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Acute cellular rejection remains a significant obstacle affecting successful

outcomes of organ transplantation including vascularized composite tissue

allografts (VCA). Donor antigen presenting cells (APCs), particularly dendritic cells

(DCs), orchestrate early alloimmune responses by activating recipient effector

T cells. Employing a targeted approach, we investigated the impact of donor-

derived conventional DCs (cDCs) and APCs on the immunogenicity of skin and

skin-containing VCA grafts, using mouse models of skin and hind limb

transplantation. By post-transplantation day 6, skin grafts demonstrated severe

rejections, characterized by predominance of recipient CD4 T cells. In contrast,

hind limb grafts showed moderate rejection, primarily infiltrated by CD8 T cells.

Notably, the skin component exhibited heightened immunogenicity when

compared to the entire VCA, evidenced by increased frequencies of pan (CD11b-

CD11c+), mature (CD11b-CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs

and cDC2 subset (CD11b+CD11c+MHCII+) in the lymphoid tissues and the blood of

skin transplant recipients. While donor depletion of cDC and APC reduced

frequencies, maturation and activation of DCs in all analyzed tissues of skin

transplant recipients, reduction in DC activities was only observed in the spleen

of hind limb recipients. Donor cDC and APC depletion did not impact all

lymphocyte compartments but significantly affected CD8 T cells and activated

CD4 T in lymph nodes of skin recipients. Moreover, both donor APC and cDC

depletion attenuated the Th17 immune response, evident by significantly reduced

Th17 (CD4+IL-17+) cells in the spleen of skin recipients and reduced levels of IL-17E
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and lymphotoxin-a in the serum samples of both skin and hind limb recipients. In

conclusion, our findings underscore the highly immunogenic nature of skin

component in VCA. The depletion of donor APCs and cDCs mitigates the

immunogenicity of skin grafts while exerting minimal impact on VCA.
KEYWORDS

acute cellular rejection, vascularized composite-tissue allografts (VCA), antigen
presenting cells (APCs), conventional dendritic cells (cDCs), allograft immunogenicity,
mouse models of skin and hind limb transplantation, Th17 immune response
1 Introduction

Vascularized composite tissue allotransplantation (VCA), the

transplantation of multiple tissue types including skin, nerves,

muscles, and bones has become an accepted clinical reality: VCA

encompasses the reconstructive transplantation of upper and lower

extremities in amputees, facial transplantation for craniofacial tissue

defects and the transplantation of reproductive organs (1–4). VCA

recipients experience exceptionally high rates of acute rejection

episodes, affecting approximately 85% of patients within first year,

with figures reaching as high as 100% in some centers (5, 6). The

elevated incidence of acute cellular rejection (ACR) in VCA can be

attributed to the access and ease of obtaining skin biopsies (7), but has

been primarily linked to the augmented immunogenicity of its skin

component (5). ACR of the skin component in VCA responds in

general quite well to the treatment, with only few graft losses. More

frequent acute rejection rates, at the same time, may increase the risk

of graft loss with increased rates of chronic rejection and

vasculopathy. A detailed understanding of VCA immunology is

thus a prerequisite to improve the graft management through the

development of targeted therapeutic strategies (5, 7).

Current immunosuppression protocols in VCA are primarily

based on standard protocols used in solid organ transplantation

(SOT). These protocols typically involve an antibody-based

induction therapy with polyclonal antithymocyte globulin (ATG) or

monoclonal antibodies (mAb) including alemtuzumab or basiliximab,

followed by maintenance immunosuppressive regimens usually

consisting of tacrolimus, mycophenolate mofetil, and prednisolone

(8). While these protocols have shown partial effectiveness in VCA,

the lifelong use of immunosuppressive regimens comes with

considerable risks and unwanted effects, including infections,

metabolic disorders, and malignancies. These risks must be weighed

against the life-enhancing, though only rarely life-saving nature of

VCA therapy (9, 10). To ensure long-term graft acceptance through

specifically tailored immunosuppression protocols for VCA patients, a

comprehensive understanding of the underlying mechanisms during

early and late immune responses to VCA is imperative.

The initial alloimmune response against the graft is triggered by

donor-derived antigen presenting cells (APCs), primarily dendritic

cells (DCs) (11–14). Donor DCs activate recipient alloreactive T
02
cells either by directly presenting intact antigens after migrating to

the draining lymph nodes or through transfer of intact donor major

histocompatibility (MHC)-antigen complexes to recipient DCs.

Immunogenic and regulatory role of graft-derived DCs has been

documented in skin and solid organ transplantations (11–16).

However, it is still under discussion if VCA-derived DCs

predominantly facilitate graft acceptance or trigger immune

activation that leads to rejection.

