
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chiara Porta,
University of Eastern Piedmont, Italy

REVIEWED BY

Xinjun Wang,
Memorial Sloan Kettering Cancer Center,
United States
Davide Cora,
University of Eastern Piedmont, Italy

*CORRESPONDENCE

Marcelo Hurtado

marcelo.hurtado@inserm.fr

Vera Pancaldi

vera.pancaldi@inserm.fr

†
PRESENT ADDRESSES

Leila Khajavi,
Bioinformatics Department, Evotec, Toulouse,
France
Ting Xie,
Institut national de la santé et de la recherche
médicale (INSERM) U981, Gustave Roussy
Institute, Université Paris-Saclay, Paris, France
Alexis Coullomb,
RESTORE Research Center, Université de
Toulouse, INSERM 1301, Centre national de la
recherche scientifique (CNRS) 5070,
Établissement français du sang (EFS), École
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Background: Lung cancer is the leading cause of cancer death worldwide, with

poor survival despite recent therapeutic advances. A better understanding of the

complexity of the tumor microenvironment is needed to improve

patients’ outcome.

Methods:We applied a computational immunology approach (involving immune

cell proportion estimation by deconvolution, transcription factor activity

inference, pathways and immune scores estimations) in order to characterize

bulk transcriptomics of 62 primary lung adenocarcinoma (LUAD) samples from

patients across disease stages. Focusing specifically on early stage samples, we

validated our findings using an independent LUAD cohort with 70 bulk RNAseq

and 15 scRNAseq datasets and on TCGA datasets.

Results: Through our methodology and feature integration pipeline, we

identified groups of immune cells related to disease stage as well as potential

immune response or evasion and survival. More specifically, we reported a duality

in the behavior of immune cells, notably natural killer (NK) cells, which was shown

to be associated with survival and could be relevant for immune response or
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evasion. These distinct NK cell populations were further characterized using

scRNAseq data, showing potential differences in their cytotoxic activity.

Conclusion: The dual profile of several immune cells, most notably T-cell

populations, have been discussed in the context of diseases such as cancer.

Here, we report the duality of NK cells which should be taken into account in

conjunction with other immune cell populations and behaviors in predicting

prognosis, immune response or evasion.
KEYWORDS

lung adenocarcinoma, natural killer cells, immune landscape, cell deconvolution,
transcription factor activity
Background

Lung adenocarcinoma exhibits diverse clinical behaviors, ranging

from indolent to aggressive metastatic disease. However, the biological

underpinnings of this heterogeneity remain poorly understood. Non

Small Cell Lung Cancer (NSCLC) is often diagnosed at an advanced

stage and its management is currently undergoing significant

transformation. Molecular testing, targeted therapies, and

immunotherapy are now part of routine clinical care (1). However,

despite major progress in the therapeutic management of NSCLC

cancer, many patients are still refractory to the initial treatment or

develop resistance leading to tumor recurrence. Furthermore, the

clinical and pathological diversity of NSCLC is associated with a

highly complex genomic landscape and heterogenous immune tumor

microenvironment. Interactions between tumor cells and the immune

microenvironment are known to profoundly impact cancer

pathogenesis and progression (2).

Lung cancer tumor biopsies contain a heterogeneous mix of

cancer cells, healthy cells, immune cells, and extracellular factors that

constitute the tumor microenvironment (TME). The specific

composition and functional profiles of immune cells within the

TME can profoundly influence tumor pathogenesis. Detailed

characterization of immune cell diversity in the TME has therefore

become a major goal in cancer research. However, dissecting the

immune landscape from bulk tumor profiling remains challenging

(3–5). Single cell RNA sequencing enables high-resolution dissection

of tumor-immune interactions, but remains prohibitively costly for

large-scale or clinical applications (6). Additionally, each single cell

isolation approach introduces distinct technical biases that can skew

rare cell detection. Computational deconvolution approaches can

leverage unique gene expression signatures to estimate immune cell

subsets from bulk transcriptomics in a more accessible and

standardized way (7). However, numerous deconvolution

algorithms exist with little consensus on best practices. In this

study, we performed an integrated analysis using bulk RNAseq and

validating our results with single cell RNA sequencing data. We

applied this multi-omics pipeline to understand heterogeneity
02
specifically in the microenvironment of early-stage lung

adenocarcinomas, for which could validate our results on an

independent cohort and on early stage lung adenocarcinoma

(LUAD) samples from TCGA. We further correlated immune

deconvolution features with clinical outcomes, highlighting the

potential value of our approaches to reveal clinically relevant

cellular populations and potentially implicating distinct NK cell

phenotypes in survival. By correlating the deconvolution immune

cell estimates and inferred transcription factor activities, we aimed to

overcome limitations of individual methods. This study provides a

framework for robust characterization of tumor immune landscapes

from bulk transcriptomics.
Methods

Patient summary

The primary analysis cohort was derived from a pilot study

stemming from a collaborative effort between l’Institut Universitaire

du Cancer de Toulouse (IUCT) and Institut de Recherche Pierre

Fabre (IRPF) aimed at assessing the technical feasibility of developing

molecular characterization of lung tumors in order to enrich the

activities already initiated by the IUCT. Patients were enrolled in the

study if they were diagnosed with non-small cell lung cancer

(NSCLC). Patients were excluded from this study if they were

treated for any NSCLC prior to study enrollment. All individuals

involved signed a non-objection form to part-take in the research

program under the LUNG PREDICT protocol. Blood samples were

gathered as part of a collection declared to the Ministry of Research

under the number DC-2011-1382. Tissue samples are the remaining

parts of the whole tissue belonging to the patient coming from the

tumor library of CHUBiological Resource Center (IUCT-O) declared

to the Ministry of Research under the number DC-2008-463. All

clinical, pathological and molecular data were prospectively collected.

Patients’ therapeutics and outcome were collected overtime with a 33

months median follow-up.
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Sample selection and extraction

A certified pathologist made the selection of slides with

haematoxylin eosin slide coloration. The paraffin embedded block

was cut, 1 HE to control the extraction and 4 to 16 sections of 10 µm

for the RNA extraction, which was performed with High Pure FFPE

RNA extraction kit from Roche (Ref 0665077500). The purified

RNA samples were analyzed with Fragment Analyser (Advanced

Analytical Technologies Inc., Agilent Technologies, US) and High

Sensitivity RNA Kit (DNF-472-0500, Agilent Technologies, US) to

determine the RIN and the DV200 (percentage of RNA ≥ 200 bp).
RNA sequencing

The libraries were prepared with the KAPA RNA HyperPrep

Kit with RiboErase (HMR) (Kapa/Roche KK8560) for whole

transcriptome sequencing as recommended by the supplier using

1 µg input of RNA. Briefly, rRNA was hybridized with DNA probes

to 5S, 8.8S, 18S, 28S, 12S and 16S rRNA, then the hybrids were

depleted by enzymatic depletion using RNAse H. After, DNA

digestion and fragmentation with high temperature were done.

First strand, second strand synthesis and A-tailing were performed.

Next, adapters from 1.5-7 µMdepending on the DV200 were ligated

and the library was amplified. Library size and quality were

confirmed on Fragment Analyzer (Advanced Analytical

Technologies Inc., Agilent Technologies, US) and High Sensitivity

NGS Fragment Analysis Kit (DNF-474-0500, Agilent Technologies,

US). Qubit (ThermoFisher Scientific, US) was used to quantify

libraries. Samples were pooled in equimolar fashion (10nM), then

denatured and 1.8 pM was sequenced on NextSeq 550 (Illumina,

US) in pair-end sequencing (76 bp reads) and double index 8 bp

with NextSeq 500/550 High Output kit v2.5, 150 cycles (20024907,

Illumina, US) and 1% PhiX (FC-110-3001, Illumina, US).
Bulk RNAseq sample processing

Raw sequences were quality checked using FastQC (8 (v0.11.2))

and FastqScreen (9 (v0.15.2)) prior to aligning to the Homo sapiens

primary genome sequence (Gencode: GRCh38, v27) using STAR

(10 (v2.7.10a)) with encode options. FastQC was again used to

assess the mapping quality. RSEM (11 (v1.3.1)) was used to generate

the expression matrix (featureCounts from Rsubread R package (12

(v1.22.2)) was used for validation data).
Differential expression analysis

Expression matrices from bulk RNAseq were analyzed with

DESeq2 (13 (v1.42.1)) in the R environment (14); R Core Team (15)

(version v4.2.3, BioConductor version v3.9 (16, 17) to identify

differentially expressed genes (DEGs) between samples groups.

