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Vascular calcification (VC) is considered a common pathological process in

various vascular diseases. Accumulating studies have confirmed that VC is

involved in the inflammatory response in heart disease, and SPP1+

macrophages play an important role in this process. In VC, studies have

focused on the physiological and pathological functions of macrophages, such

as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles.

Additionally, macrophages and activated lymphocytes highly express SPP1 in

atherosclerotic plaques, which promote the formation of fatty streaks and plaque

development, and SPP1 is also involved in the calcification process of

atherosclerotic plaques that results in heart failure, but the crosstalk between

SPP1-mediated immune cells and VC has not been adequately addressed. In this

review, we summarize the regulatory effect of SPP1 on VC in T cells,

macrophages, and dendritic cells in different organs’ VC, which could be a

potential therapeutic target for VC.
KEYWORDS

OPN, SPP1, immune cells, vascular calcification, vascular diseases
Introduction

Vascular diseases, particularly cardiovascular and brain diseases, are the leading causes

of human disease mortality. Vascular calcification (VC) is considered a common

pathological process in various vascular diseases, such as diabetes (1), atherosclerosis (2,

3), vascular injury (4, 5), chronic kidney disease (CKD) (6), liver fibrosis (7), and aging (8),

and is closely associated with chronic calcium-phosphate deposition in blood vessels (9,

10). Intimal calcification and medial calcification are two types of VC; the former is closely

related to the infiltration of inflammatory cells, vascular inflammation, lipid deposits,

hyperlipidemia, and hypertension, and the latter is associated with aging, diabetes, CKD,

and arterial stiffness (11, 12). The inflammatory response plays a vital role in different VCs.

Pro-inflammatory macrophages contribute to microcalcification though intimal

extracellular matrix (ECM) degradation and mineralization, which are closely related to
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the production of IL-1b, TNFa, and IL-18. Microcalcification

induces an osteoblast-like phenotype in vascular smooth muscle

cells (VSMCs) and then enhances the production of inflammatory

cytokines, such as IL-1b, IL-6, and osteopontin (OPN), resulting in

more dense calcification in atherosclerotic plaques (13).

SPP1 (Secreted Phosphoprotein 1 or OPN), a macrophage-

derived OPN, plays an important regulatory role in cardiac repair

after myocardial injury and pathological cardiac hypertrophy (14).

After myocardial infarction, infiltrated macrophages are found in

the myocardial infarction site, and the expression of SPP1, which is

derived from macrophages, increases, but SPP1 is not expressed in

normal cardiac tissue (15). The data in the SPP1 knockout mouse

model revealed that loss of the SPP1 gene does not affect cardiac

function but results in a decrease in collagen (16). In addition, the

expression of the SPP1 gene is positively correlated with cardiac

hypertrophy, which causes cardiomyocyte apoptosis and fibrosis

(17). Studies in vascular endothelial cells have shown that SPP1

promotes angiogenesis and endothelial migration (18, 19).

Excessive SPP1 is involved in the proliferation and migration of

VSMCs, leading to vascular hyperplasia (20, 21). In addition,

macrophages and activated lymphocytes highly express SPP1 in

atherosclerotic plaques, which promote the formation of fatty

streaks and plaque development, and SPP1 is also involved in the

calcification process of atherosclerotic plaques and results in heart

failure (22).

Single-cell transcriptomics analysis revealed that macrophages,

natural killer T cells, and T and B lymphocytes are major immune

cell subsets in calcified atheromatous plaques in asymptomatic

patients (23). Additionally, an increasing number of studies have

suggested that SPP1 participates in different inflammatory

responses to VC by regulating immune cells. TREM2hi (triggered

receptor expressed on myeloid cells 2) macrophages display a

unique gene signature with expression of SPP1 in mouse

atherosclerotic lesions (24). Compared with those in the normal

group, SPP1 is positively correlated with dendritic cells (DCs) and

regulatory T cells in the calcific aortic valve disease (CAVD), but

there is a negative correlation between SPP1 and M2 phenotype

macrophage (25). SPP1 mediates immune cell adhesion, migration,

activation, anti-apoptosis, and other biological functions, suggesting

that it is a potential mediator of VC (26). Thus, this review

summarized the potential function of SPP1 in VC through the

regulation of immune cells.
SPP1 signaling and immune cells

Immune cell infiltration

SPP1 is regarded as a key mediator of cell adhesion and

migration, and SPP1 binding to OPN receptors (integrins and

CD44) promotes cell migration and effector functions (27). A

recent study showed that CD4+ T cells generating SPP1 exerted a

beneficial effect on controlling acute graft-versus-host disease

(aGVHD) through limiting gastrointestinal pathology (a major

target organ of aGVHD) in a mouse model of aGVHD (28). In

addition, immune correlation analysis revealed that SPP1
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expression was higher in resting CD4 memory T cells and lower

in regulatory T cells in the diagnosis of biliary atresia, suggesting

that SPP1 mediated CD4+ T-cell and regulatory T-cell infiltration

(29) (Figure 1A). Additionally, integrated analysis of bulk and

single-cell RNA sequencing data showed that SPP1 was positively

associated with myeloid cell infiltration but negatively associated

with CD4/CD8 cell infiltration in the prognosis of patients with

hepatocellular carcinoma (30) (Figure 1A).