Here, we aimed at distinguishing recipient’s alloimmune response

between isolated skin and the entire VCA grafts utilizingmousemodels

of hind limb and skin transplantation. Moreover, we investigated the

influence of APCs, particularly cDCs, on initiating and/or modulating

the alloimmune response in VCA compared to skin transplants. Our

findings underscore a more potent immunogenicity of the skin

component relative to the entire VCA and emphasize that pre-

implant depletion of donor DCs and APCs ameliorates the

immunogenicity of murine skin and hind limb transplants through a

modulation of Th17 responses in recipient animals.
2 Materials and methods

2.1 Animals

Female C57BL/6J (H-2kb, donor) and DBA/2J (H-2kd,

recipient) mice were purchased from Charles River Laboratories

(Sulzfeld, Germany) or obtained from the central animal facility

(Forschungseinrichtungen für Experimentelle Medizin, FEM) of the

Charité – Universitätsmedizin Berlin, Germany. Breeding pairs of

B6(Cg)-Zbtb46tm1(HBEGF)Mnz/J (B6 zDC-DTR, Jax Mice, stock

number: 019506) were purchased from Jackson Laboratory (Bar

Harbor, ME, USA) and bred in the FEM at Charité. In zDC-DTR

knock-in mice, human diphtheria toxin (DT) receptor (DTR) is

integrated into the promoter region of cDC-specific zinc finger

transcription factor (zDC). Treatment with diphtheria toxin ensures

targeted depletion of cDCc in these mice (17). Mice, weighing 20-24

g, were used for all the experiments and had ad libitum access to

food and water. Animals received human care in compliance with

the ‘Principles of Laboratory Animal Care’ prepared by the National

Academy of Sciences and published by the National Institutes of
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Health (NIH Publication No. 86-23, revised 1985). The State Office

for Health and Social Affairs (Landesamt für Gesundheit und

Soziales), Berlin approved and supervised all animal experiments

(approval number: G0300/17).
2.2 In vivo treatment

For cDC depletion zDC-DTR knock-in mice received an

intraperitoneal (i.p.) injection of 10 ng of DT (Sigma-Aldrich, St.

Louis, MO, USA) per gram of body weight 15 hours before

transplantation. Transient depletion of all antigen presenting cells

(APCs) was achieved by injecting 100 µl clodronate liposomes

intravenously (i.v.) into C57BL/6J on day -8, -5 and -1 before

transplantation, as previously described (18). All control mice

received the same amount of PBS liposomes (Liposoma B.V., The

Netherlands) using the same injection schedule.
2.3 Orthotopic hind limb transplantation

Hind limb transplantations in the mouse model were performed

under inhalation anesthesia with isoflurane (2%) as previously

described (19). Briefly, the left hind leg of the donor mouse was

prepared by shaving and disinfecting the skin of the thigh region,

followed by a circumferential cut in the center of the femur. The

femoral artery and vein were isolated and dissected to ensure

sufficient length for subsequent vascular anastomoses. The

remaining thigh muscle groups were then severed, followed by a

transverse femur osteotomy with a sharp scalpel. The grafts were

perfused via femoral artery with 2 ml of ice-cold histidine-

tryptophan-ketoglutarate (HTK) solution (Cardiolink, Barcelona,

Spain). Polyamide cuffs were placed over the femoral vessels,

followed by cold storage of the graft in ice cold HTK solution for

approximately 1 hour until transplantation.

In recipient mice, the equilateral hind leg was removed

congruently after clamping the femoral artery and vein proximal

to the circumferential cut. The graft was first orthotopically

connected to the recipient via femoral osteosynthesis using an

intramedullary rod made from a 22-gauge blunt cannula. The

femoral vein and artery were then anastomosed between donor

and recipient with a cuff technique. Finally, the muscles were

adapted in layers, followed by anastomosis of the skin with 6-0

Vicryl™ (Ethicon/Johnson&Johnson Medical GmbH, Norderstedt,

Germany) suture. The animal was kept on a warming pad

throughout the operation. For post-operative analgesia, animals

received 0.05 mg/Kg BW of Buprenorphine (Temgesic®, Indivior

Europe Limited Dublin, Ireland) and 5 mg/Kg BW of Carprofen

(Rimadyl®, Pfizer, Berlin, Germany).
2.4 Skin transplantation

Skin transplants in the mouse were performed based on established

anesthetic and analgesic protocols, described for hind limb

transplantation. Full thickness skin grafts were procured from donor’s
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dorsum with blunt dissection at the level of the areolar connective tissue

under sterile conditions and prepared prior to transplantation via

separation of the epidermis from the remaining tissue. The skin grafts

were kept on ice for approximately 1 hour prior to transplantation,

aligning with unavoidable cold ischemia time incurred during the

transplantation of murine hind limb grafts. A transplant bed of

approximately 10 x 10 mm was prepared on the dorsal trunk of the

recipient mouse by removing a narrow strip of epidermis including hair

follicles without injuring the panniculus carnosus. The donor skin patch,

precisely adopted to the wound edges, was placed on the transplant bed

and fixed with intact 6-0 Vicryl™ sutures.
2.5 Immune cell isolation

To isolate graft mononuclear cells (MNCs), tissues procured

from transplanted skin and VCA grafts were cut into smaller pieces

and digested in Hanks Balanced Salt Solution (HBSS),

supplemented with 1.5 mg/ml Collagenase P and 0.4 mg/ml

DNAse I (both from Roche, Grenzach-Wyhlen, Germany) for 45

minutes at 37° C. Peripheral blood mononuclear cells (PBMCs)

were isolated from blood samples, taken via cardiac puncture.