ClusterProfiler (18 (v4.4.4)) was used to classify the DEGs into

KEGG pathways. Heatmaps were generated using both pheatmap

(v1.0.12) and ComplexHeatmap (19 (v2.0.0)) R packages. Volcano
Frontiers in Immunology 03
plots were generated using the EnhancedVolcano (20 (v1.2.0)) R

package. Counts were normalized by Log2(TPM + 1) using the R

package ADImpute (21 (v1.12.0)).
Pathway activity calculation

Log2(TPM + 1) counts were used to calculate pathway activities

using the PROGENy database (22), a compendium of publicly

available signaling perturbation experiments based on footprint

genes to yield a common core of 14 signaling pathways. Pathways

regulatory activities were calculated using the Multivariate Linear

Model (MLM) from the package decoupleR (23 (v2.9.7)).
Immune cell-type deconvolution

In computational biology, deconvolution is an approach to

quantitatively estimate the proportions of cell types in a mixed

sample (e.g. bulk RNAseq) based on the observed gene expression

profiles for separate cell types. Log2(TPM + 1) (transcript per

million) normalized raw counts were used to estimate immune

cell-type proportions for lymphocytes (B, T and NK cells), myeloid

cells (monocytes, macrophages and dendritic cells) as well as

cancer, endothelial, eosinophils, plasma, myocytes, mast cells and

cancer-associated fibroblasts (CAFs). These cell-type proportion

estimates were obtained by applying different reference-based

deconvolution methods and several cell type signatures (see

Supplementary Table 1). These methods can provide absolute cell

abundance quantification using signatures derived from single cell

and bulk RNA seq data.
Transcription factor activity inference

Log2 (TPM + 1) counts were used to infer transcription factor

(TF) activity. We use prior knowledge networks (PKN) to infer the

activity of different TFs from the gene expression of its direct target

genes quantified in the gene count matrix. We used CollecTRI (24)

from the package decoupleR (23 (v2.9.7)), a collection of

transcriptional regulatory interactions, which provides regulons

containing signed transcription factor (TF) - target gene

interactions compiled from 12 different resources as database and

VIPER (25 (v1.30.0)) as the inference algorithm. Depending on the

level of the counts and considering that one TF can have many

targets and one target can be regulated by more than one TF, the

algorithm can estimate the level of activity of the regulator based on

correlation between gene expression values.
Estimation of immune response
scores estimation

Immune-scores were estimated on the TPM normalized raw

counts using the EasieR package (26 (v1.4.0)) to generate immune

profiles on a per sample basis. Briefly, immune-scores are calculated
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1394965
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hurtado et al. 10.3389/fimmu.2024.1394965
using gene sets that have been validated in different publications

(see Supplementary Table 2) as signatures to estimate certain

hallmarks of the immune response.
Feature selection

The Boruta algorithm was applied using the R package Boruta

(27 (v8.0.0)) using a bootstrapping approach to ensure consistency

in the selection of features. Briefly, the algorithm performs feature

selection and it was applied 100 times using different seeds, each

time labeling features as ‘Confirmed’, ‘Tentative’ or ‘Rejected’.

Features labeled as ‘Confirmed’ more than 90% of the times are

finally selected.
Processing of deconvolution features

Applying several combinations of deconvolution methods and

signatures leads to several hundreds of features describing the TME

landscapes in the samples. We applied specifically 6 methods

(quanTIseq, XCell, MCPcounter, DeconRNASeq, EpidISH and

CibersortX) and 9 signatures (BPRNACan, BPRNACanPro,

BPRNACan3DProMet, TIL10, LM22, CCLE.TIL10, CBSX.

HNSCC.scRNAseq, CBSX.Melanoma.scRNAseq and CBSX.

NSCLC.PBMCs.scRNAseq), see Supplementary Table 1

generating 351 features related to 13 cell types (and 30 subtypes).

To reduce the dimensionality and eliminate redundancies we then

applied a combination of unsupervised filtering techniques and

iterative linear and proportionality based correlations within each

cell type to form deconvolution feature subgroups. Applying an

unsupervised approach, we removed features with a high

proportion of zeros or low variance across samples. We then set

out to eliminate redundant features calculating pairwise

correlations of these filtered features to identify highly correlated

(≥ 0.7) feature pairs. We interpret these high correlations as

evidence that those features are estimating the presence of the

same cell-type despite potential differences in signature

nomenclature and hence combine these features into a single

feature subgroup. This procedure is carried out until no

correlations above the specified threshold remain.
Processing of TF activity features

The other set of descriptors of our samples stem from TF

activity analysis, which returns a score of TF activity for each TF in

each sample, amounting to 769 features. Adapting the Weighted

correlation network analysis (WGCNA) approach (28 (v1.72-5)),

we performed dimensionality reduction on these features by

constructing what we defined as Weighted TFs co-activity

networks (WTCNA) to detect highly correlated modules of TFs

based on pairwise correlation of their inferred activity. Modules are

defined as densely connected groups of nodes in the TF network,

where connections represent correlation of activities, and they are

arbitrarily named using colors. These TF modules were functionally
Frontiers in Immunology 04
characterized using pathway activities estimated for each sample

(see Pathway Activity calculation above) and calculating the

Pearson correlation between these TF module scores and the

pathways activity scores. A PCA using the correlation matrix

between the TFs module scores and the pathways activities

allowed us to identify clusters of TF modules with correlated

pathway activities, further grouping TF modules into broader

functional groups. These combined TF module groups are named

by combining the names of TF modules included, thus generating

names that include multiple colors.
TF modules functional enrichment analysis

TFs module enrichment was done by identifying the hub TFs

from each module, these are genes which play a central role in the

network’s module structure and function due to their high

connectivity and influence on other genes. Thus, they often

represent key regulators or drivers of important biological

processes. We considered as hub TFs those which exhibit high

module membership, meaning their activity is strongly correlated

with the module’s score, indicating that they are highly

representative of the module’s overall behavior. Also, since these

genes are typically connected to many other genes within the

network, we also considered the level of connectivity for the hub

selection. We selected TFs with a high “degree”, a measure of the

number of direct connections or edges a TF has with other TFs in

the network. Overall, TFs with high module membership (r>0.8)

and belonging to the top 10% of genes with high degree were

selected as hub TFs. From the hub TFs, we identified their

corresponding target genes using the CollecTRI database (24). We

considered only the top 20% most variable (based on gene

expression) and unique target genes per TF module. Using these

lists, we performed an over representation analysis (ORA) using the

R package ReactomePA (29 (v1.46.0)) and the Reactome database

(30 (v1.86.2)) to provide functional interpretation of the modules.
Integration of deconvolution and
TF features

Using both deconvolution and TF activity features across

samples we set out to define combined features as groups of cells

that share TF activity profiles, potentially describing their

phenotypic states. We performed hierarchical clustering using

ward.D2 as the agglomeration method of the matrix of

correlation between grouped deconvolution features and TF

module scores. This leads to clustering of grouped deconvolution

features that each refer to specific cell types, producing further

grouping of different cell types. We refer to these as Cell type groups.

The existence of these cell type groups suggests that several cell

types could be activating specific biological processes, as reflected by

similar activities of the TF modules, potentially revealing different

cell states (e.g. cell growth profiles could be observed in cancer cells

or fibroblasts by detecting similar TF activities across patients).

These new cell type groups are new features composed of different
frontiersin.org
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grouped deconvolution features referring to different cell types,

named using a specific nomenclature (e.g Dendrogram_red_

turquoise.group_2) where “dendrogram” indicates that the feature

came from a hierarchical clustering, colors indicate which TFs

module were merged to produce the dendrogram and “group_x”

refers to the actual cluster in this dendrogram. This definition of cell

type groups implies cell types cluster together because they share

similar biological activity as measured by the TFs activity profiles.

