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The dualistic role of Lyn tyrosine
kinase in immune cell signaling:
implications for systemic
lupus erythematosus
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Mark D. Wright1 and Margaret L. Hibbs1*

1Department of Immunology, School of Translational Medicine, Monash University, Melbourne,
VIC, Australia, 2Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical
Research, Clayton, VIC, Australia, 3Department of Molecular and Translational Science, Monash
University, Clayton, VIC, Australia
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem

autoimmune disease that can affect any organ in the body. The disease is

characterized by circulating autoantibodies that accumulate in organs and

tissues, which triggers an inflammatory response that can cause permanent

damage leading to significant morbidity and mortality. Lyn, a member of the Src

family of non-receptor protein tyrosine kinases, is highly implicated in SLE as

remarkably both mice lacking Lyn or expressing a gain-of-function mutation in

Lyn develop spontaneous lupus-like disease due to altered signaling in B

lymphocytes and myeloid cells, suggesting its expression or activation state

plays a critical role in maintaining tolerance. The past 30 years of research has

begun to elucidate the role of Lyn in a duplicitous signaling network of activating

and inhibitory immunoreceptors and related targets, including interactions with

the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-

function mutations in Lyn have now been identified in human cases and like

mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE

patients have presented mixed findings, which may reflect the heterogeneity of

disease processes in SLE, with impairment or enhancement in Lyn function

affecting subsets of SLE patients that may be a means of stratification. In this

review, we present an overview of the phosphorylation and protein-binding

targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural

domains of the protein that are involved in its function, and provide an update on

studies of Lyn in SLE patients.
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1 Systemic lupus erythematosus is a
multi-system autoimmune disease

Systemic Lupus Erythematosus (SLE, lupus) is a chronic

autoinflammatory disorder characterized by the production of

autoantibodies, particularly towards nuclear antigen (anti-nuclear

autoantibodies; ANAs) [reviewed by (1)]. ANAs can form immune

complexes with self-antigen and deposit in any organ system,

causing a diverse range of symptoms. SLE is known as a disease

of a thousand faces and can be thought of as a prototypic

autoimmune disorder, with underlying disease processes shared

by many autoimmune conditions.

SLE reportedly affects one in every 1,000 to 5,000 individuals

[reviewed by (2–4)]. Approximately nine times more women are

impacted with the condition than men (2–4), with SLE having a

higher prevalence, earlier onset, and greater severity in those with

non-European ancestry (2, 4). The onset of SLE peaks in young to

middle aged women (2, 3), with a later onset typically seen in

men (3).

Milder forms of SLE are limited to arthritis and skin

presentations, however, this can progress to life-threatening

manifestations including renal disease (lupus nephritis; LN),

serositis and neurological effects. Renal involvement is the most

frequent serious manifestation of SLE, estimated to occur in 40-70%

of SLE patients (5, 6), with one in ten LN patients progressing to

end-stage renal failure within 5 years (7). Given the early onset of

lupus in women, kidney disease is a significant driver of healthcare

costs associated with the condition (4).

The first-line treatments for SLE include the long-term use of

the antimalarial medication hydroxychloroquine to prevent future

disease flares, and glucocorticoids to manage disease activity (8, 9).

Other immunosuppressive agents can also be used as induction

therapies or as alternatives to glucocorticoids/hydroxychloroquine

when disease is refractory, including chemotherapeutics

(methotrexate, cyclophosphamide) and anti-transplant-rejection

medications (azathioprine, mycophenolate) (8). Achieving full

remission without the need for ongoing immunosuppressive

therapy is rare, and cumulative use carries significant risk of

organ damage including bone disease, metabolic disorders, and

retinopathy (8–11).

Advancements in immunosuppressive therapies, such as the

introduction of corticosteroids and cyclophosphamide in the 1950s

and 1960s, have seen an SLE patient’s prognosis greatly improve

from a 10-year survival of 50-60% to 90% today (12, 13). However,

there has been a lack of success in therapeutic advancement in the

modern era; the 20-year overall survival of SLE patients is 75% (14,

15) and SLE is the tenth leading cause of death in young women in

America, and the fifth within the African-American and Hispanic

communities (16). Similarly in Australia, SLE has greater prevalence

and severity amongst Asian Australians and First Nations people

(17). Meta-analyses have shown that the highest increase in

mortality risk is for kidney disease, followed by infection and

cardiovascular disease (18, 19). An increased risk of certain

cancers has also been observed in SLE (20), which is generally

thought to be a result of chronic inflammation.
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Research into superior therapies for SLE has been marred by a

lack success (21–23). However, there have been a number of

developments in recent years, including approval of two biologic

therapies for SLE: belimumab to neutralize B-cell activating factor

(BAFF) (24) and anifrolumab which antagonizes the type I

interferon receptor (IFNARI) (25). Nonetheless, the response rate

to biologics in conjunction with standard therapy is moderate,

being 11% over placebo for belimumab in LN (24) and anifrolumab

eliciting a 16.3% response rate in SLE patients without

neuropsychiatric manifestations or active LN (25).
1.1 The therapeutic potential of studying
Lyn in SLE

Given the modest overall response seen to biologics, there is a

clear need to better understand the disease process in SLE to design

more effective therapies. However, a remaining challenge in

research is the diversity of SLE clinical presentations and

underlying molecular causes. A key to superior therapies will

therefore lie in our ability to stratify SLE patients for effective

disease targeting in a precision medicine approach (26).

Lyn (Lck/yes-related novel tyrosine kinase) is a non-receptor

protein tyrosine kinase that plays a unique role in immune cell

signaling by propagating both activating and inhibitory pathways.