MNCs from lymph nodes and spleen were isolated by gently

grinding the lymph node and spleen pieces through a 40 µm

strainer with the help of a syringe plunger. Erythrocytes were

eliminated from the PBMCs and splenocyte samples using ACK

Lysis buffer. All isolated cells were collected in MACS buffer (PBS,

0.5% BSA, 0.5 mM EDTA) and maintained on ice until antibody

labelling for flow cytometry.
2.6 Flow cytometry

For flow cytometry analysis, 2x105 isolated cells per sample were

incubated in 100 µl MACS buffer for 20 minutes in the dark with

different sets of antibodies, as specified in Supplementary Table 1. For

intracellular labelling, cells were fixed and permeabilized using the

Cyto-Fast™ Fix/Perm kit from BioLegend® San Diego, CA, USA,

according to the manufacturer’s protocol prior to incubation with

antibodies. 4′, 6-diamidino-2-phenylindole (DAPI) was added just

before the analysis for live/dead cell discrimination. All flow

cytometry investigations were performed on a BD LSRFortessa™

X-20 device (BD Biosciences, Heidelberg, Germany) with FACS Diva

software, and the data sets were analyzed using the FlowJo® V10

software (BD, Ashland, OR USA).
2.7 Multiplex cytokine analysis

Analysis of serum cytokines was performed using multiplex

immunoassay. For isolation of serum, the blood samples taken from

transplanted mice were first kept on ice for 1 hour to allow clotting.

Subsequently, samples were centrifuged for 10 minutes at 3500 g to

separate serum from cellular components. Serum samples were

stored at -80° C until the analysis was performed on all samples

together. Cytokine expression was analyzed using the Milliplex®
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Mouse Th17 magnetic bead panel kit (Cat#: MT17MAG47K-PX25,

Merck, Darmstadt, Germany) according to the manufacturer’s

protocol using a Luminex MagPix® instrument and the xMAP®

software (Luminex Co, Hertogenbosch, The Netherlands).
2.8 Cytokine qPCR

mRNA from fresh-frozen samples of transplanted skin and

hind limb tissues was isolated using the Qiagen EasyRNA® kit and

transcribed into cDNA using the High-Capacity cDNA Reverse

Transcriptase kit (Thermo Fisher Scientific®). Real-time PCR was

performed with Thermo Scientific® Applied Biosystems TaqMan

Gene expression master mix and TaqMan Probes primer annotated

in Supplementary Table 2 using an Applied Biosystems

StepOnePlus device.
2.9 Macroscopic evaluation of
graft rejection

Recipient animals were monitored daily for gross appearance of

skin and hind limb grafts and documented via photographs. Graft

perfusion was evaluated via capillary refill test of toes or skin grafts

within 2-3 seconds. Clinical signs of rejection were classified as

previously described: Grade 0 – no signs of rejection; Grade I –

erythema of the graft; Grade II – erythema and edema; Grade III

epidermolysis of the graft; Grade IV – mummification of the graft

(20). Hind limb recipients with graft failure due to vascular

complications were excluded from the analysis.
2.10 Histopathology

Tissue samples of the skin and VCA transplants were fixed in

4% paraformaldehyde solution (PFA) for up to 24 hours, followed

by processing for paraffin embedding using a Thermo Scientific®

Excelsior ES Tissue Processor. Sections of 4 µm thickness were

prepared, deparaffinized with Xylene and a descending ethanol

series, and stained with Mayer’s Hematoxylin and Eosin (both

Morphisto GmbH, Frankfurt a.M., Germany, cat# 10231 and

11503) as described before (19). Sections were blinded and

histopathological analysis was performed according to the

respective Banff criteria for skin and VCA transplants (21).
2.11 Statistics

Statistical analysis were performed using GraphPad Prism

(version 8.4.3, GraphPad Software, La Jolla, CA). The D’Agostino

& Pearson omnibus normality test was used to assess normal data

distribution. Data were expressed as the mean ± standard error of

the mean (SEM). Ordinary One-Way ANOVA (Analysis of

Variance) or non-parametric Kruskal-Wallis test followed by

appropriate multiple comparison tests were performed to

compare more than two groups. Two-Way ANOVA was applied
Frontiers in Immunology 04
in case of two categorical variables (type of transplant, pretreatment

group) followed by Tukey’s or Sidak’s multiple comparison tests,

respectively. A p-value of less than 0.05 was considered significant.
3 Results

3.1 Targeted depletion of professional
APCs and cDCs in the donor mice

To elucidate the impact of donor-derived cDCs on the

immunogenicity of composite tissue and skin allotransplantation,

we selectively depleted cDCs in zDC-DTR knock-in mice and all

professional APCs in C57Bl/6 donor mice. To ensure toxicity safety,

we first titrated DT in zDC-DTR mice, determining 10 ng/g of body

weight as an effective dose, reducing frequencies of DCs in peripheral

blood and spleen of the treated mice with no signs of toxicity within

15 hours (Supplementary Figure 1A). This dose was consistently

applied for subsequent cDC depletion experiments. Similarly,

intravenous administration of clodronate liposomes (100 µl) to

donor C57BL/6J mice on days -8, -5 and -1 prior to

transplantation significantly reduced the number of all APCs,

including macrophages and DCs in peripheral blood and spleen of

the treated mice (Supplementary Figures 1A, B) (18). Importantly,

the analysis of donor-specific DCs (H2Kb+CD11c+) in the skin and

hind limb grafts at POD 6 showed significantly reduced numbers of

cDCs in both zDC (DT treated zDC-DTR mice) and CL (clodronate

treated C57BL/6J mice) groups, compared to the WT (PBS treated

C57BL/6J mice) group (Supplementary Figure 1C).
3.2 Depletion of donor cDCs and APCs
influences rejection of murine skin and
hind limb allografts