Similarly, SPP1 is positively correlated with CD8 + cells,

CD4 + cells, macrophages, neutrophils, and DCs in ovarian cancer

(31). In the context of intrahepatic cholangiocarcinoma (iCCA),

there were more SPP1+ macrophages that infiltrated the peripheral

small duct type of S100P-SPP1 + iCCA (32). A study in OPN/SPP1

knockout mice showed that there was disorganized wound

remodeling and defective macrophage infiltration after injury or

infection (33). Furthermore, OPN-deficient DCs transduced with

SPP1 could rescue Th17 cell generation in vivo and in vitro (34). On

the other hand, intracellular OPN (iOPN) decreases the population

size of myeloid progenitor cells and myeloid cells, and secreted

OPN (sOPN) increases the population size of lymphoid cells (35).

Supernatants of CD153+PD-1+CD4+ T cells remarkably promoted

macrophage migration in a cell migration assay, which was

inhibited in the presence of an anti-SPP1 antibody (36).

Interestingly, OPN treatment during C. neoformans infection

sharply increased the number of pulmonary eosinophils but

decreased the total number of neutrophils without affecting the

number of CD4+ T cells, DCs, or alveolar macrophages (37). These

data demonstrate that OPN/SPP1 not only regulates immune cell

infiltration but also controls immune cell differentiation.
SPP1 and T-cells

OPN inhibits the activity of cytotoxic CD8+T lymphocytes

(CTLs), contributing to the progression of malignant disease (38).

OPN is expressed in myeloid regulatory cells (MRCs) and

malignant cells, which are two major components of the tumor

microenvironment. SPP1 suppressed IFN-g secretion by binding

to CD44, which was more highly expressed in activated T

lymphocytes (38) (Figure 1A). Another study showed that SPP1

decreased CD69+CD8+ T cells, CD25−CD8+ T cells, and PD-1

+CD8+ T cells, suggesting that the SPP1 protein likely suppressed

CD8+ T-cell activation (39) (Figure 1A). Knocking out SPP1 in

colon tumor cells increased the CTL lytic activity of T cells in vitro

and inhibited tumor growth in vivo, whereas the protein level of

OPN increased in the peripheral blood of tumor-bearing mice

(40). A recent study showed that macrophage-specific deletion of

SPP1 strengthened the efficacy of anti-PD-1 treatment in liver

cancer and reduced cancer-associated fibroblasts (CAFs)

infiltration and increased cytotoxic T-cell infiltration (41).

Additionally, SPP1 knockout expanded granulocyte-oriented

myeloid-derived suppressor cells (MDSCs), which was

associated with the inhibition of lung metastases (42). Further

data suggested that SPP1 deletion decreased the amount of

regulatory T-cell accumulation at the metastatic site.
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SPP1 and macrophages

Given that SPP1 is predominantly secreted from macrophages,

SPP1+ macrophages are widely recognized to regulate various

diseases, such as cancers (31), cardiovascular diseases (43), tissue

fibrosis (44, 45), and nonalcoholic steatohepatitis (46). Another

study demonstrated that PGC-1a increased SPP1 secretion from

monocytes, mediating macrophage activation and recruitment

through MCP-1 expression (47) (Figure 1B). Moreover, secreted

SPP1 regulates monocyte/macrophage biology (48, 49). As a case in

point, upregulated SPP1 promoted macrophage polarization toward

the M1 phenotype but not the M2 phenotype through the

overexpression of hypoxia-inducible factor 1a (HIF-1a) (50)

(Figure 1B). In colorectal cancer, SPP1+ macrophages highly

express complement component 1C chain (C1QC), mannose

receptor C type 1 (MRC1), signal transducer and activator of

transcription 1 (STAT1), and peroxisome proliferator-activated

receptor gamma (PPARG), which are associated with macrophage

polarization (51). Furthermore, single-cell RNA-seq analysis

demonstrated that SPP1 controlled the interaction between HCC

cells and macrophages through SPP1/CD44 and SPP1-PTGER4

signaling, and in vitro data also showed that SPP1 induced the

polarization of macrophages to M2-like tumor-associated

macrophages (TAMs) (52) (Figure 1B). However, SPP1

stimulated Janus kinase 1/signal transducers and activators of

transcription 1 (JAK1/STAT1) signaling in hepatocytes to secrete

high-mobility group box 1 (HMGB1), which facilitated macrophage
Frontiers in Immunology 03
polarization toward the M1 phenotype (53) (Figure 1B).