Genetic manipulation studies in mice have illustrated this

dichotomy, with reduction or enhancement of Lyn function

giving rise to autoinflammatory diseases including lupus-like

disease. Studies in SLE patients have also linked Lyn to SLE and

related autoinflammatory conditions. Elucidating the mechanistic

role of Lyn in SLE can therefore assist in the identification of new

molecular targets for SLE therapy and shed light on whether

perturbations in Lyn may serve as a biomarker for a precision

medicine approach to treatment.
2 The dualistic role of Lyn in immune
cell signaling

Lyn is a member of the Src family of non-receptor tyrosine

kinases (SFKs) (27). SFKs are membrane anchored enzymes that

phosphorylate receptors lacking intrinsic kinase activity to initiate

signal transduction. Sequence homology has identified eight SFKs

in addition to Lyn: Src, Lck, Hck, Fyn, Blk, Fgr, Yes, and Yrk (28).

Lyn is most closely related to Hck (29) and is highly conserved

across species (30–32). Src, Fyn, and Yes are ubiquitously expressed,

whereas Hck, Fgr, Blk, and Lck are expressed only in hematopoietic

lineages (33). Lyn is expressed broadly, detectable in hematopoietic

stem cells (HSC), B cells, myeloid cells, NK cells, endothelial cells,

epithelial cells, and neurons (34, 35). Lyn, however, is not expressed

in conventional T cells, being downregulated at the thymocyte

double negative (DN) stage of T cell development (Figure 1).

Lyn, as with other SFKs, is a modular protein, containing four

Src homology (SH1-4) domains and a unique domain (UD),

comprehensively reviewed by others (28, 36) (Figure 2A). Two
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1395427
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


L’Estrange-Stranieri et al. 10.3389/fimmu.2024.1395427
Lyn isoforms occur due to alternative splicing of Lyn pre-mRNA; a

p56Lyn isoform (LynA) contains a 21-amino acid UD insert while

the p53Lyn isoform (LynB) lacks this amino acid stretch (32, 39).

Lyn is predominantly embedded in the intracellular side of the

plasma membrane through the co-translational addition of

saturated fatty acids to the N-terminus of Lyn (40, 41)

(Figures 2A, B). The C-terminal end of Lyn comprises the protein

tyrosine kinase (PTK) domain and a short tail containing the

regulatory tyrosine residue (Y508) that determines Lyn’s

activation status; when phosphorylated by the kinase Csk, pY508

places Lyn in an inactive closed conformation that blocks substrate

access to the PTK (Figure 2B) . Lyn is act ivated by

dephosphorylating Y508 by phosphatases such as CD45 and

CD148 (42), allowing Lyn to adopt its open conformation to

allow for substrate phosphorylation to occur [reviewed by

(37)] (Figure 2B).

Lyn plays a dual role in immune cell signaling by

phosphorylating both activating and inhibitory immunoreceptors.

In addition to Lyn’s known role in plasma membrane receptor

phosphorylation, Lyn also phosphorylates substrates whilst in the

Golgi apparatus during oxidative stress (43). A fraction of
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endogenous Lyn is also found in the nucleus (44, 45) where it can

be activated by DNA damage, causing Lyn to phosphorylate

inhibitory and activating nuclear targets (45–47). For activating

receptors, the tyrosine motifs phosphorylated by Lyn and other

SFKs are termed immunoreceptor tyrosine-based activation motifs

(ITAMs) and have the conserved sequence YxxL6-10YxxL (48).

Phosphorylated ITAMs act as binding sites for the recruitment

and activation of downstream kinases such as Syk in B cells and

myeloid cells and ZAP-70 in T cells (49, 50). Docking of Syk triggers

its activation through autophosphorylation (51) and by direct

phosphorylation via SFKs including Lyn (49). Active Syk initiates

the activation of growth/inflammatory signaling pathways,

including those regulated by mitogen-activated protein kinase

(MAPK), nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-kB), and phosphatidylinositol 3-kinase/protein kinase B

(PI3K/Akt).

Although other SFKs can phosphorylate inhibitory receptors

(52, 53), Lyn plays a key role in inhibitory signaling whereupon it

phosphorylates tyrosine residues in the conserved sequence I/V/

LxYxxL/V, known as immunoreceptor tyrosine-based inhibitory

motifs (ITIMs) (54). In contrast to ITAMs, ITIM phosphorylation
FIGURE 1

Lyn expression pattern in C57BL/6 mouse cells. Data from the Immunological Genome Project database of bulk RNA-sequencing on sorted cell
populations (35). LT-HSC, long-lived hematopoietic stem cell; CLP, common lymphoid progenitor; pMonocyte, patrolling monocyte; cMonocyte,
classical monocyte; pDC, plasmacytoid dendritic cell; cDC, conventional dendritic cell; DN, double negative thymocyte; DP, double positive
thymocyte; MAIT, mucosal-associated invariant T cell; NK, natural killer; ILC, innate-like cell; BECs, blood endothelial cells; LECs, lymphatic
endothelial cells; FRC, fibroblastic reticular cells; mTECs, medullary thymic epithelial cells.
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recruits phosphatases to the plasma membrane and triggers their

activation, which allows them to dephosphorylate and thereby turn

off targets in the pathways activated by ITAM-recruited kinases (38,

54). ITIM-recruited phosphatases contain the SH2 phospho-

tyrosine binding domain and include the lipid phosphatases

SHIP-1/SHIP-2 and the protein tyrosine phosphatases SHP-1/

SHP-2. As with Syk, Lyn also directly phosphorylates SHIP and

SHP to cause their activation (55, 56), therefore phosphorylation of

ITIM-containing inhibitory receptors typically occurs upon co-

ligation with an activating receptor (57). Of note, SHP-1 and

SHIP-1 can also be recruited directly to activating receptors to

inhibit signaling; SHP-1 has been shown to bind IFNAR1, causing

the dephosphorylation of associated Janus kinases and signal

transducer and activator of transcription factors (STATs) (58, 59).

Similarly, SHIP-1 is recruited to the M-CSF receptor (CSF-R1) to

inhibit Akt phosphorylation (60, 61).

