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IL-27 expression regulation and
its effects on adaptive immunity
against viruses
Fernando Andres-Martin, Cooper James and Marta Catalfamo*

Department of Microbiology Immunology, Georgetown University School of Medicine, Washington,
DC, United States
IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by

antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-

27 has antiviral activities and modulates both innate and adaptive immune

responses against viruses. The role of IL-27 in the setting of viral infections is not

well defined and both pro-inflammatory and anti-inflammatory functions have

been described. Here, we discuss the latest advancements in the role of IL-27 in

several viral infection models of human disease. We highlight important aspects of

IL-27 expression regulation, the critical cell sources at different stages of the

infection and their impact in cell mediated immunity. Lastly, we discuss the need to

better define the antiviral andmodulatory (pro-inflammatory vs anti-inflammatory)

properties of IL-27 in the context of human chronic viral infections.
KEYWORDS

IL-27 (interleukin 27), CD8 T cells, IL-27 viral infection, IL-27 viral immunity, IL-27/
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Introduction

The interleukin 12 (IL-12) family of cytokines formed by IL-12, IL-23, IL-27, IL-35 and

IL-39, plays critical roles in the induction and regulation of innate and adaptive immune

responses (1). IL-12, IL-23 and IL-27 are secreted by antigen presenting cells including B

cells, monocytes/macrophages and dendritic cells (1–4). IL-12 and IL-23 are pro-

inflammatory and are involved in the generation of the T helper subsets, Th1 and Th17

respectively. Additionally, IL-12 is an important factor for NK cell activation and IFNg
secretion (5). In contrast, IL-35 is produced by regulatory T (Treg) and B (Breg) cells and

therefore exerts important immunoregulatory functions (6–8). The new member of this

family, IL-39, has been shown to be involved in the pathogenesis of murine experimental

lupus erythematosus, however, its role in human disease is still under evaluation (9).

IL-27 is a member of this family and has been shown to promote both pro-

inflammatory and anti-inflammatory functions. IL-27 induces the development of Th1

cells in response to bacterial and parasitic infections (10–13). In addition, it facilitates the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1395921/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1395921/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1395921/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1395921&domain=pdf&date_stamp=2024-06-20
mailto:mc2151@georgetown.edu
https://doi.org/10.3389/fimmu.2024.1395921
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1395921
https://www.frontiersin.org/journals/immunology


Andres-Martin et al. 10.3389/fimmu.2024.1395921
development of T follicular helper (TFH) cells via the induction of

IL-21, regulating B cell function (14). The regulatory functions of

IL-27 include inhibition of Th2 and Th17 cell differentiation, and

the induction of IL-10-producing Type 1 regulatory cells (Tr1) cells

controlling immunopathology in the setting of infection (15–18).

In the setting of viral infections, the role of IL-27 is not well

understood. IL-27 has antiviral properties against human viruses

including influenza, herpes simplex, human hepatitis B (HBV) and

C (HCV), human immunodeficiency virus (HIV) and others

viruses, which underscores the therapeutic potential of this

cytokine (19–30). The antiviral effects of IL-27 has been recently

reviewed in detail by Amsden et al. (30). In the present manuscript,

we will discuss the role of IL-27 in T cell mediated immunity in the

setting of viral infection.
IL-27/IL-27R signaling

The IL-12 family of cytokines are heterodimers that result from

the combination of one of three alpha (a) chains (p19, p28 or p35),
with one of two beta (b) chains (p40 or EBI3). The association of the

a and b chains results in heterodimers that share a common

element among the family members (Figure 1). IL-12 is

composed by p35 and p40 subunits, and IL-23 results from the

paring of p19 and p40 chains. IL-27 is formed by the association of

p28 and EBI3. Lastly, EBI3 acts as the common element for IL-35

and IL-39 by pairing to p35 or p19 respectively (Figure 1) (10,

31–35).

A distinctive feature among the family members is that IL-12

and IL-23 are secreted as disulfide-linked heterodimers (10, 31, 36–

40). In contrast, IL-27 and IL-35 are non-disulfide-linked, and it has

been postulated this may impact the in vivo stability, resulting in

lower secretion levels compared to disulfide-linked heterodimeric
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cytokines (10, 31, 40). The non-disulfide-linked features of IL-27

and IL-35 heterodimers present a challenge for their detection in

tissues and measurements in the plasma.

