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Background: Observational studies have indicated that immune dysregulation in

primary sclerosing cholangitis (PSC) primarily involves intestinal-derived immune

cells. However, the causal relationship between peripheral blood immune cells

and PSC remains insufficiently understood.

Methods: A bidirectional two-sample Mendelian randomization (MR) analysis

was implemented to determine the causal effect between PBC and 731 immune

cells. All datasets were extracted from a publicly available genetic database. The

standard inverse variance weighted (IVW) method was selected as the main

method for the causality analysis. Cochran’s Q statistics and MR-Egger intercept

were performed to evaluate heterogeneity and pleiotropy.

Results: In forward MR analysis, the expression ratios of CD11c on CD62L+

myeloid DC (OR = 1.136, 95% CI = 1.032–1.250, p = 0.009) and CD62L-myeloid

DC AC (OR = 1.267, 95% CI = 1.086–1.477, p = 0.003) were correlated with a

higher risk of PSC. Each one standard deviation increase of CD28 on resting

regulatory T cells (Treg) (OR = 0.724, 95% CI = 0.630–0.833, p < 0.001) and CD3

on secreting Treg (OR = 0.893, 95% CI = 0.823–0.969, p = 0.007) negatively

associated with the risk of PSC. In reverse MR analysis, PSC was identified with a

genetic causal effect on EM CD8+ T cell AC, CD8+ T cell AC, CD28− CD127−

CD25++ CD8+ T cell AC, CD28− CD25++ CD8+ T cell AC, CD28− CD8+ T cell/

CD8+ T cell, CD28− CD8+ T cell AC, and CD45 RA− CD28− CD8+ T cell AC.

Conclusion: Our study indicated the evidence of causal effects between PSC

and immune cells, which may provide a potential foundation for future diagnosis

and treatment of PSC.
KEYWORDS

primary sclerosing cholangitis (PSC), Mendelian randomization (MR), immune cells,
genome-wide association study (GWAS), causal effect
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1 Introduction

Primary sclerosing cholangitis (PSC) is an uncommon

cholestatic liver disorder with an unknown cause. Recent

evidence suggests that its prevalence in Northern Europe and

North America varies between 3.85 and 16.2 cases per 100,000

individuals, showing an upward trend over time (1). Pathological

manifestation is characterized by onion skin fibrosis encircling the

bile ducts and typically presenting as beaded stenosis along with

dilation of intrahepatic or/and extrahepatic bile ducts on imaging

studies. The natural progression of PSC exhibits considerable

heterogeneity and unpredictability; nevertheless, a significant

portion of patients ultimately advance towards end-stage

liver disease requiring exclusive treatment through liver

transplantation (LT) (2–5).

The pathogenesis of PSC remains incompletely understood

and likely results from the intricate interplay between genetic

and environmental factors. Recent comprehensive genome-wide

association studies (GWASs) have successfully identified a total

of 23 genetic risk loci, encompassing both HLA and non-HLA

genes, such as Fut2 gene, which are significantly associated with

PSC development (6, 7). These findings provide compelling

evidence for the substantial contribution of genetic factors to

the pathogenesis of PSC. As an autoimmune liver disease,

previous research has demonstrated robust HLA associations

in genetic studies, suggesting the involvement of adaptive

immune response mechanisms (4). Intriguingly, extensive fine-

mapping efforts coupled with functional annotations have

revealed numerous novel loci primarily linked to immune

function, particularly T helper cell subsets including Th17,

Th1, and Th2 cells. However, the causal relationship between

specific immune cell types and the initiation of PSC still

remains elusive.