Interestingly, Lyn has also been shown to propagate inhibitory

signaling from activating receptors, such as the FcaRI, FcgRIIa, and
Frontiers in Immunology 04
FcgRIIIa, with these signals termed inhibitory ITAM signals

(ITAMi) (62–64). This occurs in the absence of receptor

aggregation, or with low affinity binding to ligand (62, 64).
2.1 Activating signaling

Lyn colocalizes with, and phosphorylates ITAMs of numerous

activating receptors including Iga/BCR (65), CD19 (66), high

affinity FcϵRl complex (67), high affinity FcgRI (CD64) (68, 69),
and Fc Receptor Like 5 (FCRL5) (70) (Figure 3). Lyn also colocalizes

with and propagates signaling from activating receptors that do not

contain an ITAM, including the Epo receptor (74, 75), the G-CSF

receptor (76–78), the b-chain of IL-3/5/GM-CSF receptors (79),

CD14 (80) [the LPS co-receptor with TLR4 and MD-2 (81)], CD36

(a scavenger receptor implicated in both atherosclerosis and

amyloid plaque accumulation) (82), c-Kit (83), IL-2R (84), CD40

(85), and FLT3 (86, 87).
B

A

FIGURE 2

The structure of Lyn kinase and regulation of its activity. (A) The canonical LynA protein sequence; amino acid (aa) residues 1-512, with the domains
highlighted and the corresponding schematic of structure depicted underneath (sequence from UniProt [31)]. Inhibitory pY residues (Y32, Y508, red),
activating pY residue (Y397, green), the ATP-binding site (K275), myristate addition to residue G2 and palmitate to C3, and the SH3 proline-binding
motif (PQKP) within the SH2-kinase linker sequence indicated. (B) Schematic of the active and inactive conformations of Lyn. Lyn is phosphorylated
by Csk on Y508, placing Lyn in a closed inactive conformation. Lyn is activated by phosphatases such as CD45, which dephosphorylate Y508 on Lyn,
removing the binding site for the SH2 domain, causing Lyn to unwind to an open and active conformation with ready access to its substrates. Lyn
auto-phosphorylates Y397 to displace the activation loop from the active site, with the g-loop stabilizing ATP binding to K275 to enable
phosphotransfer from ATP to substrate. Figure inspired by (37, 38).
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The activating role of Lyn is exemplified by studies using mice

expressing a constitutively active Lyn mutant, termed Lynup/up

mice. The Lynup mutant was generated through a gain-of-

function point mutation (p.Y508F), which removes the regulatory

tyrosine residue in Lyn, resulting in Lyn being unable to ‘switch off’

and thereby having constitutive kinase activity (88). Lynup/up B cells

exhibi t chronic act ivat ion due to cont inuous ITAM

phosphorylation by Lyn, seen in basal phosphorylation of Syk

and PLCg2, with B cells displaying a hyperactive phenotype and

increased calcium influx upon stimulation (88, 89). Due to immune

cell hyperactivation, Lynup/up mice develop lupus-like disease

including glomerulonephritis (90), as well as severe inflammatory

lung disease (91).

Highlighting the duplicitous role of Lyn in signaling, Lynup/up

immune cells also show constitutive inhibitory signaling due to

ITIM phosphorylation by Lyn, including phosphorylation of the

inhibitory receptors CD22, FcgRIIB, SIRPa, PIR-B, as well as SHIP-

1 and SHP-1 (90). However, the severe autoimmunity and
Frontiers in Immunology 05
autoinflammation exhibited by Lynup/up mice demonstrates that

chronic Lyn-driven activating signaling overpowers Lyn’s

inhibitory-driven role. Yet, how Lyn gain-of-function mutations

result in immune hyperactivation despite enhanced inhibitory

signaling remains unclear, with further comparative studies of

Lyn loss-of-function and Lyn gain-of-function mice warranted to

gain additional mechanistic insight.

De novo gain-of-function mutations in LYN have also been

reported in four patients, including two missense mutations

[p.Y508H (92) and p.Y508F (93)] and two nonsense mutations

(p.Y508* and p.Y507*) (93) that lead to a truncated LYN protein,

lacking the Y508 regulatory residue. Echoing the phenotype of

Lynup/up mice, gain-of-function mutations in patients caused severe

systemic inflammation, with disease onset occurring from birth (92,

93). Features of disease included fever, cutaneous neutrophilic

vasculitis/atopic dermatitis, arthritis/arthralgia, colitis, and liver

damage (92, 93). Patients exhibited elevated circulating

proinflammatory cytokines and C-reactive protein (92, 93), as
FIGURE 3

The network of Lyn’s phosphorylation targets in B lymphocytes and myeloid cells. Lyn drives activation by phosphorylating the ITAMs of activating
receptors and Syk (indicated by green). Paradoxically, Lyn also promotes inhibition by phosphorylating the ITIMs of inhibitory receptors and SHP-1
and SHIP-1 (indicated by red). Lyn further promotes inhibition by phosphorylating the NLRP3 inflammasome (71) and the IRF family of transcription
factors downstream of TLRs to target them for ubiquitin-proteasome degradation (72). Lyn has additionally been suggested to inhibit IRF5 through a
protein-binding interaction (73). Myeloid-specific receptors (SIRPa, FcgRI, FcϵR and growth factor receptors; GF-R) are denoted with asterisks. Figure
inspired by (37, 38).
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well as the presence of autoantibodies (93). Functional studies

revealed enhanced activation of B cells, neutrophils, macrophages,

and endothelial cells (93). Patients were treated with anti-IL-1b,
anti-TNFa, as well as the SFK kinase inhibitor dasatinib, which

improved systemic inflammation (92, 93).