The secretion of murine and human IL-27p28 shows

interspecies differences. The folding and secretion of IL-27p28

depend on the formation of a disulfide-bond (Cys residue). In

mice, the IL-27p28 subunit contains a single disulfide bond that

stabilizes the protein and allows its independent secretion (10, 41–

43). In contrast, the human IL-27p28 has only one cysteine residue

and therefore lacks a disulfide-bond, instead requiring EBI3

binding for its secretion (10, 13, 43–46). The EBI3 subunit acts as

chaperone-like protein and this property facilitates the secretion of

non-disulfide-linked IL-27, IL-35, and IL-39 (45, 47).

In addition, computational studies of IL-27p28 Cys residue

number and location across different species showed that in species

with independent secretion of IL-27p28 such as mice, EBI3 is

secretion incompetent and therefore retained inside the cells (43,

45, 48). This evolutionary feature of IL-27 has potential biological

implications although it is not well understood and warrants

further study.

IL-27 signals through a heterodimeric receptor composed of

two subunits, the IL-27Ra (also known as WSX-1 or TCCR) and

gp130 (IL6ST) (Figure 1) (10, 49, 50). The quaternary structure of

IL-27 bound to its receptor resembles IL-6 and this structure reveals

key interactions between IL-27Ra with IL-27p28 and the D2

domain of EBI3. In addition, a conserved tryptophan residue of

IL-27p28 interacts with the D1 domain of gp130 (51, 52).

IL-27 binding activates the Janus Kinase (JAK)-Signal

Transducer and Activator of Transcription (STAT1 and STAT3),

and the mitogen activated protein kinase (MAPK) signaling

pathway (Figure 1) (50, 53–59). IL-27 and IL-6 share a receptor

subunit gp130 and both activate the transcription factor STAT3,

however these cytokines exert different functions on target cells
FIGURE 1

The IL-12 family of cytokines. The IL-12 family of cytokines are heterodimers that result from the combination of one of three alpha (a) chains (p19,
p28 or p35), with one of two beta (b) chains (p40 or EBI3). The association of the a and b chains results in heterodimers that share a common
element among the family members. The receptors of this family of cytokines are heterodimeric molecules shared by the family members. The
cytokines of this family signal through the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (JAK/STAT) pathway (Figure was
designed with BioRender.com).
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upon receptor binding. Studies in murine T cells using chromatin

immunoprecipitation-sequencing in STAT deficient T cells

showed that STAT3 plays an important role driving the overall

transcriptome changes for both IL-27 and IL-6 (60). STAT1 was

also found to be essential in providing the specific transcriptome

normally induced by IL-27 signaling (60).

In human T cells, comparison of the global transcriptional

changes induced by IL-27, IFNa and IL-6, showed that IL-27

clustered separately from IFNa and IL-6 signaling, but was closer

to IL-6 than to IFNa. IL-27 induced a set of genes downstream of

STAT1 that were also upregulated by IFNa and, to a lesser degree

by IL-6 signaling (61).
IL-27 expression in lymphoid and
peripheral tissues

IL-27 is mainly produced by antigen presenting cells (APCs)

including dendritic cells (DCs), plasma cells, macrophages,
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inflammatory monocytes, microglia, B cells and endothelial

cells (62–66).

IL-27 mRNA expression showed high levels of EBI3 compared

with IL-27p28 (10, 67). Similarly, in vitro experiments using LPS

stimulation of monocyte-derived DCs showed that expression of

IL-27p28 transcripts were transient compared to EBI3 which was

more sustained (10). These observations suggest that the expression

of heterodimeric IL-27p28 protein is regulated and highlights

potential for other functions of EBI3.