Nevertheless, a recent study suggested that compared with

monocytes and MARK4+ macrophages, macrophages expressing

both SPP1High and CXCL9High TAMs exhibit upregulated M0, M1,

and M2 phenotype markers in human cancers, but the expression

levels of M2 markers were higher than those of M1 markers in

SPP1High TAMs (54). Thus, the roles of SPP1 in macrophage

polarization should be further investigated.

In terms of tissue-resident macrophages, SPP1 is known as a key

mediator of IL-10–STAT3–Galectin-3 axis signaling in cardiac

macrophages after MI (15). Further study revealed a reduction in

the number of SPP1-producing macrophages following the

administration of the anti-IL-10 antibody alone or the

coadministration of the anti-IL-10 antibody plus the anti-MCSF

antibody after MI (55) (Figure 1B). Senescent fibro-adipogenic

progenitors actively increased macrophage recruitment in vitro,

which inhibited the recruitment of macrophages after anti-SPP1

antibody treatment (56) (Figure 1B). The data showed that SPP1

regulated macrophage recruitment during the senescence of fibro-

adipogenic progenitors. Additionally, platelet-derived CXC

chemokine ligand 4 (CXCL4) is required for SPP1+ macrophage

activation and organ fibrosis, and an expansion in SPP1+

macrophages of patients with CKD and those with heart failure

has also been found (57) (Figure 1B). IL-6 secreted from tumor

enteric glial cells (EGCs) facilitates monocyte differentiation toward

SPP1+TAMs (58). There was an increase in the expression level of

SPP1 in silica-treated RAW264.7 macrophages (59). These data
A

B

C

FIGURE 1

Association between SPP1 and immune cells. (A) SPP1 reduces regulatory T cells, inhibits CD8+T cells activation and suppresses CD4+ and CD8+ T-cell
infiltration. Additionally, SPP1 inhibits IFN-g secretion. (B) PGC-1a increases SPP1 secretion from monocytes, mediating macrophage activation and
recruitment through MCP-1 expression. Platelet-derived CXC chemokine ligand 4 (CXCL4) is required for SPP1+ macrophage activation. Anti-SPP1, anti-IL-
10, and anti-MCSF antibodies reduce the number of SPP1+ macrophages. During macrophage polarization, SPP1 induces the polarization of macrophages
to M2-like TAMs through SPP1/CD44 and SPP1-PTGER4 signaling. SPP1 stimulates Janus kinase 1/signal transducers and activators of transcription 1 (JAK1/
STAT1) signaling in hepatocytes to produce high-mobility group box 1 (HMGB1), which facilitates macrophage polarization toward the M1 phenotype.
Upregulated SPP1 promotes M1 macrophage polarization through the overexpression of hypoxia-inducible factor 1a (HIF-1a). (C) TLR signaling promotes
the production of SPP1 in dendritic cells. SPP1 induces DC differentiation toward the T helper 1 (Th1) phenotype, accompanied by increased MHC class II,
costimulatory (CD40, CD80, and CD86), and adhesion molecule (CD44) levels. Activated mesenchymal stromal cells (MSCs) reduce the level of SPP1
generation by DCs cocultured with IL-1b, IL-6, and TNFa, but increased levels of SPP1 in CD103-DCs induce Th1 and Th17 immune cell responses during
experimental colitis. The figures were generated with BioRender (https://biorender.com/).
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suggested that SPP1 expression was associated with cytokines and

materials, thus potentially offering solutions to human diseases by

regulating SPP1+ macrophages.
SPP1 and dendritic cells

DCs, known as a source of SPP1, are central mediators of the

induction of T-cell immunity. SPP1 regulates the migration,

differentiation, maturation, and survival of DCs (60–62). In

addition, TLR signaling modulated the production of SPP1 in

DCs (63) (Figure 1C). There was a significant association between

SPP1 and DC markers in ovarian cancer, where SPP1 regulated DC

infiltration (31). The cytokine milieu mediates the production of

SPP1 in DCs, including IL-27, IFN-I, IL-1b, IL-6, and TNFa (34,

64). SPP1 induced DC differentiation toward the T helper 1 (Th1)

phenotype, accompanied by increased MHC class II, costimulatory

(CD40, CD80, and CD86), and adhesion molecule (CD44) levels

(60) (Figure 1C). There was an increase in the level of SPP1 in

CD103-DCs during experimental colitis, which induced Th1 and

Th17 immune cell responses (65) (Figure 1C). Activated

mesenchymal stromal cells (MSCs) reduced the level of SPP1

generation by DCs cocultured with IL-1b, IL-6, and TNFa (64)