Finally, the Boruta feature selection algorithm (see above) was

applied to measure the importance of these integrated features in

the classification of samples.
Validation cohort

An independent cohort consisting of 77 surgically resected

adenocarcinomas (1 = stage 0, 44 = stage I, 26 = stage II and 6 =

stage III) (31), from which only 70 early stage (I, II) samples were

used to validate the findings from the primary analysis cohort. The

validation cohort samples were collected at Vanderbilt University

Medical Center, Nashville, TN, from treatment-naive patients

undergoing surgical resection. The dataset included both bulk and

scRNAseq samples, with 15 patients for this last one. From this,

only 9 patients have both bulk and scRNAseq information.
Single-cell RNAseq analysis

Preprocessed single-cell RNAseq data was obtained from (31).

The Seurat package (6, 32–34 (v4.3.0.1)) was used for downstream

analysis of the data in the R environment. We computed a principal

component analysis for dimensionality reduction followed by the

neighborhood graph on the first 20 principal components, using the

elbow plot, obtaining 24 clusters. Cell annotation was done with the

following references: Human Primary Cell Atlas, Immune Cell

Expression, Monaco and Blueprint Encode using the celldex R

package (35 (v1.10.1)). A consensus of all three annotations was

taken for identification of NK clusters. Reference-based

deconvolution was done using the scRNAseq object and the

BayesPrism method (36 (v.2.0.0)), obtained from the

Omnideconv R package (37 (v.0.1.0)).
Survival analysis

Patients from the validation cohort with early stage disease

(Stage I and II) were included in a survival analysis. “Time” is

measured in days and “event” was defined as either death,

recurrence or progression. Cox proportional hazards modeling

was performed using the R packages rms (v.6.8.0) and survival

(38, 39 (v3.5.5)), and Kaplan-Meier curves were prepared using

ggplot2 (40 (v3.4.3)) and Survminer (41 (v0.4.9)). Univariate and

multivariate cox proportional hazards (coxPH) models were

evaluated across selected cell type groups to investigate whether

the effect of a single or multiple cell type groups on the hazard of an

event (death/progression/recurrence) was significant for the
Frontiers in Immunology 05
survival outcomes. After fitting the CoxPH models to different

cell type groups combinations, we stratified our patients based on

the linear predictors of the model (risk scores) from which we

define as ‘high’ the patients with risk scores above the median value

of the cox model’s linear predictors and as ‘low’ the patients below

it. We then performed a Kaplan Meier analysis and plotted the

survival curves for each risk group. Finally both survival curves were

assessed via a log rank test to see if there was a statistically

significant difference between risk groups (p value < 0.01).
TCGA analysis

Samples counts from TCGA were retrieved using TCGAbiolinks

R package (42–44 (v2.30.4)). We selected open-access cases from the

project TCGA-LUAD, using transcriptome profiling as data category,

RNA-seq as experimental assay and STAR-counts as analysis

workflow type. Applying these filters, 600 cases were retrieved.

Since our focus was only on early stage samples (I, II) we selected

the corresponding 399 cases. Survival analysis was done following the

same pipeline described above; for this, the variables “vital_status”,

“days_to_last_follow_up”, “days_to_death” were considered to

determine the overall_survival (PFS) and whether the event (death)

occurred. Six patients were removed from this analysis due to the

presence of missing values in these variables.
Results

The Lung Predict cohort

Bulk RNAseq was performed on surgically resected tumor

tissue or tumor biopsies from 82 patients with NSCLC, 62 of

which were diagnosed as lung adenocarcinoma (LUAD) and were

considered further (the “Primary Analysis Cohort”). Of these 62

adenocarcinomas, 30 are female and 32 are male; 21 were enrolled

at Stage I, 10 at Stage II, 11 at Stage III and 20 at Stage IV. A full

breakdown of this cohort is presented in Table 1 and a patient

inclusion flow chart is included in Figure 1, together with details of

the validation cohort (see the following sections).

We applied a computational immunology approach integrating

several features derived from transcriptomics data to better

characterize and profile the TME of LUAD tumor samples in our

cohort. The features extracted included cell-type proportions, level

of activity of specific Transcription Factors (TFs) and scores of

immunogenicity commonly used in the literature.

Briefly, reference-based deconvolution involves applying

statistical methods to infer cell type proportions in biological

tissue samples starting from transcriptomic profiles of specific cell

types (signatures) and bulk transcriptomics from the samples, such

as tumoural tissues in this case. We applied several deconvolution

methods to the transcriptomes from our LUAD samples and used

different cell type signatures to generate estimates of cell type

proportions (see Methods, see Supplementary Table 1).

Normally, the application of dimensionality reduction methods,

such as pathway activity analysis or the calculation of immune cell
frontiersin.org
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type proportions allows better interpretation of the signal from bulk

gene expression data but at the cost of introducing artificial noise or

removing potentially interesting data features. Selecting

deconvolution methods is not trivial and the different results

obtained with different methods and signatures suggest that they
Frontiers in Immunology 06
capture different aspects of the samples. In this study, we aimed to

use a variety of different methods and signatures instead of choosing

a single one. However, using several deconvolution methods and

signatures, each covering a range of cell types, produced over 300

different deconvolution-related features, which led us to an increase

in dimensionality, exposed high variability between features related

to the same cell types, ultimately hindering interpretation and

imposing the need for much larger sample sizes to achieve

statistical power. This pushed us to address these issues by

engineering novel approaches to produce meaningful cell

deconvolution features integrated with TF activity profiles.

We therefore performed TF activity estimation, which is an

approach to quantify the strength of activity of specific TFs

(essentially an estimated combination of their abundance as proteins

and their post-translational modifications if required for their activity)

based on the expression level of their targets. These approaches involve

a prior-knowledge network of TF-target interactions in combination

with gene expression levels from bulk transcriptomics data and they

allow to identify activation of specific regulons (TFs and their targets)

despite the fact that TF activities are rarely regulated at the

transcriptional level (see Methods). Complementary to this analysis,

we have calculated scores of activation of specific pathways using

PROGENy, which help us to define the processes that dominate the

transcriptome of our patient samples (see Methods).

Finally, several scores have been proposed in the literature to

estimate the level of immunogenicity in tumor samples from bulk

transcriptomics data and we have calculated these immuno-scores

across our cohort (see Methods).
FIGURE 1

An overview of the Lung Predict cohort. A description of the cohort is presented on the left with some summary graphics on the right specifically
detailing tumor stages in male and female patients, RNAseq batches, presence of the most frequent somatic mutations as detected by a gene panel
assay (STK11, EGFR, KRAS), smoking status, metastasis occurrence, age category, type of sample (primary or metastatic sample), location of
the sample.
TABLE 1 Summary of the total number of patients included in the Lung
Predict and the Vanderbilt validation cohort (VUMC) (percentages of
totals in brackets).

Lung Predict VUMC

Total 62 77

Sex (Female) 30 (48) 42 (55)

Age (<70) 46 (74) 47 (61)

Smoking Status: Never 10 (16) 14 (18)

Smoking status: Former 9 (15) 53 (69)

Smoking status: Current 43 (69) 10 (13)

Stage

0 – - 1 (1)

I 21 (34) 44 (57)

II 10 (16) 26 (34)

III 11 (18) 6 (8)

IV 20 (32) -

Metastatic (non-primary) 20 (32) 0 –
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Deconvolution features along with inferred
TF activity profiles reveal different immune
profiles describing the tumor
microenvironment across patients of
different stages

As a result of applying cell type deconvolution, we considered

351 features for each sample. Multiple signatures were used for each

cell type, leading to several estimates of proportions of the same cell

type (e.g. monocytes). This multiplication of features referred to the

same cell type is due either to the fact that they capture different cell

subtypes (e.g. classical or non-classical monocytes), or simply to

differences in the generation of the signatures from the literature

(from in-vitro co-cultures, from tumor samples, etc.). To reduce the

redundancy and dimensionality in our data we first grouped

deconvolution features quantifying the same cell types based on

their correlation across patients and generated deconvolution

feature subgroups (see Methods). Briefly, if multiple features

estimating the same cell type have high correlation it suggests

that they do not differ biologically and do not capture distinct

subtypes, so we merge the corresponding features) (see

Supplementary Table 3 for details).

We then performed unsupervised hierarchical clustering of

patient samples based on the grouped deconvolution features, to

identify patient clusters with correlated immune cell proportion.