The noncovalent nature of the IL-27 heterodimer and the

independent secretion of the subunits had made it challenging to

measure the bioactive heterodimeric form of IL-27 (10, 43, 45). In

human tissues few studies have investigated the coexpression of

both subunits to assess the main cell sources and expression

dynamics in health and disease (Table 1). IL-27p28 protein

expression was investigated in post-mortem human lymph nodes,

and in lymph node biopsies from patients with granulomatous

disease (sarcoidosis, tuberculosis and Crohn’s disease), which is

associated with an epithelioid granuloma with accumulation of
TABLE 1 IL-27 tissue expression in health and disease.

Specificity
(reactivity)

Antibody Species Cell Expression Tissue Source Disease

IL-27p28
(human

and mouse)
Rabbit polyclonal

CD68+ macrophages but not in
CD11c+ Dendritic cells
Lymphatic sinuses and
lymphatic microvessels

Human lymph nodes
Autopsies from individuals whose death was not
associated with cancer, autoimmune, or
inflammatory disease (68)

IL-27p28
(human)

Rabbit polyclonal
antibodies directed
against an N-terminal
peptide of IL-27p28.
Rat anti-IL-27p28 mAb
(clone 29B5, Rat IgG2a)

Lymph nodes: Expression was
observed in B cell follicles and
intrafollicular.
Macrophages, plasma cells and
endothelial cells co-expressed both
EBI3 and IL-27p28 subunits.
Coexpression was not observed in
dendritic cells.
Lamina propria: coexpression of
IL-27p28 and EBI3 and macrophages
and endothelial cells.
Partial overlap of IL-27 subunits was
noted across the tissues.

Human lymph nodes,
lamina propia

Biopsies of granulomatous disease sarcoidosis,
tuberculosis and Crohn’s disease.
Follicular hyperplasia from unknown origin (69)

EBI3
(human)

Mouse anti-EBI3 mAb
(clone: 2G4H6, IgG2a)

IL-27p28
Rabbit polyclonal
Rat anti-IL-27p28 mAb
(clone 29B5, Rat IgG2a)

Syncytiotrophoblasts and extravillous
trophoblasts: coexpression of
IL-27p28 and EBI3
IL-27p28 lower expression levels
compared to EBI3 subunit

Human placenta (first,
second and third trimester
of pregnancy)
and choriocarcinomas

Human placenta at distinct stages of pregnancy
(67, 70)

EBI3
(human)

Mouse monoclonal anti-
EBI3 Ab (clone 2G4H6)

EBI3
(human)

Mouse monoclonal anti-
EBI3 Ab (clone 2G4H6)

Human neutrophils in tissues Tissue biopsies

Tissues of individuals affected by Gorham
Disease, diverticulitis cholecystitis,
and Bartonella Henselaeinfections showing
suppurative lymphadenitis (71)

IL-27p28
(human)

Goat Polyclonal
Astrocytes, microglia and
macrophages coexpressed IL-27
subunits. Partial overlap with EBI3
expression
IL-27 subunits were highly expressed
in individuals with Multiple Sclerosis
(MS) compared to non-CNS disease

Brain
Post-mortem from patients with MS and donors
without a CNS disease (72)EBI3

(human)
Rabbit polyclonal

EBI3
(human)

Monoclonal (2G4H6)
Astrocytes expression of EBI3 at the
demyelinated region

Brain
Post-mortem from patients with MS and donors
without a CNS disease (73)
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macrophages and CD4 Th1 cells (68, 69). IL-27p28 and EBI3

expression was observed CD68+ macrophages, blood and

lymphatic endothelial cells and plasma cells (68, 69). EBI3

expression in lymph nodes was localized in follicles and inter-

follicular areas, and in the T cell zone. In contrast IL-27p28 was

expressed by plasma cells and fibroblasts, however coexpression of

the subunits IL-27p28 and EBI3 was not observed in dendritic

cells (69).

Interestingly, IL-27p28 expression partially overlapped with

EBI3 in macrophages and endothelial cells (69). The partial

coexpression of IL-27 subunits in tissues is consistent with a

transient production of IL-27p28 mRNA transcripts observed in

in vitro activated human DCs (10, 67). In addition, this observation

may reflect the expression of other members of this family, IL-35

and IL-39, that share EBI3 (69).