Enhanced Lyn kinase activity has also been observed in a

truncated N-terminal mutant of Lyn (LynDN) that forms during

apoptosis via direct cleavage by executioner caspases, relocating Lyn

to the cytosol and nucleus (94–96). LynDN is proinflammatory,

with LynDN/DN mice developing a severe psoriasis-like disease that is

dependent on TNFa and inflammatory caspase induction of IL-1b
and IL-18 activation (95, 97). Biopsies of human psoriatic skin

lesions similarly show increased expression of caspases and LynDN,
implicating cleaved Lyn in human psoriasis (97).

Of the two Lyn isoforms, LynA has been implicated as having a

greater role in activation. The UD insert in LynA contains a tyrosine

residue (Y32) (Figure 2A) that is phosphorylated by active Lyn and

Hck in trans (98), as well as by the epidermal growth factor receptor

in epithelial cells (99). Phosphorylation of Y32 targets LynA for

polyubiquitination by c-Cbl, causing rapid LynA degradation

following activation (98), which is consistent with reports of

reduced LynA levels after B cell activation (39). The rapid

degradation of LynA has been shown to prevent Lyn-driven

hyperactivating signaling in macrophages (100). This can be fine-

tuned by increasing Lyn protein levels by inducing Lyn

transcription with IFNg or GM-CSF priming, which compensates

for the reduction in LynA, leading to enhanced Lyn-driven

macrophage activation to subsequent stimulation (100). The

divergent function of the isoforms has been further explored in

vivo by the Freedman group through the generation of mice

expressing a single isoform; either LynA or LynB (101). This

work demonstrated that the co-expression of both isoforms is

required to prevent lupus-like disease; however, LynB-deficient

mice developed more severe autoimmune pathology compared to

LynA-deficient mice, with greater incidence of ANA detection and

severe glomerulonephritis (101). This suggests that LynB may play a

greater role in inhibitory signaling, and LynA may be more

important for activating signaling (101). This is further supported

by reports showing that the LynA isoform is overexpressed in

cancerous cells, implying a dominant role for LynA in activation

(99, 102).
2.2 Inhibitory signaling

Generally, the role of Lyn in activating signaling can be

compensated for by other SFKs, whereas its function in inhibitory

receptor signaling in B lymphocytes and myeloid cells is non-

redundant, leading to a loss of immune cell inhibition and

resultant lupus-like disease in Lyn-deficient mice (Lyn-/-) (103,

104). Lyn-/- mice are a well-studied model of lupus, exhibiting an

age-dependent increase in pathogenic autoreactive antibodies

including anti-dsDNA and anti-Sm IgG2b/c (105), IgA (106), and

to a lesser extent IgE (107, 108). This promotes pathogenic immune

complex deposition in the glomeruli, leading to recruitment of

complement factor 3 deposition which drives inflammatory
Frontiers in Immunology 06
immune cell infiltration, culminating in glomerulonephritis. At

the cellular level, Lyn deficiency results in hyperactive B cells to

BCR crosslinking (109) and myeloid cells with enhanced TLR

signaling (73, 110–112), integrin signaling (113, 114) and growth

factor sensitivity (115).

B cells are necessary for autoimmune pathology in Lyn-/- mice

by generating class-switched autoantibodies, as the disease is

abrogated by a block in B cell development (Lyn-/-mMT-/-) (106,

116). Autoimmune pathology is also T cell-dependent, as Lyn-/-

mice with an impairment in T cell development (Lyn-/-TCRb-/-

TCRd-/-) or mice lacking the SAP signaling adaptor protein (Lyn-/-

SAP-/-), which is critical for T cell-B cell interactions, both show

attenuated production of anti-nuclear IgG autoantibodies (117).

Given that T cells do not express Lyn, they are believed to be

intrinsically unaffected in Lyn-/- mice, with their hyperactivation

driven by other immune compartments and the inflammatory

milieu. Supporting this, lethally irradiated Lyn+/+ mice

reconstituted with mixed Lyn-/-Rag-/- and Lyn+/+ bone marrow

exhibit T cell activation and autoimmune pathology, and adoptive

transfer of Lyn+/+ T cells into aged Lyn-/- mice results in their

effector memory differentiation and IFNg production on par with

host Lyn-/- T cells (111).

The autoimmune pathology seen in the global Lyn-deficient

mice can be recapitulated by conditional deficiency of Lyn in B cells

(Cd79a-cre x Lynflox/flox) (105), myeloid cells (Lyn−/−Rag−/−- Lyn+/+

chimera) (111), as well as CD11c+ cells (CD11c-cre x Lynflox/flox),

which encompasses dendritic cells, age-associated B cells, type I

innate lymphoid cells, macrophages, and patrolling monocytes,

with the disease in fact being more severe in CD11c-cre x Lynflox/

flox mice (112). Reflecting the inflammatory nature of the disease,

pathology is dependent on inflammatory cytokines and is

attenuated by IL-6 deficiency (106), IFNg deficiency (111),

IFNAR-1 deficiency (118), or treatment with neutralizing anti-

BAFF antibody (111). Disease has repeatedly been shown to

depend on toll-like receptor (TLR) signaling, as knockout of the

MyD88 TLR adaptor protein abrogates disease (105, 112, 117, 119),

as does disruption of the pattern recognition receptor adaptor

protein CARD9 (120).

Lyn is also a haploinsufficient gene, with a loss-of-function in one

allele (Lyn+/- mice) sufficient to cause autoimmune disease with age

(121). Disease in Lyn+/- mice can also be accelerated to levels

comparable to Lyn-/- mice by concordant loss-of-function of one

allele of SHP-1 (Lyn+/−Mev+/−) or one allele of SHIP-1 (Lyn+/−SHIP-

1+/−) (121), reflecting the polygenic additive model of SLE heritability.

A growing list of inhibitory targets of Lyn, including ITIM-

containing receptors, have been identified and have themselves

been implicated in SLE and autoimmune pathology (Figure 3). The

collective loss of inhibitory signaling emanating from these

receptors upon Lyn deficiency provides a mechanistic framework

for the Lyn-/- autoimmune phenotype, which is largely driven by

autoreactive B cells and hyperactive myeloid cells.