(Figure 1C). These data demonstrated that SPP1 mediated the

biological functions of DCs, which promoted DC-induced

immune responses in various diseases.
The association between SPP1 and
immune cells in vascular calcification

Cardiovascular calcification

Valve interstitial cells undergo myofibrogenesis, osteogenic

differentiation, calcification, and mineralization in CAVD, which

contributes to cardiac outflow obstruction (66). In addition to

common risks (aging, obesity, diabetes, hypertension, smoking,

etc.), plasma lipids, inflammation, mineralization, and fibrosis

contribute to CAVD (67). More interestingly, immune cells play a

vital role in CAVD, and the interaction between SPP1 and these

immune cells may mediate the progression of CAVD (68). There

was an increase in the level of SPP1 in the heart with age, and SPP1

is known as one of the hub genes in CAVD (69). Additionally,

highly expressed SPP1 was found in the cardiac valve of adult sheep

and was associated with the progression of CAVD during aging

(70). An increasing number of studies have demonstrated that

different T-cell subsets, such as T helper cells, CTLs, regulatory T

cells, memory effector T cells, and natural killer T cells, are present

in the aortic valve during the development of CAVD (71, 72).

Another study demonstrated that SPP1 expression in the calcific

aortic valve resulted in CD4+ and CD8+ T-cell infiltration, which,

in turn, accelerated CAVD (73) (Figure 2A). Cytokines such as IL-

22 and chemokines (CXCL9) are derived from T cells and promote

CAVD (74, 75). Interestingly, IL-22 promoted mineral deposition

and osteoblastic differentiation via IL-22R1 during mineralization

in human CAVD (74) (Figure 2A). Furthermore, T cells
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predominantly secreted OPN (28) (Figure 2A). In diabetic mice,

increased SPP1 production was detected in senescent CD153+PD-

1+CD44hiCD4+ T cells (76). SPP1 also induced IFN-g and IL-17

expression in T cells but inhibited IL-10 expression in T cells and B

cells (77) (Figure 2A). Consequently, there was a reduction in valve

calcium deposition accompanied by reduced RUNX2 expression in

response to IL-17A-neutralizing antibody treatment (78)

(Figure 2A). Therefore, there was an association between T cells

and SPP1 in mediating the progression of CAVD. Additionally, a

recent study showed that there has been a significant increase in the

expression levels of SPP1, HMOX1, and CD28 in the CAVD group

(25). Further data suggested that lymphocyte counts were correlated

with CAVD. However, there is little evidence to support the

mechanisms by which SPP1 affects T cells in CAVD.

Macrophages mainly participate in the progression of

cardiovascular diseases, including atherosclerosis (79), myocardial

infarction (80), cardiac repair (81), and CAVD (82). A recent study

showed that SPP1+ macrophages promoted atrial fibrillation and

that the level of SPP1 in macrophages increased during atrial

fibrillation (43). Furthermore, studies in CAVD have suggested

that macrophages secrete SPP1, which is associated with CAVD

progression (25, 83). Aortic valve interstitial cells (AVICs)

internalized DiI-labeled extracellular vesicles (EVs) derived from

M1-polarized macrophages (M1-EVs), which promoted the

expression of osteogenesis-related genes such as SPP1 and

calcium nodule formation (84) (Figure 2A). On the other hand,

SPP1 mediated IL-10–STAT3–Galectin-3 axis signaling in cardiac

macrophages after MI (15) (Figure 2A). A study in Notch1+/−

aortic valve disease demonstrated that macrophage infiltration

increased and macrophage phenotype shifted toward pro-

inflammatory macrophage, resulting in decreased STAT3b, which
inhibited the expression of STAT3a and RUNX2 (82).

Consequently, changes in these genes led to osteogenic

calcification (82). Additionally, upregulated Src-associated in

mitosis 68-KD (Sam68) expression was found in human CAV,

which coordinated with STAT3, resulting in mineral deposition and

osteogenic differentiation (85) (Figure 2A). These results showed

that SPP1-Sam68-STAT3 signaling could mediate macrophages

in CAVD.

DCs are one of the main leukocyte populations in heart valve

leukocytes (86). A recent integrated bioinformatics analysis revealed

that CD86 was upregulated in the aortic valve stenosis (87). In fact,

the expression of CD86 has been found in DCs in coronary artery

disease (88) (Figure 2A). Additionally, SPP1 expression is positively

related to CD86, which is associated with M2-type macrophages in

colorectal cancer (41). These data suggested that SPP1-CD86

signaling could modulate DC function to affect the progression of

CAVD. Furthermore, SPP1 increased IFN-g expression and the

Th17/Treg ratio in different models (50, 89), but IFN-g and IL-17

mediated DC migration and T-cell activation through DCs (90, 91).