We identified three patient groups based on the grouped

deconvolution features and interpreted them based on the

immuno-scores in each sample. Patient cluster 1 contained

mostly “intermediate” tumors, patient cluster 2 contained mainly

“hot” tumors and patient cluster 3 was constituted by a mixture of

“cold/intermediate” tumors (Figure 2). We also visually notice more

early stage samples (I, II) in patient cluster 1, a high presence of late

stage samples (IV) in patient cluster 3 and a high presence of

intermediate stages (III) in patient cluster 2.

To estimate the main processes driving the transcriptomic

profiles of our samples, we calculated TF activities and

constructed weighted co-activity TFs networks, identifying TF

modules (named with colors), which are groups of TFs showing

correlated activity profiles across samples (see Methods and

Supplementary Table 4 for TF module composition). We then

applied a Boruta feature selection approach to select the most

important deconvolution features driving the patient classification

into these three patient clusters, identifying 27 deconvolution

features to be the most influential.

To further investigate the mechanistic processes that might

underlie the 3 patient clusters, we observed how different features

(cell type composition, TF module scores, and pathway scores)

correlated with each other across patients (c.f. Figure 2). We note

that several cell types appear in multiple rows as separated features,

possibly indicating that the different signatures capture distinct cell

subtypes. For example we observe multiple features related to NK

cells and B cells. The name of the feature reflects the name of the

public signature that generated this feature and often suggests

which subtype is captured (activated/naive etc.), while the names

including ‘subgroup’ denote several features that were combined in

the earlier step of deconvolution feature grouping since they
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displayed strong correlations across patients. We characterized

the 3 patient subgroups as follows (Figure 3) according to the

values of different cell type features:

Patient cluster 1 (“intermediate” tumors): associated to low

presence of cancer cells, several CAF signatures, some myeloid

cells (M1 macrophages and monocytes), some lymphocytes (CD4 T

helper), some type of unspecified NK cells and higher abundance of

B cells, resting CD4 and dendritic cells with NK cells denoted as

activated. TF activity analysis showed an involvement of TFs

modules yellow, brown, red and blue, involved in biological

pathway activities related to Androgen, Trail and p53, suggesting

a relation with apoptosis and tumor suppression.

Patient cluster 2 (“hot” tumors): associated to intermediate

presence of cancer cells, several CAF signatures, some myeloid

cells (M1 macrophages and monocytes), some lymphocytes (CD4 T

helper) and some type of unspecified NK cells and low abundance

of naive B cells, resting CD4 and dendritic cells and NK cells

denoted as activated with varying levels of a group of non-naive B

cells. TF activity analysis showed high scores in modules black,

green, red and brown, which seems to be related to high scores of

JAK/STAT, VEGF, MAPK and hypoxia pathways, as well as low

levels of modules blue, and yellow, with particularly low scores for

Trail and p53, suggesting activation of immunity, stress response

and proliferation.

Patient cluster 3 (“cold/intermediate” tumors): mostly late stage,

showing particularly high proportions of cancer cells, CAF cells and

some macrophages. TF activity showed particularly high scores for

module black and low scores for Trail, p53 but also NFkB, VEGF

and JAK/STAT, MAPK, suggesting a highly aggressive,

immunosuppressive and proliferative phenotype.

To better interpret the duality of specific cell type features we

consider how they correlate with each other (row feature groups 1

to 3 on Figure 3).

Interestingly, we identified a complex behavior profile for the

different features estimating the presence of the same cell types. In

some cases, signature names can suggest which cell subtype we are

considering but there are known issues with signatures for myeloid

cell subtypes, for example, despite the importance of these details to

understand whether the TME is immunosuppressive or not. Here

we focus on NK cells, for which several signatures appear to give

conflicting results. The first NK profile (exemplified by the NK

CBSX_melanoma… feature from feature group 1) is associated with

a presence of cancer cells and CAFs and is found in samples with

lower immune scores (subset of Patient cluster 3). This profile may

imply the presence of dysfunctional NK cells, which are

characterized by reduced proliferation and cytotoxic capabilities.

The other profile (NK from EpiDISH_CCLE_NK … from feature

group 2) is associated with endothelial cells and the presence of

certain B and CD4 T-cells found in samples with intermediate

immune-scores, perhaps signifying the presence of tertiary

lymphoid structures (TLS), organized immune cell aggregates that

can be good prognosis markers when identified through spatial

omics. Another group of NK cells (NK from feature group 3) more

associated with the presence of neutrophils, dendritic and M2

macrophages does not seem to be associated to the 3 patient

clusters identified, showing variable values in all sample clusters,
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Taken together, these findings suggest that NK cells of different

kinds, associated with other immune cells, can be found in either

immune-desert tumors, where they are likely to be dysfunctional,

typically in late stage samples, but also in intermediate tumors and

early stage samples, where they can be associated with different

kinds of immune landscapes, depending on their partners.
Data integration to uncover associations
between cell-type deconvolution features
and TF activity profiles

Having observed interesting associations between TF activity

and pathway scores and TME landscapes, and the duality of certain
Frontiers in Immunology 08
cell types (NK for example) we decided to investigate whether a

combination of these features could reveal connections between cell

states across the different cell types in the TME. As an example, we

reasoned that the presence of specific cytokines in the tumor could

have an impact on the state of specific immune cells (say

cytotoxicity of NK cells) in specific patients. We therefore set out

to develop a computational method to integrate cell type proportion

estimates and TF activity scores to evaluate the state of the different

cell populations present in the samples.

Briefly, we start by considering the grouped deconvolution

features and TF module activity scores as descriptors of our

samples. Since TF module scores and grouped deconvolution

features can both be calculated in each sample, we can visualize

the association between each TF module and the different grouped
FIGURE 2

Overview of patient sample clustering based on immune deconvolution subgroups. Our immune deconvolution features after being processed
identified three clusters of patients corresponding to “cold/intermediate”, “hot” and intermediate tumors. Heatmap showing patients within the 3
clusters identified by hierarchical clustering. The gray scale at the top corresponds to the stage of the disease: the darker the color, the later the
stage. The orange to brown scale corresponds to the immune-scores (see Methods): the darker the color, the higher the immune scores.
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deconvolution features as a heatmap. Hierarchical clustering of this

matrix (deconvolution feature by TF module) allows us to cluster

deconvolution features, even grouping those that estimate

proportions of different cell types, allowing us to define Cell Type

Groups (see Methods). The appearance of clusters of deconvolution

features referring to different cell types but having similar TF

activity profiles suggests some commonality of biological

processes ongoing in the distinct cell types present in specific

patients (Figure 4).
Integrated analysis of cell type
composition and TF activity profiles in
early stage LUAD samples uncovers two
distinct patient groups

Our results highlighted a possible difference in the immune profile

of samples according to stage, with most late stage samples (stage IV)

being in ‘cold’ patient groups. To avoid any confounding effect of stage

and sample type (primary vs. metastasis biopsy) and reduce the

heterogeneity of processes likely to take place in our samples, we

decided to focus on the early stage samples (stages I and II).

To assess the immune landscape in the stage I and II samples of

the Lung Predict cohort, we performed immune cell-type

deconvolution and inferred TF activities across these samples

(see Methods).
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Focusing specifically on stage I and II from the Lung Predict

cohort (31 samples), we applied our integrative approach to

combine grouped deconvolution features and TF module activity

scores. (99 deconvolution features including 46 cell subgroups

(Supplementary Table 5) and 53 non-grouped features, 7 TF

modules (Supplementary Table 6), each containing different

groups of TFs (Supplementary Figure 1A) correlating with

different biological activities (Supplementary Figure 1B).

In order to further study the composition of these modules, we

identified the most central (hub) TFs in each module (see Methods),

which highlighted 20 hub TFs in total (6 for module red, 6 for module

brown, 3 for module black, 2 for module green and 3 for module blue).