To evaluate the impact of donor cDC on skin and hind limb

transplant outcomes, allografts from cDC and APC depleted mice were

transplanted into DBA/2J WTmice. Of note, immunosuppression was

not used to study an unbiased effect of DCs on acute rejections. Both

skin and hind limb allografts were macroscopically examined daily and

scored based on the clinical signs of acute rejection, as previously

described (20). Skin and hind limb transplants exhibited progressive

signs of acute rejection by day 5 (Figures 1A, C). Compared to the WT

and APC depletion groups, cDC depleted grafts exhibited ameliorated,

albeit not statistically different allograft rejection scores (Figures 1E).

Histopathological evaluation by post-operative day (POD) 6 revealed

severe rejection of hind limb and skin transplants, with highest possible

Banff scores (4) (Figure 1F). The Banff criteria for skin-containing

composite tissue allotransplantation are restricted to the skin

component of the transplant. The analysis of the underlying non-

skin VCA (muscular and connective tissue layers) demonstrated lower

rejection scores (<2), which is known to show reduced immunogenicity

relative to the skin component (22). Nonetheless, no significant

differences were observed between untreated WT groups and those

with donor APC or cDC depletion in both skin and hind

limb transplants.
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3.3 Depletion of donor cDCs impacts
recipient DC activity

To understand the systemic impact of donor cDC depletion on

skin and hind limb graft immunogenicity, we first characterized

recipient DCs in blood and secondary lymphoid compartments
Frontiers in Immunology 05
(spleen, lymph nodes) of recipient mice procured on POD 6. The

frequency of pan DCs (CD11b-CD11c+) were markedly higher in all

analyzed tissues of recipients of skin WT grafts compared to

recipients of hind limb (HL) WT grafts (Figures 2A–C). Notably,

DC counts in mice receiving a skin transplant from APC depleted

clodronate-treated donors (CL) were consistently reduced in all the
B

C D

E F

A

FIGURE 1

Effect of donor APC and cDC depletion on mouse hind limb and skin allografts. Hind limb and skin grafts of untreated control (WT) and APC
depleted (CL; clodronate treated) C57Bl/6 mice and cDC depleted (zDC; DT treated zDC-DTR) mice were transplanted in DBA/2 mice. The grafts
were macroscopically evaluated for acute rejection as previously defined (20). Representative images of the hind limb (A) and skin (C) transplants on
post-operative day (POD) 1, 3 and 5 are shown. Representative images of H&E-stained sections of the hind limb (B) and skin (D) allografts of
untreated (WT), APC depleted (CL) and cDC depleted (zDC) donor mice, harvested on POD 6 are shown (20x magnification) (n=5). The rejection
scores of the macroscopic evaluation (E) (n=3) and Banff classification (F) (n=8 skin Tx, n=5 hind limb Tx) of the hind limb and skin allografts are
presented by the bar graphs. ****p<0.0001.
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compartments. Similarly, DT-induced depletion of cDC in zDC-DTR

donor mice (zDC) significantly reduced DC counts in the spleen and

blood of skin graft recipients. However, depletion of APCs or cDCs in

the donor had minimal effects on the already low DC numbers in

recipients of hind limb, except on splenic DCs of clodronate treated

group (CL). Furthermore, the frequency of mature (CD11b-

CD11c+MHCII+) and active (CD11b-CD11c+CD40+) DCs was

higher in almost all the analyzed tissues of the recipients of skin

WT grafts compared to recipients of hind limb WT grafts

(Figures 2D–I). Depletion of either donor APCs or cDCs resulted

in a significant decrease of mature and active DCs in the spleen,

blood, and lymph nodes of skin graft recipients. However, this

reduction was exclusively observed in the spleen of recipients who

received hind limb from cDC depleted donors (Figures 2D, G).

Focusing on the subtypes of cDCs, we observed that numbers of

lymphatic tissue resident type 1 cells (cDC1 subset: CD11c+CD8+ of

CD11b-/B220-) were significantly higher in all analyzed tissues of

hind limb WT graft recipients compared to recipients of WT skin

grafts. Only spleen and blood in cDC depleted hind limb group

(zDC) demonstrated reduced cDC1 numbers (Figures 3A–C).