IL-27 has also shown to modulate inflammatory responses in

the brain (Table 1). IL-27 subunit expression was investigated in

brain tissue obtained from individuals with Multiple Sclerosis (MS)

and donors without clinical and neuropathological evidence of CNS

disease (control samples) (72, 73). IL-27 subunits were mainly

detected in astrocytes, microglia and macrophages; and their

expression was increased in individuals with MS compared to the

controls. Similar to the expression pattern reported in lymph nodes,

in the brain, there was partial overlap of the IL-27 subunits

coexpression (72, 73).

In tissues, IL-27 is produced by immune resident cell and cells

recruited to the sites of inflammation (73–75). IL-27 signaling is

involved in other pathological conditions such as atherosclerosis,

non-small cell lung cancer (NSCLC) and other inflammatory

diseases but the dynamics of IL-27 subunit coexpression in

human tissues in the setting of health and viral infections remains

scarce (76–80).

A common observation across tissue expression studies is the

prominent expression of EBI3 and partial overlap with IL-27p28

subunits expression (Table 1). EBI3 is induced under inflammatory

conditions and independently secreted, even in the absence of

the subunits IL-27p28, IL-35p35 or IL-39p19. This has led to the

hypothesis that EBI3 plays additional roles including a chaperone-

like and regulatory functions (47, 67, 70, 71, 81, 82).
IL-27 signaling in the context of
viral infections

Lymphocytic choriomeningitis virus

The murine model of infection with the Lymphocytic

Choriomeningitis Virus clone 13 (LCMV Cl-13) establishes a

chronic infection characterized by CD8 T cell immune exhaustion

and high viral loads that mimics many features of human chronic

viral infections including HIV, HBV, and HCV (83). LCMV-

specific CD8 T cells are dysfunctional and express checkpoint

receptors (84–88).

In this model, deficiency of IL-27 signaling (IL-27RA-/- mice)

leads to higher viral titers and uncontrolled lifelong viremia
Frontiers in Immunology 04
compared to the wild type mice (89, 90). In the spleen of the

infected mice, detectable IL27p28 mRNA transcripts were found in

DCs subsets including plasmacytoid DCs (pDCs) and macrophages

very early post infection (day 1 p.i) and returned to basal levels at

day 8 p.i (89). In contrast, no changes were observed in Ebi3mRNA

transcripts were observed during infection, with only a slight

reduction at a later time point (89). The rapid upregulation of IL-

27 expression (IL-27p28) occurs with the early induction of Type I

IFNs (91, 92). Indeed, IL-27RA deficient mice showed reduced Type

I IFN production in both acute and chronic LCMV infection (89).

The T cell mediated responses in the absence of IL-27 signaling

showed a significant early expansion of LCMVGp33-specific CD8 T

cells (day 9 p.i) compared to the wild type mice, and returned to

similar levels at day 30 p.i. Interestingly, despite lower expression of

PD1 (a marker of exhaustion LCMV chronic infection), virus-

specific CD8 T cells demonstrated similar ability to secrete

cytokines to wild type T cells (89). Additionally, IL-27 signaling

promoted survival of virus-specific CD4 T cells and viral control

during early infection (89, 92, 93).

Moreover, IL-27 signaling is an important factor for a subset of

exhausted memory CD8 T cells with stem-like properties (CXCR5+)

that confers antiviral immunity during chronic LCMV infection

(92, 94, 95). In these elegant studies, the authors showed that

treatment with IL-27 significantly increased virus-specific

CXCR5+CD8 T cells and reduced viral titers in the brain (92). IL-

27 signaling was critical for CXCR5+CD8 T cell expansion, and this

effect was in part mediated by STAT1-driven IRF1 expression

preventing terminal differentiation and cell death.

In this model, B cell-derived IL-27 is a crucial factor for the

survival and function of virus-specific CD4 T cells and TFH cells,

enhancing humoral immunity and viral control at the later phase of

the infection (89, 96). Altogether, these studies showed that in

chronic LCMV infection, IL-27 is beneficial and plays an essential

role in both T cell and humoral immunity.
Cytomegalovirus infection

The human cytomegalovirus (HCMV) infection establishes

latency and persist at mucosal sites, including the salivary glands.

In human and murine CMV infection, CD4 T cells are key players

in the control of viral replication in the salivary glands (97, 98).

