited favorable responses to

diverse pharmacological interventions. Whereas the immune-

inflamed subtype, characterized by antigen-presenting cell

infiltration, presented divergent outcomes and demonstrated

inadequate responsiveness to multiple medications. The observed

variations in disease activity and drug efficacy across distinct

subtypes hold promising clinical implications for the management

of UC in patients. The ability of IL-22 to promote stem cell–

mediated intestinal epithelial regeneration in mice and humans has

been repeatedly demonstrated by Lindemans et al. (55) using

different experimental approaches. Others have shown the

transfer of IL-22 producing immune cells can enhance recovery

from dextran sodium sulfate-induced (56, 57). In addition, further

studies revealed that increased IL-22 production after IFX therapy

responded well to epithelial cell repair (58). Besides its anti-

inflammatory proper t ies , IFX can a lso enhance the

glycerophosphatidylcholine level by regulating lipid metabolism

to protect the integrity of intestinal mucosa (59, 60). These

findings highlight the superior outcomes of anti-TNFa agents in

the UC metabolic subtype.

The immune-inflamed subtype exhibited a less-than-ideal

response to various drugs, with a secondary loss of response. The

reason for this mechanistic escape remains unclear but is thought to

be primarily immunogenicity or an inflammatory burden, resulting

in increased drug clearance (61–63). It was deduced that patients

exhibiting immune-active characteristics and high levels of immune

inflammation are likely to have refractory UC and may warrant

therapeutic drug monitoring. For such refractory patients,

combining targeted therapies (CTT) may act synergistically to

enhance the response to therapy, cover extraintestinal

manifestations of disease, or reduce the risk of treatment failure

(64). IFX has more potent immunogenicity than other anti-TNF-a
agents, because IFX is a chimeric antibody of which 25% has a

murine structure (63). In the UC-SUCCESS randomized double-

blind trial (65), patients receiving combination therapy with IFX

and azathioprine (39.7%) had a significantly higher remission rate

at week 16, compared with IFX alone (22.1%). Patients also showed

reduced antibody formation against IFX, but had an increased risk

of infection and tumor induction. Not enough evidence exists to

support the combination of immunosuppressants with other anti-

TNF-a agents such as GLM. The gut-selective properties of VDZ

would theoretically support its selection as one of the options for

combination regimens to reduce the risk of adverse events (63).

Nevertheless, the TREAT registry dose not indicated any benefit in
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a combination of immunosuppressants with VDZ or UST. Hence,

combining small molecule agents targeting specific inflammatory

pathways may be one of the most promising emerging therapeutic

options for patients with refractory UC who lack effective

alternatives. Tofacitinib, a pan-active small molecule pan-active

JAK inhibitor, has been demonstrated to inhibit the inflammatory

process in UC, mainly by mediating the JAK/STAT inflammatory

signaling and pro-inflammatory cytokine signaling, such as by IL-6

and IFN-g (66, 67). It is also an attractive choice as an oral agent

without concerns about being immunogenic. The efficacy and safety

of tofacitinib have been confirmed in clinical trials and real-world

practice in the maintenance treatment of refractory UC patients

(68–70). Recent retrospective studies by Gilmore et al. (71) and

Hilley et al. (72) reported that all patients with refractory UC who

showed a partial response to a single biologic agent remained on

biologics/tofacitinib combination therapy. Of this, 71% vs. 80%,

respectively, achieved clinical remission, and 43% vs 40%,

respectively, achieved endoscopic remission; clinical response

rates were both higher than with monotherapy. In addition,

apremilast, a new oral small-molecule PDE4 inhibitor, can cause

an increase in intracellular cAMP levels to reduce those of pro-

inflammatory mediators (e.g., TNF-a and IL-23, activating DCs)

and increase levels of anti-inflammatory mediators (e.g., IL-10,

inhibiting DCs) (73). A recent 12-week phase II clinical trial (No.

NCT02289417) conducted by Danese et al. (74) revealed

improvements in multiple efficacy indicators in patients with

active UC treated with apremilast. Together with our above

analysis, we suggest that apremilast functions as a safe and well-

tolerated anti-inflammatory agent, targeting DCs specifically, for

patients with UC. The therapeutic response in combination with

biological agents still needs to be validated in future trials. That is,

biologics/small molecule agent combination therapy, to the extent

that it reduces both immunogenicity and a high inflammatory

burden, has the potential to minimize steroid exposure, induce

remission, and avoid colectomy by facilitating a safe transition to

maintenance therapy. However, relevant research is still limited.

Rigorous randomized trials are needed to obtain efficacy and safety

data as well as to assess and carefully discuss risks and benefits for

short durations to minimize the risk of adverse events. Hence,

further investigation is warranted to assess the efficacy of combining

biologics with small molecule inhibitors in the treatment of

refractory ulcerative colitis, potentially yielding valuable insights

for managing patients with immune-inflammatory subtypes of

the disease.

Nonetheless, several limitations in this study bear mentioning.

First of all, more metadata would be ideal, but an unavoidable

selection bias may exist. Second the complete annotation of clinical

information for each UC sample is lacking. Furthermore, we found

that the robustness of the diagnostic model in the validation cohort

was worse than that in the training and testing cohorts (82.36%% vs

97.93%/98.29%%). The main reason for this discrepancy may be the

different data sources that the clinical samples in the internal

training and testing cohorts were from microarray datasets, while

RNA-seq datasets was applied in the external validation cohort.

However, this bias does not affect our results. Considering the above

results, our study was conducted using only clinical samples,
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without in vivo or in vitro validation. Therefore, further studies are

required to provide convincing evidence for our results, which will

be the focus of our future research.
5 Conclusions

In conclusion, this is the first and largest study published to date

on the diagnosis and classification of UC from the perspective of

mitochondrial dysfunction. We employed bioinformatics methods

to identify signature genes of high value, and developed a predictive

model with precise diagnostic capabilities. Furthermore, we

categorized ulcerative colitis into three distinct groups using

MiRGs. Our findings can be used to better elucidate the

heterogeneity and treatment response of patients with UC in

order to gain an insight into molecular mechanisms and to design

stratified treatment protocols for such patients.
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