Conversely, numbers of type 2 cDCs (CD11c+MHCII+ of
Frontiers in Immunology 06
CD11b+) were significantly elevated in recipient’s spleen and

blood following WT skin transplantation compared to WT hind

limb (Figures 3D–F). Interestingly, depletion of donor APC (CL) or

cDC (zDC) resulted in decreased cDC2 counts in the blood of skin

graft recipients, whereas augmented cDC2 numbers were observed

in the spleen of skin graft recipients of zDC animals.
3.4 Donor cDC and APC depletion
distinctly influence the T cell response
following skin and hind
limb transplantation

To delineate the effector response subsequent to dendritic cell-

initiated immune responses, we next analyzed T cell responses in

recipients of both skin and hind limb transplants. Notably, numbers

of CD3+CD4+ Th cells were significantly higher in the blood of WT

skin graft recipients when compared to WT hind limb recipients;

cDC or APC depletion did not impact this outcome; neither did we

observe differences in splenic and lymph nodes samples of either

WT or DC depleted groups (Figures 4A–C).
B C

D E F

G H I

A

FIGURE 2

Donor APC and cDC depletion variably impacts abundance, maturation, and activation of recipient DCs, following murine skin and hind limb
transplantation. Immune cells were isolated from blood and lymphoid tissues (spleen and lymph nodes) of the recipients (DBA/2 mice) of skin and
hind limb grafts-derived from untreated (WT), APC depleted (CL; clodronate treated) and cDC depleted (zDC; DT treated zDC-DTR) donor mice at
POD 6 and analyzed by flow cytometry. The bar graphs indicate frequencies of pan (CD11b-CD11c+) (A–C), mature (CD11b-CD11c+MHCII+)
(D–F) and active (CD11b-CD11c+CD40+) (G–I) DCs gated on recipient H2Kd+ CD45+ cells. The gating strategies are described in Supplementary
Figure 2. All values are given in % of the described population on the ordinate/”y-axis”. (n=8 skin Tx, n=5 hind limb Tx). *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.
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Likewise, splenic and peripheral blood CD3+CD8+ T cell counts

did not differ significantly, neither between the two transplant models

nor between the wild type and DC depletion groups. However, the

frequency of CD3+CD8+ T cells was significantly higher in lymph

nodes of mice receiving a skin WT grafts compared to those receiving

hind limbWT grafts (Figures 4D–F). Interestingly, both the depletion

of donor cDCs (zDC) and APCs (CL) resulted in a significant

reduction of lymph nodes CD3+CD8+ T cells in skin

transplant recipients.

Numbers of activated CD4+CD25+ T cells did not show

differences in spleen and blood samples of the skin and hind limb

transplant recipients. In contrast, in the lymph nodes of skin graft

recipients, the depletion of donor cDCs (zDC) and APCs (CL)

resulted in a significant reduction of CD4+CD25+ T cells

(Figures 4G–I).To elucidate the effector responses within the skin

and hind limb allografts, we analyzed the composition of intra-graft

T lymphocyte. Notably, grafts were consistently infiltrated with

recipient lymphocytes with hind limb grafts predominantly

showing CD3+CD8+ T cell infiltration and skin grafts showing

CD3+CD4+ T cell dominance (Figures 4J, K). Depletion of donor

cDC (zDC) or APC (CL) had no impact on the frequencies of

CD3+CD8+ T cells in both skin and hind limb grafts (Figure 4J).

However, while the number of CD3+CD4+ T cells remained

unaffected in hind limb grafts of both donor cDC (zDC) and

APC (CL) depleted groups, frequencies of CD3+CD4+ T cells

were significantly reduced in the skin grafts of both depleted

groups compared to the WT group (Figure 4K). This suggests an

influence of donor cDC and APC depletion on the Th (CD3+CD4+

T cells) mediated effector response within the skin grafts.
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3.5 Effect of donor APC and cDC depletion
on Th17 response in skin and hind
limb transplantation

To differentiate between Th mediate proinflammatory and

regulatory responses we next analyzed the responses of Th17

(CD4+IL-17+) and Tregs (CD4+Helios+) Th cells, respectively. While

there were no differences in regulatory T cell numbers between the two

transplant models or between the WT and depletion groups, Th17 cell

counts were significantly elevated in spleen samples of WT skin

recipients, compared to WT hind limb transplanted mice (Figures 5A,

B). Interestingly, in the skin transplant model, Th17 cells were strongly

reduced in both APC and cDC depletion groups compared to the

respective WT groups, suggesting an effect of both donor APC and cDC

depletion on the Th17 immunity of skin recipients.

Multiplex analysis of various proinflammatory and regulatory Th

cytokines in the serum samples of the skin and hind limb recipients at

POD 6 revealed that most cytokine levels remained unaffected by

donor cDC and APC depletion (Supplementary Figure 5). Donor cDC

depletion in skin transplant recipients and both cDC and APC

depletion in hind limb transplant recipients reduced the serum levels

of Th17-related cytokines, namely IL-17E and lymphotoxin-a,
indicating an attenuation of systemic Th17 response (Figure 5C).