Mendelian randomization (MR) analysis is a robust

methodology that employs genetic variation as an instrumental

variable (IV) to establish causal relationships between risk factors
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and diseases (8, 9). By adhering to Mendel’s law of independent

assortment, genetic variants are typically assumed to be

independent of each other and unaffected by confounding

variables. Consequently, the correlation ratio in MR studies was

assessed against randomized clinical trial (RCT) findings for

enhanced reliability (10). In this study, we used a two-sample MR

analysis to detect the potential causal association between immune

cells and PSC.
2 Materials and methods

2.1 Study design

We systematically evaluated the causal association between 731

immune cell signatures and PSC using a bidirectional two-sample

MR analysis. In an MR study, the IVs must adhere to three

fundamental assumptions for the validity of causal inference:

(1) Relevance assumption: IVs were significantly associated with

exposure, (2) Independence assumption: IVs were independent of

potential confounders, and (3) Exclusivity assumption: IVs could

affect the PSC solely through immune cells. The overall MR design

is depicted in Figure 1.
2.2 Data sources

PSC cases were extracted from a publicly available GWAS

database (https://gwas.mrcieu.ac.uk/) from the DIAGRAM

Consortium including 14,890 individuals (2,871 cases and 12,019

controls) of European ancestry. All cases included in this cohort

conformed to the American Association for the Study of

Liver Diseases criteria for PSC. The full GWAS summary

statistics for each immunophenotype with accession numbers

from GCST90001391 to GCST90002121 are publicly available
FIGURE 1

The study design of the MR analysis.
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from the GWAS Catalog (11). A total of 731 immunophenotypes

included absolute counts (ACs) (n = 118), median fluorescence

intensities (MFIs) (n = 389), morphological parameters (n = 32),

and relative counts (RCs) (n = 192). Specifically, in the current

study, we obtained B cells, classical dendritic cells (CDCs),

maturation stages of T cells, monocytes, myeloid cells, TBNK

(T cells, B cells, natural killer cells), and regulatory T cell (Treg)

panels (12).
2.3 Instrumental variable selection

The significance level of genetic IVs for each immune trait was

set to a genome-wide association significance level of p-value <

5.00E−8 (13, 14). To obtain independent variants, the extracted IVs

were clumped based on the 1000 Genomes Project linkage

disequilibrium (LD) structure with a threshold of R2 < 0.001 in a

10,000-kb distance. We extracted these IVs from the outcome

datase t and exc luded pal indromic s ing le-nuc leot ide

polymorphisms (SNPs) with moderate minor allele frequency

(MAF) with a threshold set to 0.01. When certain exposure-

related SNPs were not available in the outcome dataset, we

replaced them with a suitable proxy SNP that was highly

correlated with the exposure based on European ancestry (R2 >

0.8). Additionally, the F-statistic was calculated for each SNP to

avoid the bias of weal tool (F < 10) and reserve the strong

instruments for the following analysis.
2.4 Two-sample Mendelian randomization

In our study, the inverse variance weighted (IVW), MR-Egger

regression, weighted median, weighted mode, and simple mode

methods were performed to infer the causal relationship, whereas

the IVW method was selected as the main approach to estimate

the causal effect between 731 immunophenotypes and PSC (15).

The heterogeneity of the IVs was evaluated via Cochran’s Q test (p <

0.05) using the IVW method. The presence of pleiotropy was

detected using the MR-Egger intercept in the MR-Egger

regression method (p < 0.05) if the intercept significantly deviated
Frontiers in Immunology 03
from the origin. The leave-one-out sensitivity test using the IVW

method was used to examine whether a single SNP caused the

association. Additionally, scatter plots were performed to determine

effect estimates.

All statistical analyses were performed using the “TwoSampleMR”

package in R software (version 4.0.3).
3 Results

3.1 Exploration of the causal effect of
immune traits on PSC using forward
Mendelian randomization

A two-sample MR study was performed to explore the

association between 731 immune traits and PSC. A significant

causal association was observed between four immune traits

[CD3 on secreting Treg, CD11c on CD62L+ myeloid dendritic

cell (DC), CD28 on resting Treg, and CD62L−myeloid DC AC] and

PSC at a significance of 0.01 using the IVW method (Figure 2).