Particularly, memory T cells control the virus in periods of viral

reactivation preventing development of clinical disease (99).

HCMV evades the immune system by modulating host responses

including the induction IL-10 resulting in viral persistence (100–

102). In addition, CMV infection has been associated with the

expansion of virus-specific CD8 T cells with a senescent phenotype

(103, 104).

The role of IL-27 was investigated in a murine model of CMV

infection (MCMV). The studies showed that early in infection (2

days p.i), IL-27p28 is expressed in the spleen by myeloid cells (DCs,

pDCs, macrophages and neutrophils) and B cells (98, 105). In

contrast, in the salivary glands, its expression is detected during

the viral persistence phase (day 14 p.i) (105). Induction of IL-27 was
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https://doi.org/10.3389/fimmu.2024.1395921
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Andres-Martin et al. 10.3389/fimmu.2024.1395921
dependent on Type I IFN, as in vivo blockade of IFNAR reduced

IL-27 expression by DCs, macrophages B cells and neutrophils (105).

IL-27 signaling regulated T cell mediated immunity by

enhancing the expansion of virus-specific CD4 T cells including

those that provide immunity during viral persistence. In contrast,

these effects were not observed in CD8 T cells, which may be due to

the lower IL-27Ra expression on CD8 T cells when compared with

CD4 T cells (98). In the salivary glands, IL-27 signaling promoted

virus-specific CD4 T cells that secrete IFNg and IL-10 and

resembled Tr1 cells, which contributed to viral persistence (98,

105–109).

In human CMV infection CD4 and CD8 virus-specific T cells

play a critical role in controlling CMV, however whether IL-27

contributes to viral persistence is not well understood (110). Human

CMV-specific CD4 T cells have a cytotoxic phenotype and express

CX3CR1 suggesting a potential contribution to chronic endothelial

inflammation and injury (111–115). Similar to the murine model,

human CMVpp65 and CMVgb -specific CD4 T cells from

peripheral blood and colon produce IL-10, although variable

frequencies were present among individuals (105). The role of IL-

27 in CMV infection requires further investigation to fully

determine the modulatory effects in the context of CMV infection.
SIV infection

IL-27 has in vitro antiviral properties against HIV and other

human viruses reviewed elsewhere (21, 22, 27, 30, 116, 117).

Limited data of the coexpression of IL-27 subunits and kinetics of

expression is available in the setting of SIV/HIV infection. In non-

human primates infected with Simian Immunodeficiency Virus

(SIV), interferon-stimulated genes were evaluated in the spleens

of animals before and after infection at days 4, 7, 14, 21, and 56

p.i (118).

IL27p28 mRNA expression was induced in the acute phase

similarly to IFNB transcripts, and both remained high compared to

the uninfected animals during the chronic phase of infection (>56

days p.i). In addition, IL10 mRNA transcripts were also detected in

the acute phase, however its expression was reduced to basal levels

during the chronic phase (118).

The role of IL-27 in CD4 TFH cell differentiation was

investigated in SIV infected rhesus macaques (RM) (119). This

study evaluated mRNA of the IL-12 family subunits (p19, p40, p35,

p28 and EBI3) in cell suspensions of mesenteric lymph nodes from

SIV infected RM with high and low CD4 counts. mRNA transcripts

of the subunits that form the cytokines IL-12, IL-23, and IL-35 were

reduced in the infected animals with low CD4 counts. In contrast,

no significant changes were observed for the expression of IL27p28

and EBI3 mRNA in the animals, irrespective of CD4 count or

infection status (119).

In in vitro cultures of mesenteric lymph node cell suspensions,

IL-27 induced downregulation of CXCR5 expression in CD4 TFH

(CXCR5highPD1high) and increased the frequency of cells expressing

CXCR5lowPD1high, where upregulation of Tbet expression and Th1-

like function. This suggests that IL-27 may alter TFH differentiation

during mucosal immune response against SIV infection (119).
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HIV infection

There is no available data about IL-27 expression in tissues from

people with HIV (PWH). Most reported studies have investigated

plasma levels of IL-27 at distinct stages of the infection with no

consistent conclusions about the potential in vivo regulation of IL-

27 during HIV infection. A study reported no changes in circulating

levels of IL-27 at several stages of infection, untreated, successfully

suppressed viremia with ART (120). However, contradicting these

results, another study showed IL-27 plasma levels were inversely

correlated with viremia in naïve HIV monoinfected compared to

HCV coinfected groups (121, 122). In PWH and CMV coinfection,

IL-27 plasma levels were negatively correlated with viral load and

positively associated with CD4 T cell counts suggesting a beneficial

effect in CD4 T cell reconstitution in CMV infected PWH (123).