No hub TFs were found for module turquoise and yellow

(Supplementary Figure 1C). Further enrichment of these TFs

modules was done by identifying the corresponding target genes of

the hub TFs (see Methods). Using only target genes that belong to only

one module to avoid overlapping ones, we performed an over-

representation analysis (ORA) and identified enriched pathways

using the Reactome database. Results showed an enrichment for

neutrophil degranulation and chemokines binding for TFs module

black, suggesting a potential role of this module in the interaction of

neutrophils with other cells. The Brown module is mostly enriched in

pathways related to EGFR signaling, suggesting a potential role of these

TFs in regulation of cell growth. Module blue showed enrichment for

toll-like receptor pathway components, suggesting an association with

immune suppression factors and tumor progression. Module green
FIGURE 3

Annotation of the three patient clusters from (Figure 2) using TFs module scores, pathways scores, and values of Boruta selected immune
deconvolution features. (A) Three feature groups (in rows) are identified from the deconvolution features (values shown on scale red to blue from
high to low). The panel also shows as column annotations of each sample the immuno-score (brown to white from high to low), the TF module
scores (red to green from high to low, see composition of each module in (Supplementary Table 4) and the pathway scores (yellow to blue from
high to low). (B) Heatmap showing significant Pearson correlation between pathway activities and TF modules scores shown in panel A (denoted by
the colors at the top of the columns: blue, cyan, yellow, brown, red, black, green, pink from left to right). Heatmap colors represent levels of
correlation (darker red implies high positive correlation, darker blue implies high negative correlation). Statistics are shown as text only for significant
correlations (p value < 0.05).
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showed an enrichment in transmembrane transporters, this might

suggest the metabolic uptake and efflux of nutrients and the metabolic

crosstalk between cells in the TME. Finally, module red is enriched in

cell cycle checkpoint terms, confirming its role in regulation of cell

proliferation (Supplementary Figure 1D).

In order to reduce the dimensionality of these TF modules, we

identified different module categories by using information of

signaling pathways from PROGENy (see Methods). From this we

performed a PCA analysis to see which TF modules cluster together

based on their association with these pathways. TF modules blue,

green and yellow clustered together and showed a common activation

of p53 and apoptosis pathways while TF modules black, brown,

turquoise and red grouped together by showing a similar association

to VEGF, NFkB and TGFb (Supplementary Figure 2).

Taken together and considering both enrichment and PCA

analysis, our results showed that modules blue, green and yellow are

more associated with cancer-related pathways, including tumor

suppression and progression; while brown, black, turquoise and

red have an association with cell growth.

Associations between these two categories of TFs modules and

deconvolution features were investigated defining several cell type

groups with correlated TF module scores (see Methods). As a

reminder, cell type groups consist of subsets of grouped

deconvolution features that share similar TF profiles, for example,

Dendrogram_red_turquoise_black_brown.group_1, which contains

several deconvolution features related to B cells, cancer cells and

dendritic cells (Supplementary Table 7). With this approach, 14 cell

type groups containing deconvolution features with significant Pearson

correlations with TF module scores (p-value < 0.05, cut.height = 5)

were identified. These cell type groups naturally divide patients into

two groups (Figure 5A). A feature selection algorithm (see Methods)

was applied to estimate the importance of different cell type groups in

the classification of patients in the two patient clusters identified by
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unsupervised hierarchical clustering. After 100 repeats, 10 cell type

group features were selected as important to classify Lung Predict early

stage samples into the two patient clusters shown in (Figures 5A, B).

These cell type group features can themselves be grouped into two

main broader categories (Figure 5C).

Performing a PCA using these cell type groups as features across

the samples, we observed that two cell type groups (PCA variance

explained >20%) were mostly driving this separation of the two

patient groups (Figure 5D). The first, namely “Dendrogram_red_

turquoise_black_brown.group_3”.

is composed mainly by resting NK cells, cancer cells, fibroblasts,

CAF, NKT cells, T helper cells, dendritic cells and M1/M0

macrophages (Supplementary Table 7) and is significantly

associated with pathways related to cell growth and angiogenesis

based on the TF modules involved (red, turquoise, black and brown,

c.f. Supplementary Figures 1B, C).

The second cell type group, namely “Dendrogram_yellow_

blue_green.group_2”, is highly present in patients with intermediate

immune-scores and is composed mostly by CD4 T cells, dendritic cells,

M2 macrophages, neutrophils, monocytes, mast cells, endothelial cells

and NK cells, while being associated to pathways related to immune

response activation and tumor suppression based on TF modules

involved (yellow, blue, green, c.f. Supplementary Figures 1B, C).
The two patient subgroups identified in the
LungPredict early stage samples are
validated in an external early stage
LUAD cohort

Senosain et al. have recently published an in-depth

characterisation of an early stage clinically annotated LUAD

cohort (31). This cohort, to which we will refer as Vanderbilt,
FIGURE 4

Overview of the deconvolution and TF activity integration pipeline. Immune cell deconvolution features and modules of TFs sharing inferred activity
profiles are integrated together using a combination of clustering methods in order to reduce the dimensionality of the results (see Methods). The
output are groups of immune cells characterized by the same TF activities.
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including 70 early-stage (stage I and II) lung adenocarcinomas, for

which bulk RNAseq as well as 15 scRNAseq samples are available

(with an overlap of 9 patients), was used as external validation.

Before using the validation cohort, we verified that these

two datasets Lung Predict and Vanderbilt were comparable

(Supplementary Text 1, Supplementary Figures 3, 4).

To validate our newly identified patient clusters, we considered

the same 10 most important cell type groups identified via the

feature selection algorithm using data from our validation cohort to

see if the identified groups can also classify an independent cohort,

namely the stage I and II samples from the Vanderbilt cohort. We

performed a cell group projection analysis, which consists of

identifying the same TFs modules based on the gene expression

from the independent cohort. We then projected the same

deconvolution subgroups into the unprocessed deconvolution

features from the Vanderbilt samples and recreated the same cell

type groups identified in the Lung Predict cohort. The independent

validation cohort samples also display a separation into two patient

groups based on the values of the selected cell type groups

(Figure 6A). A PCA analysis suggests that the feature with the

highest contribution (>40%) is the same as in the Lung Predict

analysis (Figure 6B). This important cell type group is composed

mainly by resting NK cells and M1 cells and associated with cell

growth and angiogenesis. This cell type group is present mostly in

patients with intermediate and high immune-scores and lacking in

patients with low immune-scores (Figure 6C).
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Taken together, these results suggest that the two patient groups

we identified in the LP cohort are also identified in the validation

cohort. Our findings suggest the importance of resting NK and M1

cells and activation of cell growth and angiogenesis in the

separation of the two patient clusters observed similarly in the

two cohorts.
Differential expression analysis between
patients with alternative profiles of NK cells
hints at differing cytotoxicity of these cells

In order to understand the difference between two clusters of

patients defined by the selected cell type groups, we performed a

differential expression analysis between Vanderbilt patients from

cluster 1 (green) and Cluster 2 (red) in Figure 6A. We obtained 665

differential expressed genes (p.adj < 0.05, abs(log2FoldChange) > 1)

between the two patient subgroups (Figure 7A). We then summarized

these DEGs into KEGG pathways identifying enrichment of

deregulated genes in several immunologically and oncologically

relevant pathways (p value < 0.01) (Figure 7B), including the NK

cell-mediated cytotoxicity pathway. A network plot was generated

linking enriched pathways and the genes contained in them in order

to interrogate the genes present in this pathway and understand the

overlap with other immunologically relevant pathways (Figure 7C). In

this network plot, we see the downregulation of CD3 (epsilon and
FIGURE 5

Selected cell type group features reveal two profiles in the Lung Predict early stage cohort. (A) Hierarchical clustering dendrogram of early stage
patient samples using the 14 cell type group scores. (B) Feature selection based on importance for predicting the two patient clusters in 5A using a
Boruta algorithm, showing confirmed features (green) and rejected features (red) after 100 repeats (see Methods). (C) Heatmap showing the 10 cell
groups selected after feature selection. The panel also shows as column annotations of each sample the immuno-score (brown to white from high
to low), the TF module scores (red to green from high to low, see composition of each module in Supplementary Table 5) and the pathway scores
(yellow to blue from high to low). (D) Contribution of cell type groups to the PCA variation in the classification of patient clusters.
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delta) as well as CD8 alpha suggesting a reduction in the activation -

and, perhaps, no involvement - of CD8 T-cells in the functional profile

of NK cells from cluster 1. Many KIR genes, important for NK

cytotoxicity) appear downregulated in this cluster, confirming the

potential presence of dysfunctional or resting NK cells in this first

cluster of patients. In a deeper analysis of the NK-cell mediated

cytotoxicity pathway (Supplementary Figure 5), we observe a

downregulation in inhibitory receptors KLRC1 (NKG2A) and

KIR3DL2. The inhibitory potential of NKG2A is dependent on its

dimerization with CD94, which is not differentially expressed in our

analysis (45). Anfossi et al. reported that KIR+NKG2A+ NK cells were

responsive upon stimulation with tumor targets whereas NK cells

lacking these inhibitorymarkers are hyporesponsive (46). Furthermore,

the observed downregulation in protein kinase C (PKC) can have a

direct effect on the granulization and cytotoxic effect of these NK cells

(47). Taken together, these results suggest that these two patient

clusters might be defined by the presence of either functional or

dysfunctional (resting) NK cells.
Single-cell analysis in the validation cohort
confirms multiple subgroups of NK cells

In an effort to better characterize the dual behavior associated with

NK cells detected at the bulk RNAseq level, we analyzed single cell

transcriptomics data from 15 patients from our validation cohort.