Likewise, intragraft gene expression of lymphotoxin-a was reduced,

albeit not statistically significant, in both APC and cDC depletion

groups of skin and hind limb transplants (Figure 5D). Interestingly,

while the expression of proinflammatory cytokines IFN-g and IL-6 was
reduced in the skin grafts of the cDC depletion group, the expression of

TNF-a was increased (Supplementary Figure 6).
B C

D E F

A

FIGURE 3

Donor APC and cDC depletion demonstrate diverse impacts on two major subsets of DCs, following murine skin and hind limb transplantation.
Immune cells were isolated from blood and lymphoid tissues (spleen and lymph nodes) of the recipients (DBA/2 mice) of skin and hind limb grafts-
derived from untreated (WT), APC depleted (CL; clodronate treated) and cDC depleted (zDC; DT treated zDC-DTR) donor mice at POD 6 and
analyzed by flow cytometry. The bar graphs indicate frequencies of two major subsets of cDCs, cDC1 (CD11b-B220-CD11c+CD8+) (A–C) and cDC2
(CD11b+CD11c+MHCII+) (D–F) in the specified organs. The cDCs were gated on recipient-specific H2Kd+ CD45+ cells. The gating strategies are
described in Supplementary Figure 3. All values are given in % of the described population on the ordinate/”y-axis”. (n=8 skin Tx, n=5 hind limb Tx).
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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4 Discussion

Compared to solid organs, VCA transplants have a higher

incidence of acute rejections, primarily attributed to the presumed

highly immunogenic nature of its skin component. To distinguish

the rejection phenotype and the nature of immune responses
Frontiers in Immunology 08
against skin versus the whole vascularized composite allograft, we

performed a simultaneous analysis of isolated skin and hind limb

grafts in the mouse model. The isolated skin grafts and the skin

component of VCA demonstrated severe rejection, based on Banff

score. However, the underlying muscular and connective tissues of

the VCA were protected (Figure 1). Preclinical studies in the rat (23)
B C

D E F

G H I

A

J K

FIGURE 4

Effect of donor APC and cDC depletion on recipient T lymphocytes, following murine skin and hind limb transplantation. Immune cells were isolated
from blood, lymphoid tissues (spleen and lymph nodes) and the allografts of the recipients (DBA/2 mice) of skin and hind limb grafts-derived from
untreated (WT), APC depleted (CL; clodronate treated) and cDC depleted (zDC; DT treated zDC-DTR) donor mice at POD 6 and analyzed by flow
cytometry. The bar graphs indicate frequencies of two major subsets of T lymphocytes, Th (CD3+CD4+) (A–C) and CTLs (CD3+CD8+) (D–F) and
active Th cells (CD3+CD4+CD25+) (G–I) isolated from spleen, blood and lymph nodes of the recipients. (J, K) The bar graphs indicate frequencies of
recipient CD8+ (J) and CD4+ (K) T cells infiltrated in the skin and hind limb grafts of the recipients at POD 6 in untreated (WT), APC depleted (CL)
and cDC depleted (zDC) groups. The lymphocytes were gated on recipient-specific H2Kd+ CD45+ cells. The gating strategies are described in
Supplementary Figure 2. All values are given in % of the described population on the ordinate/”y-axis”. (n=8 skin Tx, n=5 hind limb Tx). *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001.
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and swine models (24), as well as clinical reports (25) have

consistently shown severe rejections of the skin component of

VCA compared to milder rejections of the underlying tissues. The

recipient immune systems’ selective targeting of the skin

component in VCA can be attributed to the abundance of skin-

resident APCs, including DCs and Langerhans cells (10, 26).

Additionally, skin serves as a reservoir for a large number of

effector memory T cells generated in response to the continuous

exposure of skin to foreign antigens (10, 27). The presence of both

APCs and effector memory T cells within the skin intensifies the

recipients’ immune response against the skin component of VCA.

However, conversely, severe rejection of the non-skin components

in the absence of clinically detectable skin rejection has also been
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reported (28, 29). Particularly, the mucosa of the skin in case of

facial transplantation seems to show more distinct patterns of acute

rejections than the skin component (30). Apparently, the nature

and degree of rejection may substantially vary depending on the

type of VCA and the tissue composition underlying the skin.

Consistent with the variable rejection of skin and hind limb

grafts, our study revealed a notable distinction in the alloimmune

response to isolated skin versus skin-containing VCA transplants.

Specifically, in our experiments skin grafts were predominantly

infiltrated by recipient CD3+CD4+ T cells, while hind limb grafts

were characterized by CD3+CD8+ T cell infiltrates (Figures 4J, K).

These observations indicate a favored CD4 T cell-driven adaptive

immune response during acute rejection in skin-only allogeneic
B

C

D

A

FIGURE 5

Effect of donor APC and DC depletion on Th17 mediated alloimmune response. Splenocytes were isolated from the recipients (DBA/2 mice) of skin
and hind limb grafts-derived from untreated (WT), APC depleted (CL; clodronate treated) and cDC depleted (zDC; DT treated zDC-DTR) donor mice
at POD 6 and analyzed for the expression of IL-17 and Hellios in CD4+ T cells using flow cytometry. The bar graphs indicate frequencies of Tregs
(CD4+Hellios+) (A) and Th17 (CD4+IL17+) (B) cells, respectively. The CD3+ T cells were gated on CD3+CD45+ cells. The gating strategies are
described in Supplementary Figure 4. All values are given in % of the described population on the ordinate/”y-axis”. Serum was isolated from the
blood samples of the skin and hind limb recipients at POD 6 and subjected to multiplex analysis for the levels of Th17-related cytokines IL17E/IL-25
and lymphotoxin-a. The representative bar graphs are shown (C). (D) Quantitative RT-PCR analysis of IL17/IL-25 and lymphotoxin-a expression in
the skin and hind limb grafts at POD 6. (n=8 skin Tx, n=5 hind limb Tx). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1395945
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ashraf et al. 10.3389/fimmu.2024.1395945
transplantation and a distinct CD8 T cell-driven rejection process in