In turn, IFN-g alleviated IL-17-induced autoimmune inflammation

by increasing IL-27 expression and decreasing SPP1 expression in

DCs, and a further study indicated that IL-27 inhibited the

expression of SPP1 in DCs (92) (Figure 2A). Another study

discovered that IL-27R knockout contributed to the accumulation

of myeloid cells and T cells, resulting in severe atherosclerosis in
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mice (93). However, there are few concerns in CAVD through the

differential regulation of SPP1 in DCs.
Brain vascular calcification

Brain VC is largely related to aging and neurodegenerative and

neuroinflammatory diseases (94). Recent studies have shown that

stroke and myocardial infarction result in intracranial arterial
Frontiers in Immunology 05
calcifications, which are not associated with cognitive outcomes

(95). Additionally, large artery stiffness causes brain vascular

dysfunction, which is linked to an inflammatory response and

increased oxidative stress (96). Accumulating studies have

demonstrated that the expression level of SPP1 increases in

various CNS disease models, which exerted an association

between SPP1 and immune cells (27). Another study discovered

that platelet-derived growth factor BB (PDGF-BB) phosphorylates

its receptors PDGFRb and ERK, resulting in RUNX2 activation
FIGURE 2

Potential pathways of SPP1-mediated T cells, macrophages, and dendritic cells in the progression of vascular calcification. (A) Increased production
of SPP1 is detected in senescent CD153+PD-1+CD44hiCD4+ T cells in diabetic mice and consequently may induce IFN-g/IL-17. SPP1 resulted in CD4
+ and CD8+ T-cell infiltration, IL-22 promotes mineral deposition and osteoblastic differentiation via IL-22R1. There was a reduction in valve calcium
deposition accompanied by reduced RUNX2 expression in response to IL-17A-neutralizing antibody treatment. Extracellular vesicles (EVs) derived
from M1-polarized macrophages (M1-EVs) enhanced the expression of osteogenesis-related genes such as SPP1 and calcium nodule formation.
Increased macrophage infiltration regulates STAT3 to promote osteogenic calcification. Src-associated in mitosis 68-KD (Sam68) coordinated with
STAT3 in human CAV, resulting in mineral deposition via SPP1 signaling. CD86 expression has been found in DCs in coronary artery disease, and
SPP1 expression is positively related to CD86. IFN-g increased IL-27 expression and decreased SPP1 expression in DCs, and the inhibitory effect of
IL-27 on SPP1 was detected. (B) There is no evidence showing that T cells induce vessel calcification in the brain. Upregulated SPP1 is detected in
cerebellar microglia from the CNS-targeted production of IL-6 (GFAP-IL6 mice). Moreover, SPP1-producing microglia inhibit the progression of
peripheral ectopic calcification in vivo. SPP1 suppressed the expression of IL-27 in DCs. IL-27 expression is detected in astrocytes in multiple
sclerosis (MS) brains. IL-27 increases the expression of CD39 on DCs, which enhances tolerance by inhibiting Th1- and Th17-induced immune
responses. There was a reduction in the concentration of ATP and activation of the NLRP3 inflammasome pathway. (C) Calcified fibrotic nodules
that resorbed non-active lesions contained fewer CD3+ T cells, producing SPP1. SPP1 stimulates the PIK3C3-AKT-mTOR pathway, promoting
chronic inflammation and Th17 differentiation. Rapamycin inhibits the progression of mesenchymal stromal cell calcification. Additionally, SPP1
increased the ratio of IL-17-producing T cells to IFN-g-producing T cells, resulting in lung fibrosis. SPP1 regulates macrophage polarization toward
the anti-inflammatory M2 phenotype via upregulation of the Janus kinase 2 (JAK2)/STAT3 signaling pathway, resulting in pulmonary fibrosis.
Additionally, a higher expression level of SPP1 regulates macrophage polarization toward the M2 phenotype, resulting in the activation of dendritic
cell infiltration in patients with lung adenocarcinoma with EGFR mutations. The expression level of FMS-like tyrosine kinase-3 ligand (Flt3L) and the
number of lung DCs increased significantly during the progression of pulmonary fibrosis, but the accumulation of CD11b-positive cells inhibited lung
fibrosis in a mouse model. (D) TDAG51 (T-cell death-associated gene 51) is a key predictor of vascular calcification in patients with chronic kidney
disease. There is an increase in the expression of IL-7 and IL-12 in chronic kidney disease, which promotes T-cell differentiation and CD8+ cytotoxic
T cells. In macrophages, there was a reduction in macrophage infiltration and kidney fibrosis in SPP1 KO mice following ischemia-reperfusion injury.
Targeting the androgen receptor suppresses phosphate-induced vascular smooth muscle cell calcification by decreasing IL-6 expression. PG
treatment inhibits the reduced H3K4me3 modification of SPP1. IL-1b-producing dendritic cells are related to kidney stone formation, which is
associated with CaOx crystals inducing an inflammatory response. SPP1 has consistently been recognized as one of the inner cores of CaOx
deposits. There was a reduction in SPP1 expression in all kidney cells treated with MNP-encapsulated RP81 (RP81-MNPs) after cisplatin activation.
Furthermore, Sirt6 alleviated vascular calcification in CKD by inhibiting the osteogenic transdifferentiation of VSMCs and that Sirt6 inhibited the
progression of experimental autoimmune encephalomyelitis through a reduction in DC migration. The figures were generated with BioRender
(https://biorender.com/).
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(94). Additionally, SPP1 expression increased significantly in a