Following standard procedures for scRNAseq analysis, we performed

graph-based clustering of cells to identify cell groups sharing similar

gene expression (Figure 8A) using annotations already provided in the
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scRNAseq object from the validation cohort (31) and didn’t identify

any batch effect (Supplementary Figure 6). Since our focus was to

identify different NK subclusters, we then re-annotated these cells.

We performed annotation using reference expression datasets with

curated cell type labels for automatic annotation in order to

establish a consensus for the NK cell annotation (see Methods)

(Supplementary Figure 7). We extracted the cell clusters identified

as NK (cluster 8) and performed an additional clustering step to

identify subclusters within this population. We obtained 3

subclusters of NK cells (Figure 8B) that we investigated based on

specific NK markers. All three subclusters showed a high expression

of KLRK1, which is expressed on all NK cells as well as on a small

subset of cytotoxic CD8 T-cells. Interestingly, when profiling the

expression of GNLY (cytolytic compound expressed by cytotoxic

cells) and KLRC2 (activation receptor, expressed on NK cells),

cluster 0 did not show any detectable expression. Cluster 1 also lacks

expression of KLRC2 while Cluster 2 shows expression of both

markers, with higher expression of GNLY. Further analysis revealed

that cluster 1 had the lowest expression of perforin (PRF1),

granzyme B (GZMB) and interferon-g (IFNG), suggesting that

this cluster may include resting or dysfunctional NK cells, with

reduced cytotoxic potential. Clusters 0 and 2 display high

expression of PRF1, GZMB and IFNG suggesting that they are

functionally competent sub-types of NK cells. Cluster 0 is the only

NK cluster expressing FCGR3A (Fc-gamma receptor III, also

known as CD16), which suggests that it may contain cytotoxic,

peripheral blood NK cells (48). Cluster 2 has high expression of

ITGAE (CD103) and ZNF683 (HOBIT - regulates immune cell

development (49) without any expression of S1PR5 (plays a role in
FIGURE 6

Selected cell type groups features found in LP cohort projected in early stage samples of validation cohort. (A) Dendrogram obtained by hierarchical
clustering revealed two groups of patients based on the cell type groups values. (B) Cell type groups feature contribution to the PCA variation in the
classification of patient clusters. (C) Early stage patient samples from the validation cohort are divided in two main clusters based on the values of
the selected cell type groups from LP analysis.
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migration of immune cells) and low expression of KLF2 (plays a

role in the regulation of NK cell maturation), which suggest that this

cluster may include cytotoxic, tissue-resident NK cells (50)

(Figure 8C). For details about the differential expression markers

between the NK clusters refer to Supplementary Tables 8,–10. We

observe varying proportions of NK cell subtypes across our patient

cohort, but unfortunately only 9 patients had both scRNAseq and

bulk RNAseq, from which only 7 correspond to early stage samples

(I, II) (Figure 8D), so we could not confidently estimate whether our

grouping of bulk RNAseq samples into two patient groups

according to NK subtype (indicated by numbers on each barplot)

could be associated to the dominance of dysfunctional NK cells in

the scRNAseq data.

Reference-based bulk RNA-seq
deconvolution using the scRNAseq from
the validation cohort to estimate cell type
proportions in our primary cohort reveals
the different annotated NK profiles in the
LP early stage patients

To strengthen and validate our findings regarding cell type

composition in the bulk data from our LungPredict cohort, we
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performed single-cell reference-based bulk RNAseq deconvolution

using the scRNAseq data from Vanderbilt as our reference for

extracting signatures. We used BayesPrism as implemented in the

Omnideconv R package (see Methods) to deconvolve our early stage

LungPredict samples. We identified the three different annotated NK

subtypes across our samples and found the peripheral cytotoxic NK cell

subtype to be the most predominant and the dysfunctional NK subtype

to be the least abundant (Figure 9).
Cell type groups are associated with
recurrence-free-survival in the
validation cohort

Focusing on early stage disease, we can evaluate the potential

association of the immune landscape and disease recurrence. The

association of the immune profiles determined through the integration

of shared inferred TF activity and the deconvolution features with

recurrence was assessed using the mature follow-up available for

patients from the validation cohort. CoxPH models were evaluated

across all the 10 selected cell type groups and then used to stratify

samples based on the linear predictors of the model. Kaplan Meier

analysis and log rank tests were used to assess the difference between
FIGURE 7

Supervised analysis of the patient groups identified in Figure 6A. (A) Volcano plot summarizing the 665 differentially expressed genes (DEGs) (padj < 0.05,
abs(log2FoldChange) > 1) identified by comparing the green and red clusters from Figure 6A (B) Top results from the KEGG pathway enrichment analysis
(p value < 0.01) on the DEGs summarized in the volcano plot. (C) Network plot of immunological pathways showing the genes involved in each pathway
and overlapping among pathways. Node colors communicate the log2FoldChange of the genes between the two patient groups.
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risk groups (see Methods). Two multivariate models were found as

significant after log rank test (p value = 0.007 and p value = 0.0068)

(Figure 10). In model 1, the variables (covariates) that are most

associated to recurrence free survival were Dendrogram_red_

turquoise_black_brown.group_3, including resting NK cells,

Dendrogram_red_turquoise_black_brown.group_9 and

Dendrogram_red_turquoise_black_brown.group_combined_1,

including more active/cytotoxic NK cells with other immune cells like

neutrophils, T cells and activated dendritic cells.
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Model 2 also contains as covariate the Dendrogram_red_

turquoise_black_brown.group_3 feature, and additionally two other

cell type groups: Dendrogram_yellow_blue_green.group_2, containing

the NK resting subgroup as well as other resting immune cells (CD4,

dendritic, Mast), and Dendrogram_yellow_blue_green.group_3,

containing the more active NK subgroup in combination with T cells

(CD4 and CD8) and dendritic cells in their active state (see

Supplementary Table 7 for detailed composition of the cell groups).

This result is limited by small sample size (n=70) and a low event rate
FIGURE 8

Single-cell RNAseq characterization of natural killer (NK)-cell clusters in LUAD samples from the Vanderbilt cohort. (A) Graph-based UMAP clustering. (B)
UMAP of cluster 8 identified as NK cells after automatic annotation showing the 3 NK subclusters. (C) Characterization of the three NK subclusters using
several cell surface markers. (D) Proportions of each NK cluster, labeled according to the marker analysis. The numbers at the bottom correspond to the
patient cluster to which the corresponding bulk RNAseq sample belongs (Cluster 1= green, Cluster 2 = red) according to (Figure 6A).
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(n=11), however the results serve as preliminary evidence for the

applicability of transcriptomically defined immune patient profiles in

real world outcomes among early stage lung adenocarcinoma patients.
TCGA LUAD cohort analysis confirms
similar immune infiltration profiles across
early stage patients

To further test the validity of our findings, we selected the 399

early stage (I,II) lung adenocarcinoma (LUAD) from TCGA. We

performed immune cell type deconvolution and inferred TF activity

across these samples as described above. We then projected and

recreated the 10 selected cell type groups (see above) using the same

TF modules found in the analysis mentioned above using early stage

samples in the primary and in the validation cohorts. Our results

showed three patient clusters related to distinct immune infiltration

profiles. Two of the three patient clusters revealed similar expression

patterns as the ones found in the LP and Vanderbilt cohorts

(Figure 11A) and we identified patient clusters 1 (red) and 3

(green) as the clusters defined by two opposite NK profiles
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(Figure 11B). We then performed a differential expression analysis

and a functional enrichment analysis using the KEGG database,

identifying 1518 differentially expressed genes (padj <.00001, abs

(log2FoldChange) > 1.5) revealing an enrichment in immunological

and cytotoxic related pathways (p value < 0.05) (Figure 11C).
Survival analysis in TCGA revealed that
both resting and activated NK subtypes are
significant predictors of survival