The level of CD11c on CD62L+ myeloid DC was positively

correlated with the risk of PSC using the IVW method (OR =

1.136, 95% CI = 1.032–1.250, p = 0.009) and the weighted median

method (OR = 1.207, 95% CI = 1.052–1.385, p = 0.007). The levels

of CD28 on resting Treg (OR = 0.724, 95% CI = 0.630–0.833,

p < 0.001) and CD3 on secreting Treg (OR = 0.893, 95% CI = 0.823–

0.969, p = 0.007) negatively associated with the risk of PSC in

the IVW method. Significant and similar results were also observed

in the weighted median method (CD28 on resting Treg, OR = 0.722,

95% CI = 0.622–0.838, p < 0.001; CD3 on secreting Treg,

OR = 0.891, 95% CI = 0.810–0.981, p = 0.018). The higher level

of CD62L− myeloid DC AC may predict a higher risk of PSC in

both the IVW method (OR = 1.267, 95% CI = 1.086–1.477,

p = 0.003) and the weighted median method (OR = 1.181, 95%

CI = 0.962–1.449, p = 0.111). There was no significant horizontal

pleiotropy in the MR-Egger intercept test (p > 0.05) (Supplementary

Table 1). No heterogeneity was identified using Cochran’s Q test

(Q p-value > 0.05) (Supplementary Table 1). Scatter plots and leave-

one-out sensitivity analysis also indicated the stability of the

above results (Supplementary Figures 1 and 2).
FIGURE 2

Forest plot for the causal effects of immune cells on PSC by Mendelian randomization analysis.
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3.2 Exploration of the causal effect of PSC
on immune traits using reverse
Mendelian randomization

Subsequently, we further carried out a reverse MR study to test

the causal effects of PSC on immune traits. The reverse MR study

revealed that PSC onset could increase the levels of effector memory

(EM) CD8+ T cell AC (OR = 1.091, 95% CI = 1.043–1.140,

p < 0.001), CD8+ T cell AC (OR = 1.073, 95% CI = 1.031–1.117,

p = 0.001), CD28− CD127− CD25++ CD8+ T cell AC (OR = 1.094,

95% CI = 1.046–1.144, p < 0.001), CD28− CD25++ CD8+ T cell AC

(OR = 1.086, 95% CI = 1.037–1.137, p < 0.001), CD28− CD8+ T

cell/CD8+ T cell (OR = 1.073, 95% CI = 1.033–1.115, p < 0.001),

CD28− CD8+ T cell AC (OR = 1.096, 95% CI = 1.051–1.144,

p < 0.001), and CD45 RA− CD28− CD8+ T cell AC (OR = 1.063,

95% CI = 1.015–1.113, p < 0.001) using the IVW method at a

significance of 0.001 (Figure 3). Similar trends with weighted

median methods were observed (EM CD8+ T cell AC, OR =

1.095, 95% CI = 1.038–1.156, p = 0.001; CD8+ T cell AC, OR =

1.087, 95% CI = 1.034–1.143, p = 0.001; CD28− CD127− CD25++

CD8+ T cell AC, OR = 1.107, 95% CI = 1.053–1.164, p < 0.001;

CD28− CD25++ CD8+ T cell AC, OR = 1.110, 95% CI = 1.058–

1.165, p < 0.001; CD28− CD8+ T cell/CD8+ T cell, OR = 1.076, 95%

CI = 1.027–1.126, p = 0.002; CD28− CD8+ T cell AC, OR = 1.105,

95% CI = 1.052–1.162, p < 0.001; CD45 RA− CD28− CD8+ T cell

AC, OR = 1.069, 95% CI = 1.011–1.130, p = 0.005) (Supplementary

Table 2). Scatter plots and leave-one-out sensitivity analysis are

presented in Supplementary Figures 3 and 4. No pleiotropy and

heterogeneity were detected in the MR-Egger intercept test and

Cochran’s Q test (p > 0.05) (Supplementary Table 2).
4 Discussion

Even though multiple factors were thought to be involved in PSC,

immune system dysregulation played a pivotal role. Existing evidence

suggests the involvement of T cells in disease development, as indicated
Frontiers in Immunology 04
by robust HLA associations and imbalances between Treg and Th17

cells (16–18). In our study, employing two-way MR analysis, we

investigated the causal relationship between immune cell populations

and the onset of PSC. Within the context of PSC background, we

identified a causative association between seven distinct types of

immune cells and PSC initiation; notably, various subsets of CD8+ T

cells were specifically linked to the initiation of PSC.