platelet-derived growth factor BB (PDGF-BB)-induced brain VC

model (94). SPP1 is expressed in the brain vasculature, while SPP1

is expressed in pericytes and fibroblast-like cells in the brain (97). In

the context of immune cells, CD3+ T cells have been found in the

surroundings of calcifications in the brain parenchyma, but there is

no evidence showing that T cells induce vessel calcification in the

brain (98) (Figure 2B). However, the expression of SPP1 and

integrin subunit alpha X (ITGAX) is associated with cognitive

decline and neuropathologies through the regulation of microglial

subsets (99). Thus, further studies should investigate whether SPP1

expression during VC affects T-cell function or recruitment to

promote mineral deposition during brain VC.

SPP1-producing macrophages play an important role in

calcification. Monocytes differentiate into SPP1-producing

macrophages via calcium, which contributes to the pro-

inflammatory macrophage response (100). VCs are positively

correlated with Alzheimer’s disease in elderly individuals (101).

Additionally, a study in Alzheimer’s disease models suggested that

SPP1 expression was required for microglial synaptic phagocytosis

(102, 103) (Figure 2B). Thus, SPP1+ macrophages could modulate

brain VC, thus representing a potential target for treating brain

diseases in individuals of different ages. On the other hand,

microglia limited calcification induced by IL-6- and IFN-a-
mediated neuroinflammation, and upregulated SPP1 was detected

in cerebellar microglia from CNS-targeted production of IL-6

(GFAP-IL6 mice) (104) (Figure 2B). Moreover, SPP1, which is

produced in microglia, inhibited the progression of peripheral

ectopic calcification in vivo (105, 106) (Figure 2B). Therefore,

SPP1 may restrict calcium deposition through microglia, which

could connect with the IL-6 signaling pathway.

Additionally, recent data have shown that different types of DCs

have been found in cerebral ischemia, such as conventional type 1

DCs (cDC1s), conventional type 2 DCs (cDC2s), monocyte-derived

DCs, migratory DCs, and plasmacytoid (103). Additional data also

showed that there was an increased expression of SPP1 in four

clusters of DCs after experimental stroke (103). Additionally, a

previous study illustrated that SPP1 (iOPN) suppressed the

expression of IL-27 in DCs but promoted that of Th17 cells (107)

(Figure 2B). The expression level of IL-27 was detected in astrocytes

in multiple sclerosis (MS) brains (108). Furthermore, IL-27

increased the expression of CD39 on DCs, which enhanced

tolerance by inhibiting Th1- and Th17-induced immune

responses (109) (Figure 2B). Further data showed that there was a

reduction in the concentration of ATP and activation of the NLRP3

inflammasome pathway (109–111) (Figure 2B). These data

demonstrated that secretion of SPP1 from DCs could regulate the

progression of brain VC through IL-27 and CD39. Thus, more

mechanisms by which SPP1 regulates DCs should be investigated in

the context of brain VCs.
Pulmonary vascular calcification

Pulmonary arterial hypertension (PAH) contributes to

pulmonary VC, which is associated with impaired vascular
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stiffness, pulmonary artery atherosclerosis, and inflammation (4,