Further, another study described a positive association between IL-

27 plasma levels and provirus HIV-DNA in Peripheral Blood

Mononuclear Cells (PBMCs) (124).

The effects of IL-27 in T cell immunity against HIV has been

investigated in individuals with uncontrolled viral replication (125).

In this report, Tregs were shown to secrete IL-27 inducing IL-10

production by monocytes, which resulted in blunted proliferation of

HIV-specific CD4 T cells in vitro, although these effects were

heterogenous among the individuals (125).

In the context of viral suppression by antiretroviral therapy

(ART), T cells express higher levels of STAT1 which leads to

enhanced STAT1 activation by IL-27 stimulation. This effect

resulted in upregulation of T-bet expression by TIGIT+HIVGag-

specific T cells and increased cytokine secretion and cytotoxic

potential (expression of CD107a) (61). These results suggest that

IL-27 can modulate the function of exhausted T cells during chronic

HIV infection.

Moreover, in PWH and CMV coinfection, in vitro stimulation

of PBMCs with CMVpp65 in the presence of IL-27 stimulation led

to increased IFNg secretion by CMVpp65-specific CD4 T cells in

both CMV+PWH and CMV+PWOH (People Without HIV) (113,

123). IL-27 induced IL-10 secretion by IFNg+CMV-specific CD4 T

cells recapitulating Tr1 cells, but did not have an impact on the

expansion of Tregs (CD25+FoxP3+) (105, 109, 123, 126).
Respiratory viruses

Respiratory infections are diverse in terms of the viral agent,

severity of the disease and contribution to morbidity and mortality

worldwide. Herein, we discuss those in which IL-27 has been

reported to play a role.
Influenza

Seasonal influenza infection is a significant contributor of

morbidity and mortality worldwide in young children and older

adults (127). Influenza virus infection can drive massive pulmonary

immune infiltration and immunopathology. In this setting, IL-10

plays an important role in regulating pro-inflammatory function of
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innate and adaptive cells to control immunopathology in the

tissues (128).

Infection with a highly pathogenetic influenza strain in mice

drove upregulation of the Il27p28 mRNA subunit and Il10 mRNA

with similar kinetics in the lung that peaked at day 7 p.i. In contrast,

Ebi3 transcripts were detected at baseline and no changes were

observed through the course infection. Il27 mRNA subunits were

highly expressed in the lungs compared to the spleens and the

lymph nodes, and correlated with the lower viral load at day 7 p.i

highlighting its potential antiviral effects (129).

IL-27 plays a critical role in limiting immunopathology by

controlling neutrophil accumulation and reducing the inflammatory

Th1 and Th17 cells by both IL-10-dependent and -independent

mechanisms (130–133). IL-27 signaling promoted IL-10 production

in IFNg secreting virus-specific CD4 T cells and cytotoxic CD8 T

cells (133).

In addition, the administration of IL-27 showed different effects,

at the peak of the viral load (between 5–10 days p.i) it was beneficial

and ameliorated the immunopathology by reducing the influx of

pro-inflammatory cells into the lungs without impairing viral

clearance (129). In contrast, when IL-27 was administered at early

time point of the infection, 1–7 days p.i, disease worsened, albeit

reducing immunopathology (129).
Murine parainfluenza Sendai virus

Respiratory paramyxoviruses are important causes of morbidity

and mortality, particularly of infants and the elderly. Acute murine

parainfluenza virus Sendai (SeV) infection is followed by a chronic

type 2 immune pathology in the lung similar to that observed in

humans (134). mRNA IL-27p28 transcripts are increased in the lungs

during infection and IL-27 signaling promoted the generation of IL-

10 secreting virus-specific CD8 T cells (135, 136). In addition, IL-27

promoted the development of IL-10 producing antiviral CD4 T cells

resulting in the inhibition of the development of Th2 responses that

mediates lung pathology during the chronic phase (137).
Human influenza infection