skin-containing VCA. The preference of T cell subsets in acute

rejection has been described for certain organs like skin and heart

(31–33). The observed graft-specific responses of T cell subsets may

be linked to the elevated cDC1 and cDC2 numbers in secondary

lymphoid tissues of VCA and skin transplanted animals,

respectively. This is in line with the previous findings that

highlight the predominant role of spleen and lymph node

resident cDC1 in activating CD8+ T cells, while the primary

function of the resident cDC2 is to activate CD4+ T cells (34).

Furthermore, in line with the lower degree of overall rejection of the

VCA, we detected lower numbers of pan, mature and active DCs,

cDC2 subset and, simultaneously, reduced frequencies of CD4 and

CD8 T cells in VCA recipients compared to skin allograft recipients.

These data suggest a dampened indirect and semi-direct activation

of effector T cells, indicating a reduced systemic adaptive immune

response during acute rejection in VCA compared to the skin

transplantation model. In addition, we observed reduced Th17

cells in spleen samples of hind limb transplanted mice, compared

to skin (Figure 5B), suggesting an overall lower antigenicity of the

VCA compared to the isolated skin graft, despite the much higher

mass and skin area of the VCA graft. Larger allografts typically

contain a greater number of antigens, which can elicit a more robust

immune response from the recipient’s immune system, leading to

more severe rejection episodes. Skin, being the body’s outer barrier,

is constantly exposed to a plethora of environmental antigens,

including pathogens, allergens, and foreign substances. This

continuous exposure results in a higher antigen load in the skin

compared to deeper tissues like muscle. Moreover, the skin hosts a

dense population of specialized APCs, such as Langerhans cells in

the epidermis and dendritic cells in the dermis, which contribute to

its heightened immunogenicity compared to deeper muscle tissue

(10, 22, 35). We anticipate that the lower overall immune response

against the VCA graft might be due to the relative larger proportion

of the less immunogenic non-skin component of the VCA,

compensating the collective immune response. The slower rate of

rejection in VCA could also be due to T cell exhaustion, attributed

to the larger size of the highly immunogenic skin component of

VCA compared to smaller size of isolated skin grafts. This concept

is supported by a recent findings from Zou et al., which demonstrate

that T cell exhaustion develops in the presence of higher antigen

load and can promote transplant acceptance (36).

Skin grafts were not reconnected to the blood supply during

transplantation. Although skin grafts have been placed on a very well

vascularized bed, a certain degree of extended ischemia cannot be

ruled out. Ischemia and reperfusion injury (IRI) may also occur

subsequent to neovascularization that may initiate a cascade of events

leading to enhanced proinflammatory responses to the allografts (37,

38). Therefore, the variations in immune responses observed between

the non-vascularized skin grafts and the vascularized hind limb grafts

could potentially be attributed to the inevitable period of prolonged

ischemia experienced by the skin grafts.

Recognizing the pivotal role of graft accompanying APCs in

defining immunogenicity, especially during early alloimmune

responses, we selectively depleted APCs and cDCs in donor mice,
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followed by skin and hind limb transplantation into the fully MHC

mismatched recipient mice. While there was a slight improvement

with donor cDC depletion in the macroscopically evaluated

hallmarks of acute rejection for both skin and VCA grafts, the

effect was not statistically significant (Figures 1A, C, E). We posit

that the sole depletion of donor cDCs or APCs might have been

insufficient to yield a substantial protective effect in the stringent

allograft rejection models with complete MHC mismatch.

Additionally, we had deliberately avoided the use of

immunosuppression to elude any side effect of immunosuppression

on DC and T cell responses. Interestingly, mouse skin grafts depleted

of cDCs and transplanted into minor histocompatibility mismatched

recipients exhibited prolonged survival, suggesting a protective effect

in a situation of a mild alloimmunity (39). It is noteworthy that even

minor mismatches were sufficient to induce rejection of the mouse

skin grafts, underscoring the robust nature of the skin graft rejection

(39). Moreover, in studies involving major histocompatibility

mismatched recipients, prolonged survival of murine hearts from

DC depleted donors was observed (18, 40), but the same could not be

replicated for skin grafts (40). Apparently, the role of donor-derived

DCs in rejection appears to be organ-specific and contingent on the

histocompatibility match between the donor and receipt.

After transplantation, donor DCs undergo stimulation and

migrate to the nearby lymph nodes, where they prime effector T

cells for alloantigen-specific immune responses. This activity of

donor DCs is most impactful during the initial stages of acute

cellular rejection, as these cells are frequently targeted and

eliminated by recipient cytotoxic T and NK cells (41, 42).