Linear predictors from univariate cox proportional hazards

(coxPH) models across all the 10 selected cell groups were

evaluated to stratify patients based on their risk-scores,

subsequently computing the survival curves through Kaplan

Meier analysis and testing whether the survival between the two

groups is significantly different (p value < 0.01). In this dataset we

applied stricter filtering due to the high number of patients (n=393),

stratifying as high-risk only the top 34% of patients (based on their

risk scores) and the remaining 66% as “low-risk”. Two models were

found to be significantly associated with the survival time of
FIGURE 9

Reference-based deconvolution of primary cohort using BayesPrism method. (A) Deconvolution proportions from early stage samples from the
LungPredict cohort. NK cells are subdivided into the three subgroups considered above: dysfunctional, peripheral and tissue resident. (B) NK
subtypes proportions in early stage samples using the cell-type annotations from the scRNAseq object of the validation cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1394965
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hurtado et al. 10.3389/fimmu.2024.1394965
patients (Figure 12). Cell type groups dendrogram_red_

turquoise_black_brown.group_3 and dendrogram_red_turquoise_

black_brown.group_4 with p value = 0.0063 and p value = 0.0027,

respectively. The first cell type group corresponds to the subgroup

of resting NK cells with macrophages M1 and the second one

corresponds to the NK subgroup in combination with cancer,

fibroblasts, dendritic, and Thelper cells (see Supplementary

Table 7). Both these features were predictors of survival in the

univariate models. These results suggest an important association

between these NK subtypes and patient survival.
Patient subgroups identified are related to
oncogene and tumor suppressor
TF modules

To further investigate the functional mechanisms leading to the

subgrouping of patients into 2 categories according to their TME

landscapes, we further explored the association between TF

modules and deconvolution features. In particular we highlight
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the modules that are associated with abundance of cancer cells as

potentially capturing oncogenic processes while other modules

negatively correlated with cancer cells could be considered as

tumor suppressor processes (Figure 13). The module that is more

strongly positively correlated with cancer cell estimates is red, which

shows strong repression of Trail and p53 pathways and activation of

MAPK, VEGF and Hypoxia and is strongly positively correlated to

the presence of resting NK cells and negatively to the presence of

active NK cells. The black and brown modules are negatively

correlated with the same features and show instead strong

activation of immune processes (NFkB and TFGb). The

repression of module red clearly sets patients in cluster 1 apart

(c.f. Figure 5C). The TF activity profiles across early stage Lung

Predict samples of TFs contained in each module are shown in

Supplementary Figure 8.

Since TF activities are estimated based on bulk RNAseq, we

cannot be sure of whether these pathways are activated mainly in

the cancer cells or the correlation directly reflects the tumor sample

purity. However, combining these two types of features we have

demonstrated that discordance between deconvolution signatures
FIGURE 10

Multivariate cox proportional hazards (Cox PH) models were developed across all selected 10 cell type groups (Figure 5B). (A) Survival curves based
on high and low risk groups using linear predictors after fitting Cox PH model using as covariates cell type groups corresponding to Dendrogram_
red_turquoise_black_brown.group_3, Dendrogram_red_turquoise_black_brown.group_9 and Dendrogram_red_turquoise_black_brown.group_
combined_1 (p value = 0.007). (B) Survival curves based on high and low risk groups using linear predictors after fitting Cox PH model using as
covariates cell type groups corresponding to Dendrogram_red_turquoise_black_brown.group_3, Dendrogram_yellow_blue_green.group_2 and
Dendrogram_yellow_blue_green.group_3 (p value = 0.0068).
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might simply reflect substantial differences in the subtypes of cells

they refer to.
Discussion

This study leveraged integrative computational approaches to

dissect immune heterogeneity in the tumor microenvironment of

lung adenocarcinomas. Integrating bulk transcriptomics with

bioinformatic analyses for cell type deconvolution and TF activity

inference, we identified profiles associated with dual immune cell

phenotypes (51).

Specifically, our combined analysis suggested the presence of

two subgroups of natural killer (NK) cells. One subgroup is

associated with a high proportion of cancer cells and CAFs and

could be potentially associated with a “resting” or “dysfunctional”

behavior. Dysfunctional NK cells are characterized by reduced

proliferation and cytotoxic capabilities. In contrast, we inferred a

high presence of B-cells, T-cells and NK cells in early stage samples

with high immune-scores. This different group of NK cells may

display cytotoxic capabilities and might even be subdivided into two

NK profiles, depending on co-occurrence of other cell types, namely

endothelial cells. Focusing on early stage (stage I and II) patient

samples, we confirmed these dual NK subgroups in an independent

LUAD cohort and in the 399 stage I and II LUAD samples from

TCGA after further characterizing them in an scRNAseq dataset.

Interestingly, in the scRNAseq data analysis, we identified three

major NK clusters. We characterized these three clusters as resting/
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dysfunctional, circulating cytotoxic and tissue-resident cytotoxic

NK cells. The single-cell analysis provided independent validation

of the computationally defined NK cell subtypes/states, and

provided further resolution into tissue-resident versus circulating

NK cell subsets. Finally, we were able to show that our engineered

features based on cell type groups, which take into account TF

activity profiles to estimate presence of groups of different cell types,

have predictive value on recurrence free survival (in our validation

cohort) and on overall survival (in the TCGA cohort).

To summarize, we revealed a striking duality in NK cell

phenotypes across three independent cohorts, with NK subsets

displaying signatures of dysfunctional exhaustion versus cytotoxic

competence. Dysfunctional NK cells have reduced proliferative and

functional capacity, resulting from constant exposure to immune

suppressive signals in the tumor microenvironment. Our findings

align with other recent studies showing phenotypic heterogeneity in

NK cells and other immune cell types in the context of cancer (52,

53) and with reports that NK cell states might be essential for

response to PD-1/PD-L1 blockers (54) and key players in

immunotherapy (55, 56). Beyond those results, our approach is a

first step towards delineating the type of inter-cellular interactions

that could be established in the TME in connection to the presence

of these two NK cell subtypes.

Overall, our study sheds light on the significant diversity of

immune cells in the lung cancer microenvironment. The integrated

computational frameworks provide an accessible, robust and

general methodology for immune profiling of tumor samples via

bulk RNAseq.
FIGURE 11

TCGA analysis using selected cell type groups from Figure 9A. (A) Heatmap showing cell type groups scores after projection using the computed
deconvolution and the inferred TF activity. (B)Samples dendrogram using hierarchical clustering based on the cell type groups scores (C). Dotplot
showing KEGG pathways (p value < 0.05) related to the enrichment of DEG (padj < 0.05, abs(log2FoldChange) > 1) after comparison between patient
Cluster 1 and 3 (red and blue in panel B, respectively).
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Immune cell dysfunction arises from continuous stimulation in a

persistent inflammatory environment. In the tumormicroenvironment

(TME), the presence of various immune suppressive signals

exacerbates immune cell dysfunction leading to tumor progression

and metastasis (57). The ability to resolve immune cell dysfunction

versus activation states could significantly improve prognostic models

and prediction of immunotherapy response (58). Whether these

dysfunctional characteristics are a result of exhaustion or senescence

will need to be determined (59). Our approach is a very step towards

delineating the type of inter-cellular interactions that could be

established in the TME in connection to the presence of these two

NK cell subtypes.

Our exploration of the single cell data further strengthens the

hypothesis that there are two major subgroups of NK cells,

dysfunctional/resting and functional, associated with immune

cells presence and that patients might be characterized based on

the dominance of either of these two NK cell subgroups. It could be

speculated that the profile of NK cell subtypes present could be

related to response to immune checkpoint blockers. However, early

stage LUAD patients are still rarely treated with this type of therapy,

while only a few patients in Lung Predict received it, requiring
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alternative cohorts to validate this hypothesis. However, we note

that in any non-pharmacologically treated tumor a strong immune

response is likely to improve survival, potentially explaining why

the active NK subtype, which associates with M1-like macrophages,

could also improve survival in cases that are treated by surgery

alone, as those included in our primary and validation cohorts.