Limited data is available on dynamics of IL-27 in the setting of

human influenza infection, IL-27 serum levels were reported to be

increased in individuals infected with seasonal IAV (H3N2) and

H1N1. The cellular sources IL-27 have been mainly attributed to

APCs, however, lung epithelial cells in vitro produce IL-27 after

infection with influenza A through a COX-2-derived prostaglandin

E2 (PGE2) mechanism. Accordantly, serum levels of IL-27 in

individuals infected with 2009 pandemic H1N1, and with

seasonal H3N2 were positively correlated with PGE2 (30, 138).
SARS-CoV-2 infection

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) is a new strain of coronavirus that was first reported in December
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2019. SARSCoV2 is the cause of the Coronavirus disease 2019

(COVID-19). The pathogenesis of severe disease is associated with

an altered activation and regulation of the Type I IFN responses and

an exacerbated inflammatory response, which contributes to the

lung injury (139–142).

In individuals with COVID-19 disease, increased serum levels

of IL-27 have been observed compared to healthy controls. In

addition, lower serum levels were associated with severe disease

in hospitalized patients in intensive care (143). Another study

investigated levels of inflammatory cytokines and their potential

association with lung damage and mortality at the time of hospital

admission in 108 individuals. This study reported that low serum

levels of IL-27 and higher levels of IL-1a and HGF were associated

with poor clinical outcomes (144). Contrasting these observations,

increased IL-27 subunit (p28 and EBI3) mRNA expression was

observed in PBMCs and monocytes from individuals with severe

disease (145). All of these findings suggest that the upregulation of

IL-27 may contribute to antiviral immunity against SARS-CoV-2 by

inducing interferon stimulated genes. However, whether IL-27

production is beneficial or detrimental to the progression to

severe COVID-19 remains unclear.
Neurotropic mouse hepatitis virus
(JHM strain)

Limiting immunopathology during central nervous system CNS

viral infections is critical for the host survival. The murine hepatitis

virus (JHMV) has a glia tropism and induces an acute

demyelinating encephalomyelitis that leads to viral persistence

and chronic demyelination (146). While local IL-10 production

by infiltrating T cells limits tissue pathology, it also delayed viral

control and elimination. IL-10+virus-specific CD8 T cells were

highly activated, produce inflammatory cytokines, and have

cytotoxic function suggesting that IL-10 may be a mechanism by

which CD8 T cells regulate their own function at sites of tissue

injury (147).

Mice deficient in the EBI3 subunit (shared by IL-27 and IL-35)

and infected with JHMV showed immune mediated inflammation

in the CNS. Accumulation of IFNg secreting virus-specific CD4 and
CD8 T cells lead to tissue damage and reduced survival.

Interestingly, despite increased IFN-g secretion by virus specific

CD8 T cells the cytotoxic function was reduced (148). These

studies imply that IL-27 and IL-35 may play a role in controlling

immunopathology and disease severity by preventing recruitment

of effector CD8 T cells.

In addition, IL-27 induces IL-10 production by virus specific

CD4 but not CD8 T cells. IL-27R deficiency led to accumulation of

IFN-g secreting virus-specific CD4 and CD8 T cells and reduced IL-

10 production by virus-specific CD4 T cells promoting viral control.

In contrast, IL-10 production and cytolytic activity of virus-specific

CD8 T cells was not reduced nor was there an effect on Tregs. The

lack of IL-27 signaling did not enhance viral clearance in the CNS

although the mice exhibited less severity of disease (149). These

studies contrast with the protective role of IL-27 in limiting

tissue pathology.
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Discussion

IL-27 antiviral properties against several human viruses have

highlighted its potential therapeutic use for the treatment of human

viral infections (27, 30). However, how IL-27 mediates antiviral

immunity leading to viral clearance and persistence is not well

understood (Figure 2).