Similarly, we rarely observed donor DCs in blood or secondary

lymphoid organs of the recipients at POD 6, neither in the cDC and

APC depleted nor in theWT groups (Supplementary Figures 7A, 8).

However, a small proportion of cells were double positive,

expressing both donor (H2Kb)- and recipient (H2Kd)-specific

MHC class I molecules. Since all the double positive cells are

mature (MHCII+) and active (CD40+) (Supplementary

Figure 7B), we anticipate that these are recipient cells cross-

dressed with donor MHC-antigen complexes. However, further

studies should confirm the precise phenotype of these cells, and

thus the nature of antigen presentation. Nevertheless, the donor

APC and DC depletion significantly reduced the number of the

double positive cells in blood and lymph nodes of skin transplanted

recipients (Supplementary Figure 7C), confirming the influence on

recipient DC activity also by semi direct pathway. Interestingly,

APC and cDC depletion in the donor more effectively targeted

recipient DC activities and the subsequent Th cell mediated effector

response to the skin grafts compared to the hind limb grafts

(Figures 2, 4, 5). This implies that, despite disappearing earlier,

donor DCs might play a role in the subsequent alloimmune

response mediated by recipient DCs, albeit with organ-specific

effects. Donor DCs can influence recipient DC activities in several

different ways. After transmigrating to lymph nodes, the donor DCs

may deliver cargo loaded with donor MHC and antigens to the

recipient DCs, facilitating antigen presentation via indirect (cross-

presentation) or semi direct (cross-dressing) pathways (43, 44).

Additionally, donor DCs may secrete microvesicles-containing
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MHC-antigen complexes, which could be taken up by recipient DCs

and presented to effector T cells via semi-direct mechanism.

Depletion of APCs or DCs in the donor would likely interfere

with all these ways of recipient DC activation.

Regardless of the transplantation model, Th17 cells exhibit

reduced frequencies in the DC depletion groups, most

prominently in skin transplant recipients (Figure 5B). Th17 cells

play a crucial role in solid organ allograft rejection, and a decrease in

their numbers has been associated with improved transplant

outcomes (18, 45–48). It has been demonstrated that

immunosuppression may not be sufficient to control Th17

mediated transplant rejection, as Th17 cells can exhibit variable

resistance to immunosuppression (49–52). Additionally, a variable

response to Treg mediated suppression was shown (53, 54). The

reduced Th17 frequencies observed in our study could be a direct

effect of depleted donor APCs or DCs, but it may also represent an

indirect effect of the substantially reduced numbers of activated and

matured recipient DCs. Since we rarely detected donor DCs in the

analyzed WT secondary lymphoid organs at POD 6, the latter effect

seems more likely to be responsible for reduction in Th17 cell

counts. The decrease in Th17 cell counts in the APC and cDC

depletion groups was also somewhat reflected by systemic and local

cytokine expression in the allograft, particularly IL-17E and

lymphotoxin-a (Figure 5). Although IL-17E is known to induce a

Th2-mediated allergic response by stimulating IL-4, IL-5 and IL-13

production, several studies highlight its proinflammatory role in

skin and autoimmune diseases (55). Genetic ablation or

neutralization of IL-17E ameliorated skin inflammation induced

by imiquimod and tape stripping by weakening innate immune

responses (56). Contrarily, IL-17E has been shown to enhance the

regulatory function of Foxp3 positive Tregs and prolong mouse skin

graft survival (57). In vivo treatment of heart-transplanted rat

recipients with lymphotoxin-a neutralizing antibodies prolonged

graft survival (58). Likewise, the lymphotoxin-a KO mice showed a

significant delay in the rejection of heart and skin grafts compared

to the WT counterparts following splenectomy (59). Interestingly,

in xenogeneic and allogeneic hematopoietic stem cell

transplantation (hSCT) models, antibody mediated neutralization

(60) or knockout of lymphotoxin-a but not of lymphotoxin-ß in the

donor, led to the attenuation of graft versus host disease

(GVHD) (61).

In summary, our findings suggest a higher sensitivity of the skin

component in VCA compared to the underlying muscles and

connective tissues. Correspondingly, the isolated skin graft

demonstrated heightened immunogenicity compared to the whole

VCA graft. Moreover, while depletion of donor APCs or cDCs was

insufficient to ameliorate rejection of skin and hind allografts, the

activities of recipient DCs and the subsequent Th17 response in the

skin transplantation model were improved. Future studies exploring

the effect of targeting donor DCs, along with immunosuppression,

may offer additional benefits and warrant further investigation.

Additionally, future studies should aim to understand the precise

mechanisms by which donor DC regulate the activity of the

recipient DCs, conducting a thorough analysis of the temporal

dynamics of donor DCs and their interaction with the recipient
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DCs. The inevitable IRI of the transplant results in the release of

damage-associated molecular patterns (DAMPs) from the injured

cells, which promote activation of APCs, including DCs. Future

studies should explore how the IRI of skin and hind limb grafts

influence the activation and migration of graft-resident DCs to the

lymphoid organs of the recipient and impacts graft outcome.
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