2.2.1 Inhibitory Lyn targets expressed by B cells
CD22 is expressed by B cells and is a member of the sialic-acid-

binding immunoglobulin-type lectin (Siglec) family, which bind

sialic acid on glycoproteins and lipids (122). Sialic acids are
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ubiquitous on vertebrate cells, and therefore act as a marker of self

(123). Lyn is required for the ITIM phosphorylation of CD22 in

order to recruit SHP-1 (124, 125) and to a lesser extent SHIP-1

(126). Co-ligation of the BCR and CD22 sends a ‘binding to self’

signal and therefore raises the activation threshold (127). Siglec-G is

another B cell-specific Siglec that is believed to be similarly

phosphorylated by Lyn (128, 129). CD22 deficiency alone causes

an age-related expansion of autoreactive B cells without pathology

(130), whilst double deficiency of both CD22 and Siglec-G results in

glomerulonephritis (131). Sequence variation screening in SLE

identified several substitutions in CD22 that were weakly

associated with SLE (132), although this is not supported by

genome-wide association studies (GWAS) (127). However, higher

CD22 expression on circulating B cells has been associated with

remission and low disease activity in SLE patients (133, 134).

Programmed cell death receptor-1 (PD-1) is an ITIM-bearing

receptor that is expressed by B cells, activated T cells and T follicular

helper cells (135). PD-1 binds to PD-L1 and PD-L2 on antigen-

presenting cells (APCs), endothelial cells and epithelial cells (135)

and upon co-ligation with the BCR, is phosphorylated by Lyn to

induce the activation of SHP-2 (136). PD-1 inhibits B cell activation

to CpG (TLR9 agonist) and anti-IgM stimulation (137), and T cells

to TCR binding as well as modulating autoreactive T cell migration

(135). PD-1-deficient mice develop SLE-like glomerulonephritis

(138) with a number of studies identifying aberrant PD-1 and

PD-L1/2 expression in SLE patients (139).

CD5 is a member of the Scavenger Receptor Cysteine-Rich

family and is an ITIM-containing receptor constitutively expressed

by mature T cells (140), anergic autoreactive B cells (141), a subset

of IL-10-producing regulatory B cells (142, 143), and B1a cells. CD5

has been demonstrated to bind itself in cis and trans (144), as well as

to the common inhibitory receptor, CD72 (145). B1 cells are an

innate-like B cell population that have a degree of self-reactivity,

producing the majority of baseline circulating IgM and IgA

antibodies and, although they have protective functions, are

implicated in autoimmune pathology (146, 147). CD5 is

phosphorylated by Lyn in B1 cells, leading to the recruitment and

activation of SHP-1 to negatively regulate BCR signaling and

promote B1 cell apoptosis upon BCR cross-linking (148, 149).

B1a cell numbers are expanded in Lynup/up mice (90) and Lyn-/-

mice (105), likely reflecting perturbed CD5 signaling in Lyn-

mutant mice.

2.2.2 Inhibitory Lyn targets expressed by both B
cells and myeloid cells

FcgRIIb is the only inhibitory member of the FcgR family, which

are receptors that bind the constant region of IgG (150). FcgRIIb
contains a single ITIM motif that is phosphorylated by Lyn and

recruits SHIP-1 (109, 151). B cells, plasma cells, plasmacytoid

dendritic cells (pDCs) (152), neurons (153) and some memory

CD8+ T cells (154, 155) express the FcgRIIb only, whereas myeloid

cells also express the activating FcgRs (FcgRI, FcgRIII, FcgRIV) in
addition to FcgRIIb (150, 156). FcgRIIb inhibits B cells upon co-

ligation with the BCR, and prevents the hyperactivation of myeloid

cells to immune complex binding (156). In pDCs, FcgRIIb prevents
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(157), whilst in conventional dendritic cells (cDCs), FcgRIIb
prevents spontaneous maturation in response to sterile immune

complexes (158–160). Given its far reaching inhibitory functions, it

is perhaps unsurprising that FcgRIIb-deficient mice develop severe

lupus-like nephritis, with 60% mortality by 9-months-of-age (161).

The overexpression of FcgRIIb has also been shown to ameliorate

disease in other lupus models (162, 163), with FCGR2B being a

strong susceptibility gene in SLE (164–166). Given the broad

functions of FcgRIIb, loss of signaling emanating from this

receptor in Lyn-deficient mice likely has wide-ranging effects

contributing to the Lyn-/- phenotype.

Paired immunoglobulin Receptor-B (PIR-B) is an ITIM-

containing receptor expressed in B cells, myeloid cells, and

neurons, that binds to MHC-I in cis and trans (167). Lyn

constitutively phosphorylates PIR-B to recruit and activate SHP-1

(88, 168) but additionally phosphorylates PIR-B in response to

TLR9 stimulation with CpG-B (169). PIR-B has broad-ranging

inhibitory functions, including negatively regulating TLR-induced

B1 cell proliferation, B2 cell proliferation to BCR cross-linking

(170), and myeloid cell integrin (171) and chemokine signaling

(52), as well as proinflammatory macrophage polarization (172).

PIR-B-deficient mice do not develop spontaneous autoimmune

disease (169, 170); however, PIR-B deficiency on the C57BL/6-

Faslpr background (an autoimmune susceptibility mutant), results

in glomerulonephritis associated with enhanced production of

rheumatoid factor autoantibodies by B1 cells (169). In DCs, PIR-

B deficiency results in an immature phenotype (170, 173) and Th2-

skewed responses (170); however, PIR-B-deficiency also enhances

DC cross-presentation to cytotoxic T cells (173), and pDC

production of IFNa to TLR9 stimulation with CpG-A (174).

Therefore, in addition to promoting the hyperactivation of B

lymphocytes and myeloid cells, diminished PIR-B signaling in

Lyn-/- mice will also impact the DC compartment.