112–114). In the pulmonary artery, there was a reduction in SPP1

expression with age (70). A recent meta-analysis study showed that

there was a higher increase in the expression level of SPP1 in

patients with idiopathic pulmonary fibrosis (IPF) (70). Moreover,

small calcified lung nodules frequently contribute to dystrophic

calcification in injured lungs (115). Calcified fibrotic nodules that

resorbed non-active lesions contained fewer CD3+ T cells (116). A

great deal of CD3+ and CD4+ T cells have been found in other sites,

such as closed necrotic, non-necrotic cellular granulomas, and

central cavities of open granulomas (116). However, in terms of

the cavity surface, there were no T cells in the necrotic zone or on

the cavity surface, which contributed to preventing the interaction

between macrophages and T cells (116). Furthermore, the role of

SPP1 in T-cell migration, adhesion, and activation has been well

investigated. Thus, SPP1 could regulate T cells to control the

progression of calcified fibrotic nodules. Interestingly, an increase

in the expression of SPP1 was found in acid fast bacilli (AFB)-scarce

lesions (116). Additionally, increasing levels of IL-15 and SPP1

contribute to decreasing the number of bacteria in AFB-scarce

lesions (116). These data showed that SPP1 plays an anti-microbial

role in lung diseases (116). Another study demonstrated that

inhibition of SPP1 blocked the PIK3C3-AKT-mTOR pathway,

resulting in the alleviation of chronic inflammation and

mediating Th17/Treg differentiation in chronic obstructive

pulmonary disease (COPD) (117) (Figure 2C). Furthermore,

rapamycin, an mTOR inhibitor, suppressed the progression of

MSC calcification (Figure 2C) (118). Additionally, SPP1 increased

the ratio of IL-17-producing T cells to IFN-g-producing T cells,

resulting in lung fibrosis (119, 120) (Figure 2C). These data suggest

that T cells modulate lung inflammation and calcification via SPP1

signaling pathways.

Macrophages also affected lung calcifications, which are divided

into two types of tissue-resident macrophages [alveolar

macrophages (AMs) or interstitial macrophages (IMs)] (121).

There was an increase in the number of SPP1high macrophages in

fibrotic lungs rather than FABP4high and FCN1high (122). Another

study also showed that SPP1-expressing monocytes/macrophages

were mainly found around microliths in patients with pulmonary

alveolar microlithiasis (PAM) (123). Interestingly, SPP1 regulates

macrophage polarization toward the anti-inflammatory M2

phenotype via upregulation of the Janus kinase 2 (JAK2)/STAT3

signaling pathway, resulting in pulmonary fibrosis (Figure 2C)

(124). On the other hand, the expression level of MERTK is

highly increased in SPP1high macrophages, which could be a

potential treatment for IPF (125). MERTK was highly elevated in

macrophages, promoting profibrotic effects in pulmonary fibrosis

(126). These data showed that MERTKhigh SPP1high macrophages

could regulate pulmonary fibrosis and consequently result in

lung calcification.

Additionally, increased SPP1 expression regulated macrophage

polarization toward the M2 phenotype, which resulted in the

ac t iva t ion of DC infi l t ra t ion in pat i ent s wi th lung

adenocarcinoma with EGFR mutations (127) (Figure 2C).

Additionally, the expression level of FMS-like tyrosine kinase-3

ligand (Flt3L) and the number of lung DCs increased significantly
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during the progression of pulmonary fibrosis in both mice and

humans, but the accumulation of CD11b-positive cells inhibited

lung fibrosis in a mouse model (Figure 2C) (128). Another study

suggested that there was a direct association between SPP1 and

KRAS mutation in lung cancer and that SPP1 deficiency had a

protective effect on patients with KRAS mutation in lung cancer

(129). An increased number of DC1s and eosinophils was detected

in the advanced-IPF group compared with the control group or the

early-IPF group, demonstrating that these immune cells may

modulate the late stage of IPF (130). However, the effects of

SPP1-mediated DCs on lung calcification have been less studied.
Chronic kidney diseases

VC, which injures endothelial cells and vascular smooth muscle,

is an important factor that induces morbidity and mortality in

patients with CKD (131). Compared with those in the normal

group, calcium salts are prone to pathological deposition in the

arterial wall of patients with CKD (132). Additionally, elevated

extracellular phosphate, severe inflammation, and cellular

senescence lead to VC in CKD patients (132). In the context of

the inflammatory response, a recent study demonstrated that

TDAG51 (T-cell death-associated gene 51) was a key predictor of

VC in patients with CKD (133) (Figure 2D). IL-7 is a key cytokine

involved in T- and B-cell development and regulates the immune

response in various diseases (134) (Figure 2D). Additionally, there

was an increase in the expression level of IL-7 in CKD (Figure 2D).

The level of IL-12, another cytokine, was also increased in CKD,

which differentiated naive T cells into Th1 subsets and promotes

CD8+ cytotoxic T-cell and NK cell activity (135, 136) (Figure 2D).

However, no association between SPP1 and VC via the IL-7 or IL-12

signaling pathway has been reported in CKD. In addition, microglia

treated with SPP1 exhibited a decrease in IL-6 expression. sIL-6 is

associated with VC and chronic inflammation in CKD (137). Thus,

the effects of SPP1/IL-6 on T cells to regulate kidney VC should

be investigated.