In our study, we found that a positive correlation between CD8+

T cells and the onset of PSC when considering PSC as an exposure

factor, which was consistent with previous experimental data in mice.

Daniel et al. demonstrated that activated CD8+ T cells in gut-

associated lymphoid tissue (GALT) induce immune-mediated

cholangitis in an antigen-dependent manner. Furthermore, this

study provided novel evidence for an association between colitis

and cholangitis in an antigen-dependent mouse model (19).

Moreover, previous studies have also demonstrated an upregulation

of interferon (IFN)-g responses in patients with PSC and mouse

models of sclerosing cholangitis. IFN-g has been shown to modulate

the phenotype of hepatic CD8+ T lymphocytes and NK cells,

enhancing their cytotoxicity. Conversely, attenuation of IFN-g
signaling reduced hepatocellular apoptosis, diminished the

frequency of inflammatory macrophages in the liver, and

ameliorated liver fibrosis. In murine models of PSC, stimulation of

Treg amplification through the use of interleukin (IL)-2/anti-IL-2

immune complexes resulted in reduced CD8+ T-cell counts and

improved biliary tract damage as well as fibrosis in Mdr2−/− mice

(20). Therefore, targeting IFN-g-dependent immune responses might

serve as a potential therapeutic strategy for managing sclerosing

cholangitis (21).

The previous studies conducted on immune cells in patients

with PSC have demonstrated that the non-coding PSC risk variants

demonstrate a significant enrichment in immune-specific

enhancers, particularly those associated with the T-cell response

to antigen stimulation. In total, they observed differential activities

in 250 genes and 10,000 regulatory elements between patients and

control (22). Moreover, through single-cell sequencing of T cells in

the liver of patients with PSC, Tobias et al. observed a preferential
FIGURE 3

Forest plot for the causal effects of PSC on immune cells by Mendelian randomization analysis.
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inclination of naive CD4+ T cells in the hepatic microenvironment

towards Th17 polarization rather than Foxp3+ regulatory T-cell

differentiation, potentially implicating their involvement in PSC

pathogenesis and serving as potential targets for novel therapeutic

interventions (23). However, this distinctive cellular subset was not

detected within our experimental findings.

Similarly, macrophages play a pivotal role in the pathogenesis of

PSC. Notably, Maria et al. found an augmentation in peribiliary

proinflammatory (M1-like) macrophages as well as selectively

activated (M2-like) monocyte-derived macrophages within PSC

compared to normal liver tissue (24). Importantly, inhibition of

monocyte-derived macrophage recruitment through genetic or

pharmacological depletion of CCR2 effectively prevented biliary

tract injury and fibrosis. In Tiffany’s study (25), their results

suggested that FXR controlled the macrophage–Th1/17 axis

crucial for SC progression. Liver macrophages served as cellular

targets for systemic FXR agonists in cholestatic liver disease.

The pathogenesis of PSC may also involve the participation of

inflammatory factors derived from immune cells. The production of

IL-1b and IL-6 by monocytes, which was crucial for Th17

differentiation, was found to be significantly elevated in patients

with PSC compared to healthy controls. Furthermore, the levels of

IL-1b were notably increased in patients with PSC with Candida

albicans-stimulated peripheral blood mononuclear cells (PBMCs),

surpassing both healthy controls and patients with PSC (26).

Additionally, a bioinformatics-based and clinical hepatic puncture

immunohistochemical study revealed a positive correlation between

ANXA1 expression and the presence of chemokines, chemokine

receptors, and immune cell infiltration in the liver of patients

diagnosed with PSC (27).