CD72 is a C-type lectin-like domain receptor expressed by B

cells, pDCs, cDC2s, macrophages, and NK cells (35, 57, 175) and

binds the lupus self-antigen ribonucleic protein Sm (176). The ITIM

of CD72 is phosphorylated by Lyn and recruits SHP-1 to inhibit B

cell activation upon co-ligation with the BCR (176, 177). CD72-

deficient mice develop a spontaneous lupus-like disease with age

(178). Further, a CD72 mutant with impaired ability to bind Sm/

RNP exacerbates lupus-like disease on a susceptible background

(176, 179). CD72 SNPs have also been associated with SLE (180),

and B cells from SLE patients show reduced CD72 expression which

correlates with disease activity (181, 182). CD72 also binds free

CD100 (Semaphorin-4D), which is expressed ubiquitously, and is

cleaved from the cell surface during activation, with soluble CD100

inhibiting myeloid cell activation through CD72 binding (175).

NLRP3 inflammasomes are multi-protein complexes that

assemble in the cytoplasm in response to a wide range of stimuli

and induce the maturation of caspase-1, leading to activation of the

proinflammatory cytokines IL-18 and IL-1b in B cells, myeloid cells,

and epithelial cells (183, 184). Lyn has been shown to phosphorylate

NLRP3 causing its ubiquitination and degradation (Figure 3), with

Lyn-deficient macrophages hyperproducing IL-1b (71). Further,
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Lyn activation downstream of BCR cross-linking also attenuates

inflammasome formation (185). Impaired inhibition of NLRP3 in

Lyn-/- mice is therefore likely a key contributor to the autoimmune

pathology that develops.

2.2.3 Inhibitory Lyn targets expressed by
myeloid cells

SIRPa is a receptor of the signal regulatory protein (SIRP)

family, being the only ITIM-bearing member (186), and is

expressed on monocytes, macrophages, microglia, neutrophils,

NK cells, neurons, pDCs and cDC2s (35, 186, 187). SIRPa is

phosphorylated by Lyn to recruit SHP-1 and SHP-2 (88, 188,

189). Upon ligation with CD47, which is an integrin-associated

protein expressed by all cells that acts as a marker of ‘self’, SIRPa
sends a ‘don’t-eat-me’ signal to phagocytes (186), particularly in the

context of inflammation (190, 191). SIRPa-deficient mice do not

exhibit an overt phenotype at the steady-state (190). However,

SIRPa suppresses severe systemic inflammation upon challenge

with TLR-agonists and cytokines by attenuating macrophage

activation (191). Whilst SIRPa has been shown to suppress

inflammation, the role of SIRPa in autoimmunity is somewhat

mixed, as SIRPa promotes DC priming of autoreactive T cells in

collagen-induced arthritis (192), experimental autoimmune

encephalomyelitis (193), and nonobese diabetic mice (194);

however, SIRPa agonism conversely suppresses monocyte and

neutrophil infiltration in experimental arthritis and colitis (195).

2.2.4 Myeloid-specific Siglec receptors
Given the role of Lyn in CD22 and Siglec-G ITIM

phosphorylation, it is likely that Lyn is also implicated in the

phosphorylation of other Siglec receptors. Siglec-F is an ITIM-

containing receptor expressed by eosinophils, alveolar

macrophages, microglia (196) as well as allergen-induced CD4+ T

cells and lung stroma (197). Siglec-F is pro-apoptotic in eosinophils,

with Siglec-F-deficient mice exhibiting eosinophilia upon allergen

induction (197). Similarly, Lyn is also pro-apoptotic in eosinophils,

with Lyn-/- mice exhibiting peritoneal eosinophilia (108) and lung

eosinophilia upon ovalbumin challenge (198), and the treatment of

eosinophils with antisense oligos to Lyn inhibits apoptosis (199).

Furthermore, studies have implicated Lyn in microglial Siglec-F

signaling, as upregulation of Siglec-F on microglia during

neurodegenerative disease models is associated with increased

activation of Lyn (196). However in eosinophils, Lyn deficiency

does not perturb apoptosis to Siglec-F agonism compared to WT

eosinophils (200). Therefore, whilst Lyn may be implicated in

Siglec-F signaling, the details of Lyn’s involvement have not

been elucidated.

Siglec-H is expressed by pDCs, microglia, DC progenitors, as

well as intracellularly by marginal zone macrophages (201, 202) and

triggers endocytosis upon ligation (201, 203). Siglec-H has been

shown to inhibit pDC activation and IFNa production (204–206).

Interestingly, Siglec-H deficiency outside of pDCs is sufficient to

cause IFNa hyperproduction, as Siglec-H-deficient mice depleted of

pDCs still hyperproduce IFNa during viral challenge (202). Siglec-
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infection by murine cytomegalovirus causes the development of

severe lupus-like glomerulonephritis, which is dependent on

IFNAR1 (206).

Unlike other Siglec receptors, Siglec-H does not contain an

ITIM in its cytoplasmic tail (123). Instead, Siglec-H recruits DAP12,

an ITAM-containing adaptor protein (203) that can be

phosphorylated by SFKs (207). Given that Lyn-/- pDCs

hyperproduce IFN-I in response to CpG (73, 112), it is possible

that Lyn is involved in Siglec-H signaling, and that impaired Siglec-

H signaling contributes to hyperproduction of IFN-I in Lyn-/- mice.

However, whilst the SFK Hck has been ruled out as being involved

in Siglec-H signaling (208), involvement of Lyn in Siglec-H

signaling has not yet been assessed.