The cell sources of IL-27 in human lymph nodes in health and

disease, showed that IL-27p28 and EBI3 subunits are coexpressed

by macrophages, monocytes, B cells and endothelial cells, however

IL-27p28 was not expressed in DCs (68, 69). One consistent

observation in lymph nodes and other tissues is the high

expression of EBI3 compared to IL-27p28 (Table 1). This has led

to the hypothesis that EBI3 may play additional roles including

chaperone-like function and/or regulatory functions (47, 67, 70, 71,

81, 82). In humans, in vitro studies showed that IL-27 can be
Frontiers in Immunology 07
produced by CD4 TFH cells, in the setting of chronic HBV infection,

and by Tregs in untreated HIV infection and uninfected controls

(125, 150).

More importantly, murine in vivo studies using chronic LCMV

infection have revealed important insights to its temporal

expression, cell sources and impact in mediating innate and

adaptive immune responses. During chronic LCMV infection,

DCs and myeloid cells are the predominant sources of IL-27,

mediating early viral control. Where lack of IL-27 signaling

during this stage of infection leads to higher viral titers compared

with wild type animals. IL-27 promotes expansion of virus-specific

CXCR5+CD8 T cell and virus-specific CD4 T cell function. In

contrast, IL-27 secreted by B cells was relevant at later phase of the

infection and facilitated maintenance and function of virus-specific

CD4 T cells as well as CD4 TFH function, which promoted humoral

immunity and viral clearance (89, 92, 96).
FIGURE 2

IL-27 cell sources and cellular responses during viral infection. IL-27 has antiviral activities that are prominent early after infection. IL-27 is mainly
produced by antigen presenting cells (APCs) including dendritic cells (DCs), plasma cells, macrophages, monocytes, microglia, B cells and
endothelial cells. IL-27 plays critical role by modulating adaptive cellular responses against viruses. The beneficial effects include reducing
immunopathology and viral control, in contrast in some infections showed a predominant regulatory function leading to viral persistence. (Figure
was created with BioRender.com).
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The regulatory functions of IL-27 in the setting of viral infection

involves both IL-10 dependent and independent mechanisms. IL-27

induces IL-10+ secretion by IFNg+virus-specific T cells (Tr1-like cells),

controlling exacerbated inflammation and conferring host protection

from immunopathology in the lung during influenza infection (129,

133). In contrast, in the setting of MCMV, expression of IL-27 and

induction of IL-10 by Tr1-like cells contributed to viral persistence in

the latent phase of the infection (98, 105).

In the context of human infections, the role of IL-27 is not

well defined and studies of the kinetics of IL-27 expression in vitro

and in vivo studies are limited. The detection of IL-27 in serum

and plasma showed contradictory results, likely because the

measurements of circulating levels of IL-27 has been challenging

due to the non-disulfide-linked nature of IL-27 (IL-27p28 and

EBI3) (31). Some ELISAs use polyclonal capture antibodies and

reported cross-reactivity with recombinant EIB3, given there are

potentially other cytokines that express this subunit this data is

confounding (41, 46, 151, 152). More reliable tools to detect the

heterodimer may allow us better understand its role in human

viral infections.

IL-27 may have a potential clinical applications in the setting of

viral infections, while its antiviral effects seem broad and synergistic

with Type I IFNs, its modulatory effects require further investigation

in the setting of viral infections. Current clinical applications of

targeting IL-27 are more advanced in the setting of cancer and focus

on blocking immunosuppressive activities (49, 153). A human

monoclonal (IgG1) antibody against the IL-27p28 subunit CHS388

(former SRF388), that blocks IL-27/IL-27RA interaction is under

consideration for cancer treatment, where a Phase I study has already

been shown to be safe in humans (1, 154–158). However other

studies, focus on the anti-tumor activities of IL-27 (159, 160).

IL-27 signaling modulates several immune cells and there is a

need to better define its temporal expression and its cell sources

during viral infections. It will be important to fill this gap in

knowledge to dissect IL-27’s antiviral effects and modulatory

(regulatory vs stimulatory) functions. Determining the outcome

of this balance will be beneficial in the setting of human chronic

infections including HIV, HBC, HCV and others.
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