In addition to the promotional effect of immune cells in the liver

and peripheral blood on the progression of PSC, emerging evidence

suggested that immune cells originating from gut might also

contribute to PSC pathogenesis. Investigations have revealed that

gut and liver memory T cells of common clonal origin are present in

patients with PSC-IBD (28). It was also suggested that the migration

of T cells from the intestine to the liver contributes to PSC

pathogenesis, as previously suggested by aberrant expression of gut-

specific molecules such as endothelial adhesion molecule MAdCAM-

1 and chemokine CCL25, alongsidea4b7+CCR9+ effector memory T

cells in the inflamed liver of patients with PSC (29, 30).

Despite the MR design being less prone to confounding factors

compared to other observational studies, our study has certain

limitations. Although there was a strong association between

immune cells and PSC (11), our study results only considered a

European population and could not be immediately generalized to

other ethnic groups and populations. Secondly, the genome-wide

aggregated database of association studies used in this study,

however, did not provide individual-level data, thereby constraining

the ability to conduct subgroup analyses based on variables such as age,

sex, duration of disease, treatment, and type of disease. Thirdly, the

incidence of PSC may exhibit variations across different ethnicities;

however, the SNP data utilized in our study were exclusively obtained

from the Gaocasoid race. Consequently, it is imperative to bolster our

conclusion with additional SNP data specific to other racial groups.
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Overall, this exploratory study provided the latest insight

into the causal association between immune cells and PSC and

opened up new paths for researchers to investigate the biological

mechanisms of PSC. The significance of immune cells in PSC was of

great significance for future research and clinical practice. Further

research on the role of phenotypic characteristics of immune cells

could be conducive to the screening and guide to exploration of

earlier intervention of PSC. Therefore, our objective was to identify

specific immunophenotypes that may impact PSC episodes and

explore prognostic and predictive biomarkers to achieve more

precise treatment for patients with clinical PSC.
5 Conclusion

Our findings demonstrated a significant and robust causal

relationship between immune cells and PSC, underscoring the

imperative of incorporating the regulation of immune cell

surveillance in clinical management strategies for PSC.
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SUPPLEMENTARY FIGURE 1

Scatter plots of MR analysis for the causal effects of immune cells on PSC. (A)
CD11c on CD62L+ myeloid DC on PSC; (B) CD28 on resting Treg on PSC; (C)
CD3 on secreting Treg on PSC; (D) CD62L− myeloid DC AC on PSC.
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SUPPLEMENTARY FIGURE 2

The leave-one-out analyses of MR analysis for the causal effects of immune cells
on PSC. (A) CD11c on CD62L+myeloid DC on PSC; (B) CD28 on resting Treg on

PSC; (C) CD3 on secreting Treg on PSC; (D) CD62L− myeloid DC AC on PSC.

SUPPLEMENTARY FIGURE 3

Scatter plots of MR analysis for the causal effects of PSC on immune cells. (A)
PSC on EM CD8+ T cell AC; (B) PSC on CD8+ T cell AC; (C) PSC on CD28−

CD127− CD25++ CD8+ T cell AC; (D) PSC on CD28− CD25++ CD8+ T cell
AC; (E) PSC on CD28− CD8+ T cell/CD8+ T cell; (F) PSC on CD28− CD8+ T

cell AC; (G) PSC on CD45 RA− CD28− CD8+ T cell AC.

SUPPLEMENTARY FIGURE 4

The leave-one-out analyses of MR analysis for the causal effects of PSC on
immune cells. (A) PSC on EM CD8+ T cell AC; (B) PSC on CD8+ T cell AC; (C)
PSC on CD28− CD127− CD25++ CD8+ T cell AC; (D) PSC on CD28− CD25+
+ CD8+ T cell AC; (E) PSC on CD28− CD8+ T cell/CD8+ T cell; (F) PSC on

CD28− CD8+ T cell AC; (G) PSC on CD45 RA− CD28− CD8+ T cell AC.

SUPPLEMENTARY TABLE 1

The causa l e ffec t s o f immune ce l l s on PSC by Mende l i an
randomization analysis.

SUPPLEMENTARY TABLE 2

The causal effects of PSC on immune cells by Mendelian randomization analysis.
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