2.2.5 Inhibitory Lyn targets
expressed ubiquitously

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31)

is an Ig-like superfamily receptor which is highly expressed on

endothelial cells towards the tight junctions, and to a lesser degree

on most leukocytes and platelets (35, 209). PECAM-1 binds itself in

trans, in addition to numerous other identified ligands, and is an

ITIM-bearing receptor (209, 210). Lyn is required for the

phosphorylation of PECAM-1 to recruit SHP-1/SHP-2 and

phospholipase Cg1 (210, 211). PECAM-1 is involved in leukocyte

recruitment through homophilic binding between endothelial cells

and leukocytes, initiating leukocyte diapedesis, which is largely

independent of PECAM-1’s cytoplasmic signaling (210). PECAM-

1 has also been shown to inhibit FcϵR signaling in mast cells (212),

as well as FcgR (213) and TLR4 signaling (214) in human

monocytes and macrophages. However, it is less clear whether the

inhibitory function of PECAM-1 is recapitulated in mouse

macrophages (215). PECAM-1 deficiency also causes

hyperactivation of B cells to BCR cross-linking, with PECAM-1-

deficient mice exhibiting reduced B2 cell numbers in the periphery

and increased peritoneal B1 cells, as well autoantibody production,

culminating in glomerulonephritis (216) – all features shared by

Lyn-/- mice. Interestingly, Lyn has been implicated in strengthening

epithelial barrier integrity (217), which may in part be through

propagating PECAM-1 signaling, as PECAM-1 is required for

maintaining epithelial barrier integrity (210, 218).

Carcinoembryonic antigen-related cell adhesion molecule 1

(CEACAM1) is the only ITIM-bearing member of the CEACAM

family, and while it is constitutively expressed on epithelial cells, it is

upregulated by activated leukocytes and endothelial cells (219).

CEACAM-1 primarily binds itself in cis and trans, and acts as an

inhibitory co-receptor, bringing phosphatases SHP-1/SHP-2 to the

immune synapse to inhibit activation, and is important in

preventing neutrophil , monocyte , B, T, and NK cel l

hyperactivation (219, 220). Lyn has been shown to phosphorylate

the ITIM in CEACAM1 in myeloid cells (221, 222) and is important

in myelopoiesis, with CEACAM1-/- mice having pronounced

neutrophilia due to hyperresponsiveness to G-CSF (223).

CEACAM1 deficiency also causes a reduction in Ly6C+
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monocyte numbers during infection (224). Both neutrophilia and a

reduction of Ly6C+ monocytes are features of Lyn-/- mice (225,

226), suggesting that perturbed CEACAM1 potentially contributes

to the phenotype of Lyn-deficient mice.

2.2.6 Inhibitory protein-binding targets of Lyn
independent of kinase activity

In addition to Lyn’s tyrosine kinase function, there is also

evidence that Lyn has a kinase-independent role through

inhibitory protein-binding interactions.

Two Lyn mutants with reduced or no detectable kinase activity

have been generated through ENU mutagenesis (227, 228). The

p.T410K mutation destabilizes the activation loop, causing no

detectable Lyn kinase activity, conceivably by preventing

displacement of Lyn’s activation loop and thereby blocking substrate

access to the active site (227). The p.E260G (228) mutation destabilizes

the g-loop and the entire kinase domain, resulting in significantly

reduced kinase activity (228, 229). LynT410K/T410K and LynE260G/E260G B

cells exhibit hyper-responsiveness to BCR cross-linking on par with

Lyn-/- B cells (227, 228). However, LynT410K/T410K mice were reported

to have attenuated autoimmune pathology (227), while LynE260G/E260G

mice have a delayed onset of pathology compared to Lyn-/- mice (228),

indicating that Lyn has undefined inhibitory functions independent of

its kinase activity in suppressing autoimmune pathology in vivo.

However, the modifications in LynT410K and LynE260G are not true

kinase-dead mutations as they occur outside of the catalytic site. These

mutations have the potential to alter substrate-binding specificity (73)

while retaining residual kinase functionality (229). Therefore,

characterizing mice expressing an authentic kinase-dead mutation

that affects the ATP-binding residue (p.K275X) is necessary to assess

the true protein-binding functions of Lyn in vivo. The Lyn mutant

p.K275X has been studied in vitro (44, 73, 98); however, mice

expressing Lyn p.K275X have not yet been reported.

A mechanistic description of an inhibitory protein-binding

interaction with Lyn and the interferon regulatory factor 5 (IRF5)

transcription factor was provided by Ban et al. in 2016 (73). IRF5

induces the transcription of proinflammatory cytokines including

IL-6, IL-12, and IFN-I and is strongly implicated in SLE pathology,

being routinely identified in GWAS (230). The alleles of IRF5

associated with SLE induce the hyperactivation of IRF5 and cause

spontaneous lupus-like disease in mice (231). Lyn was shown to

bind IRF5 upon TLR7/9 stimulation downstream of the

Myddosome oligomeric signaling complex (73). Lyn binding

inhibited IRF5 activation by blocking access to IRF5 by the kinase

IKKb and the ubiquitin ligase TARF6 (73). This study showed that

the kinase function of Lyn was dispensable for IRF5 inhibition,

providing a potential kinase-independent mechanism that may

explain the reduced pathology seen LynT410K/T410K and LynE260G/

E260G mice. In further support of this, knockout of IRF5 was

sufficient to attenuate TLR-induced cytokine production from

DCs in vitro (Lyn-/-IRF5-/-), and monoallelic loss of IRF5 was

sufficient to abrogate glomerulonephritis in vivo (Lyn-/-IRF5+/-)

(73, 118), l ikely through suppressing transcription of

proinflammatory cytokines, IFN-I, and oxidative phosphorylation

pathway genes (118). This work also implicated a key role for this
Frontiers in Immunology 09
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DCs in vivo from Lyn-/- mice was not performed (73).