Furthermore, there was a reduction in macrophage infiltration

and kidney fibrosis in SPP1 KO mice following ischemia-

reperfusion injury (138) (Figure 2D). Targeting macrophage

androgen receptor decreased IL-6 expression, which suppressed

phosphate-induced VSMC calcification (139) (Figure 2D).

Epigenetic regulation is involved in inflammation and CAD

progression, and histone methyltransferase inhibitors alleviate the

progression of the pro-inflammatory response by switching

macrophages to foam cells (140, 141). Additionally, a study of E3

ligase von Hippel–Lindau protein (VHL)-deficient macrophages

showed that 3-phosphoglyceric acid (PG) treatment inhibited the

reduced H3K4me3 modification of SPP1, resulting in increased

SPP1 expression (142, 143) (Figure 2D). Thus, epigenetic regulation

of SPP1+ macrophages could be an effective target in VC. In the

context of kidney stone disease (KSD), SPP1 was extensively

associated with other hub genes among the 30 hub genes, which

may be an interaction with macrophages to regulate KSD (144).

Additionally, a study in OPN knockout mice with glyxylate

administration suggested that OPN contributed to the formation
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of kidney stones, which was also associated with macrophage

activity (145). During mineral deposition, SPP1 expression was

detected in surrounding mineralized tissues in patients with KSD.

More interestingly, large numbers of M1 and M1/M2 macrophages

as well as T cells were found in the same area. However, this study

did not confirm the correlation between SPP1 and immune cells

related to mineral deposition or whether SPP1 recruited immune

cells to plaques or SPP1+-producing macrophages promoted

mineral deposition during the development of fibrosis (146).

Another study demonstrated that calcium promoted monocyte

differentiation into SPP1+ macrophages (100). Thus, targeting

SPP1+ macrophages could be a potential therapy for the

formation of kidney VC, and other regulatory mechanisms of

SPP1+ macrophages should be studied in the future.

A recent study also revealed four subclusters of DC populations

among kidney immune cells (147). IL-1b-producing DCs are also

related to kidney stone formation, which is associated with CaOx

crystals inducing an inflammatory response (148–151) (Figure 2D).

Furthermore, SPP1 has consistently been recognized as one of the

inner cores of CaOx deposits (152) (Figure 2D). In terms of

cisplatin-induced CKD, the inflammatory response was enhanced

in the RNLS-KO model, especially for those DC populations

increased to fivefold compared with that in the wild type (153).

Moreover, further data showed that there was a reduction in SPP1

expression in all kidney cells treated with MNP-encapsulated RP81

(RP81-MNPs) after cisplatin activation (153) (Figure 2D).

However, there was no evidence that SPP1 was associated with

DCs in this kind of model. Sirt6 inhibited the progression of

experimental autoimmune encephalomyelitis through a reduction

in DC migration (154) (Figure 2D). Furthermore, a study in SIRT6-

transgenic (SIRT6-Tg) mice demonstrated that Sirt6 alleviated VC

in CKD by inhibiting the osteogenic transdifferentiation of VSMCs

(155) (Figure 2D). Therefore, the association between SPP1 and

other signaling pathways (IL-1b and Sirt6) in DCs should be

addressed more specifically in the future, which could provide an

effective target for VCs.
Conclusions and future perspectives

Vascular diseases are the main cause of mortality in humans,

and accumulating studies have confirmed that VC is involved in the

inflammatory response in human diseases and that SPP1-mediated

immune cells play an important role in the progression of VC. The

specific mechanisms by which SPP1 mediates immune cells and VC

should be adequately addressed, as SPP1 could be a potential

therapeutic target for VC.

In recent decades, the role of the inflammatory response in VC

has been well reported. However, the regulatory effects of SPP1 on

immune cells in VC remain unclear. In this review, we summarize

the effects of SPP1 on T cells, macrophages, and DCs to decipher the

association between SPP1 and these immune cells in VC.

Identifying specific regulatory mechanisms between SPP1 and

immune cells is essential because these mechanisms contribute to

VC in different diseases. The SPP1–cytokine–T-cell axis might be

an important mediator in the progression of VC in different organs.
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Cytokine-neutralizing antibodies, T-cell antibodies, or mTOR

inhibitors could offer potential therapeutic strategies to alleviate

VC by regulating mineral deposition in patients. Moreover, SPP1+

macrophages have been identified as significant immune cells in

VC. SPP1/IL-6 signaling can regulate macrophages to affect VC

progression, and targeting SPP1/IL-6 signaling provides a unique

method to decipher the different mechanisms involved in the

formation of VC. Additionally, targeting SPP1/STAT3 pathway

signaling in macrophages plays a vital role in VC development,

which could mediate the progression of mineral deposition and

osteogenic differentiation. On the other hand, the effects of SPP1 on

DCs should be further investigated in the context of VC, given that

interactions between SPP1 and DCs have been detected in

diseased tissues.
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