Later studies have, however, challenged the protein-binding

inhibition of IRF5 by Lyn, and instead showed that Lyn inhibits the

IRF family (IRF1, IRF5, IRF7, and IRF8) by phosphorylating a

conserved tyrosine residue (p.Y118 in IRF5), which inhibits their

activity by targeting IRFs for ubiquitination and proteasomal

degradation (72) (Figure 3). Further conflicting findings have

suggested that Lyn instead promotes IRF5 activation and nuclear

translocation (232). Given the contradictory literature, further work

is required to clarify the role of Lyn in relation to the IRF family,

and whether this interaction is a protein-binding interaction or a

kinase interaction.
3 Studies of Lyn in SLE patients

Relative to the expansive number of experimental animal

studies focused on Lyn, the role of Lyn in SLE patient disease has

been under-researched; however, Lyn has similarly been implicated

in human SLE disease.

Multiple LYN single nucleotide polymorphisms (SNPs) have

been associated with SLE through GWAS. The SNPs rs7829816 and

rs2667978 were first identified as being protective in SLE

development in women of European descent in a 2008 GWAS,

with an overall odds ratio of 0.77 and 0.81 respectively, although an

association was not seen across all data sets analyzed (233). A

replication study that analyzed 90 LYN SNPs in 2009 similarly

detected associations for rs7829816 and rs2667978 in a pooled

analysis of women of European ancestry, as well as a number of

other LYN SNPs, though at a greatly reduced level of significance

(234). Instead, this later study identified a stronger association with

another SNP, rs6983130, which was associated with SLE with

hematological presentations and the presence of autoantibodies

including anti-dsDNA and anti-Sm (234). This study did not find

an association for LYN in African-American and Korean

populations, although these cohorts had a lower power of

detection (234). A large-scale GWAS and meta-analysis

conducted in 2015 on individuals of European descent similarly

identified an association with the LYN SNP rs2667978 and SLE,

although a strict genome-wide level of significance was not met

(235). Similarly, a 2018 Spanish GWAS and meta-analysis of

European descent individuals found an association between

another LYN SNP rs17812659 and SLE, although again short of

genome-wide level of significance (236). Collectively, GWAS have

provided evidence for a genetic role of LYN in SLE, although this is

weaker compared to routinely identified genes. However, all

identified LYN SNPs reside in non-coding regions of the LYN

gene without functional annotations, making implications of LYN

SNP-associations with SLE unclear.

Studies have also investigated perturbations in LYN expression

in SLE patients. Reduced LYN protein levels have been found in

resting and activated circulating B cells in the majority of SLE

patients, which was stable over time and independent of disease

activity (237, 238). This was associated with reduced LYN mRNA
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expression (237, 239) as well as increased ubiquitination of the LYN

protein (238), suggesting multiple mechanisms for reduced LYN

levels in SLE B cells [reviewed by (240)]. These findings indicate

that reduced Lyn activity through under-expression of Lyn may

contribute to SLE pathogenesis in a manner similar to the disease

process of Lyn+/- mice (121). In support of this, SNPs conferring

elevated expression of CSK, the negative regulator of Lyn activity,

have been identified in SLE patients and cause enhanced Lyn kinase

inhibition and associated B cell hyperactivation (241). However, the

aforementioned studies of LYN in SLE patients have focused on B

lymphocytes, whilst myeloid cells were omitted from analyses (237–

239). Therefore, it is unclear whether the status of LYN expression

in SLE B lymphocytes is representative of LYN perturbations across

the entire immune system in SLE; an important unanswered

question given the critical role of Lyn in regulating activation of

the myeloid compartment.

Recent RNA-sequencing and microarray studies in SLE patients

have also contradicted earlier findings, instead reporting increased

LYN mRNA expression in SLE patients. RNA-sequencing of

antibody-secreting cells from SLE patients has revealed

upregulated LYN expression compared to healthy controls (242).

Similarly, a bulk RNA-sequencing analysis of SLE patient whole

blood by Panousis et al. (2019) identified LYN as a differentially

upregulated gene (243). Further, a longitudinal microarray analysis

of pediatric SLE patient blood by Banchereau et al. (2016) linked

increased LYN expression to disease activity in SLE patients, with

expression quantitative trait loci analysis identifying seven SNPs in

neighboring genes associated with the change in LYN expression

(244). The baseline whole blood microarray analysis from SLE

patients enrolled in the tabalumab (anti-BAFF) phase III trials also

linked increased LYN expression to disease activity, IFN-I signature

expression, and anti-dsDNA antibodies through weighted gene co-

expression network analysis, identifying LYN in the ‘inflammatory

response’ module (245). As previous work has shown that

inflammatory cytokines induce the upregulation of Lyn in mouse

macrophages to cause activation priming (100, 246), it is

conceivable that SLE patients may exhibit augmented LYN

expression, given the chronic inflammatory insult characteristic of

SLE. In humans, LYN expression has also been found to be induced

in autoimmune patient B cells by the use of TNFa blockers,

resulting in enhanced Lyn activity and B cell hyperactivity, which

was postulated to underlie the autoimmune syndrome that develops

in a subset of TNFa-antagonist treated patients (247). However,

SLE transcriptomic studies have not investigated LYN at the protein

level and, therefore, LYN overexpression in SLE patients is yet to

be substantiated.
4 Concluding remarks

Extensive studies in mice have illustrated the central role of Lyn

in maintaining immune cell signaling balance by dualistically

propagating both activating and inhibitory pathways. Beyond
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mouse models, there is a need to expand our understanding of

LYN’s role in human SLE disease. Given Lyn can be pathogenic

through both overexpression and under-expression, it is of benefit

to further study the function of LYN in SLE disease. It is possible

that perturbations in LYN may be cell type-specific and affect

subsets of SLE patients. Potential therefore exists in repurposing

drugs such as the Lyn inhibitor dasatinib (93) or the Lyn activator

tolimidone (248) in a precision medicine approach to SLE

treatment where LYN dysregulation is identified. Hence,

additional studies are needed to consolidate differences in LYN

expression in SLE patients as well as to discern the functional

consequences of LYN SNPs and the veracity of Lyn as a biomarker

for a precision medicine approach to SLE treatment.
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