We note that our initial analysis on the Lung Predict cohort

across stages suggests that the duality in NK cells populations is not

limited to early stage disease. Looking forward, extension of these

analyses across lung cancer stages and histological subtypes could

provide valuable insights into reprogramming of the immune

microenvironment during progression. Incorporating spatial and

proteomic data could help further resolve the tissue localization

and functional capacities of distinct immune cell subsets in

lung tumors. Ultimately, comprehensive mapping of immune

heterogeneity in lung cancer provides a path towards more precise

immunotherapeutic strategies (53, 60).

Nevertheless, this study has several limitations to be considered.

First, the sample size was relatively small, with only 62 lung

adenocarcinomas in the primary analysis cohort and 70 in the

validation cohort. The number of samples included in our analysis
FIGURE 12

Survival curves corresponding to the analysis done for TCGA-LUAD (393 early stage patients). (A) Survival curves showed a significant difference
(p value = 0.0063) of survival using formula 1 (Surv(time, status) ~ dendrogram_red_turquoise_black_brown.group_3) when comparing high-risk
patients (yellow) and low-risk (blue) patients defined based on the risk scores. (B) Survival curves showed a significant difference (p value = 0.0027)
of survival using formula 2 (Surv(time, status) ~ dendrogram_red_turquoise_black_brown.group_4) when comparing high-risk patients (yellow) and
low-risk (blue) patients defined based on the risk scores.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1394965
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hurtado et al. 10.3389/fimmu.2024.1394965
from TCGA is considerable (399) and helped us confirm our

findings, but the cohort is likely to be less homogeneous. Larger

studies on deeply clinically characterized samples will be needed to

further validate the findings. Second, we utilized only transcriptomic

data, which provides an incomplete picture of cellular states

compared to integrating proteomics and adding spatial resolution.

Third, our study lacked longitudinal samples, with which we could

assess how immune profiles change over time and with therapy.

Fourth, bulk transcriptomics may underestimate certain rare cell

populations that are better captured by single-cell sequencing. Our

in-depth analysis of 15 samples for which scRNAseq was available

and using NK populations identified therein helped us confirm the

presence of the NK subtypes in our bulk RNAseq datasets. Fifth, the

specific deconvolution algorithms used can impact results, and

incorporating additional methods could provide further validation.

Finally, functional validations to directly test immune cell cytotoxicity

or dysfunctional profiles in NK cells were not performed. This would

require either in-vitro experiments or very deep characterisation of

clinical samples that are beyond the scope of this study.

Overall, this proof-of-concept study demonstrated the potential

of integrated computational immunology techniques to identify

signatures of immune cell dysfunction from bulk tumor profiling.
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However, further experimental and clinical validations are needed

to fully characterize the phenotypic diversity of anti-tumor immune

responses in lung adenocarcinoma patients.
Conclusion

In summary, our multi-omics computational framework

elucidated heterogeneous immune microenvironments in lung

adenocarcinoma. Deconvolution and TF activity analysis

identified groups of immune cells with coordinated regulation/

states. The ability to resolve dysfunctional/resting versus activated

immune cell states from bulk tumor profiling could have important

implications for prognosis and prediction of response to

immunotherapy, as suggested by our preliminary evidence of an

association to survival in 3 early LUAD cohorts. Further

characterization of dynamic immune reprogramming during

cancer progression and therapy response represents an important

future direction. We make the RNAseq datasets from our Lung

Predict cohort and all the code available to the research community,

hoping to contribute to reproducibility and open-research practices

for the ultimate benefit of patients.
FIGURE 13

TF module characterisation based on association with grouped deconvolution features in early stage Lung Predict samples. The heatmap shows
Pearson correlation between TF module scores and deconvolution features, highlighting cancer-related features. Colors represent levels of
correlation (darker red implies high positive correlation, darker blue implies high negative correlation). Statistics are shown only for significantly
correlated pairs (p value < 0.05).
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SUPPLEMENTARY FIGURE 1

TFs modules characterization from early stage Lung predict samples. (A)
Number of TFs across each of the 7modules. (B)Module association between

TFsmodules scores and pathway values (only showing significant correlations
considering p value < 0.05). (C) Heatmap of the TF activity of the 20 hub TFs

across samples, showing their related module as the color annotation on the
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right. (D) Reactome enrichment results from unique target genes from hub
TFs of each module.

SUPPLEMENTARY FIGURE 2

TFs modules classification and characterization from analysis on early stage

samples from Lung Predict cohort. (A)Construction of weighted TFs modules
based on inferred co-activity. (B) Hierarchical clustering based on association

values between TFs modules and pathway activities. (C) Biplot representing
the contribution of the top 6 pathways classifying the TFs modules.

(D) Contribution of each pathway on the TFs module classification.

SUPPLEMENTARY FIGURE 3

Analysis of combined LungPredict and Vanderbilt validation cohort A.
(A) difference between the LP and Vanderbilt cohorts on normalized counts

was evident and treated as a batch effect (B) Heatmap showing the Pearson
correlation between the principal components and the metadata variables

(the darker the green the higher the correlation). p values 0, 0.0001, 0.001,

0.01, 0.05, 1 correspond to ‘****’, ‘***’, ‘**’, ‘*’, ‘‘ respectively. (C) PCA plot
using TFs activity values after calculating it independently in each cohort,

shows the difference between cohorts was removed. (D) Heatmap showing
no significant correlation between cohorts (treated here as batches) and the

principal components (PCs) using TFs activity.

SUPPLEMENTARY FIGURE 4

PCA analysis to assess batch effect within the validation cohort. (A) PCA of
validation cohort (Vanderbilt) normalized counts before batch correction (B).
PCA of validation cohort normalized counts after batch effect removal by
Combat_seq from the sva R package (61 (v3.50.0)) to maintain the integrity of

the raw counts.

SUPPLEMENTARY FIGURE 5

KEGG pathway diagram of differentially expressed genes between two patient
clusters identified in the Vanderbilt cohort early stage samples (c.f. Figure 9A).

The diagram shows the “Natural Killer Cell mediated cytotoxicity pathway”
produced using the pathview R package (62 (v1.42.0)) components and

interactions, highlighting downregulation of inhibitory (KIR3DL1/2)
receptors as well as protein kinase C (PKC).

SUPPLEMENTARY FIGURE 6

UMAP of scRNAseq data from 15 Vanderbilt cohort patients (31). UMAP shows

no batch effect influence in the cell based clustering.

SUPPLEMENTARY FIGURE 7

Automatic cluster annotation from Vanderbilt scRNA cohort using reference

expression datasets with curated cell type labels. (A)Cluster automation using

Human Primary Cell Atlas. (B)Cluster annotation using Database Immune Cell
Expression Data. (C) Cluster annotation using Monaco database. (D) Cluster
annotation using Blueprint Encode Data.

SUPPLEMENTARY FIGURE 8

TFs activity of module composition from TF modules. Modules black, red, blue,

brown, green, turquoise and yellow correspond to Figures (A–G) respectively.

SUPPLEMENTARY TEXT 1

related to Supplementary Figure 3, Supplementary Figure 4 Evaluation of
batch effects within and between cohorts: To assess comparability between

the Lung Predict and Vanderbilt early stage cohorts, we performed a PCA
analysis using the R package PCAtools (63 (v2.14.0)) where we joined the two

datasets and tested whether they separated or not. As expected, there is a big

difference between the two cohorts based on normalized counts
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(Supplementary Figure 3A) with a pearson correlation of 1 (p value <
0.0001) between cohort (here batch) and the first principal component

(Supplementary Figure 3B). Instead of removing the batch effect, which

potentially can also eliminate some important biological differences, and
since our analysis does not directly use normalized counts, we decided to

calculate TFs activity independently for each cohort and assess again for
batch effects. As expected, calculation of the inferred TFs activity removed

the batch effects between the two cohorts (Supplementary Figure 3C)
showing no correlation (r = 0.01) between the cohorts and the PC1

(Supplementary Figure 3D). Once we confirmed that the two datasets can

be comparable when looking at the TF activity profiles, we performed the
previously described analysis only on the validation cohort to assess for

within-dataset batch effects. A PCA analysis identified two main groups
confounded by batches (Supplementary Figure 4A). For this reason, we

performed both our TFs inference analysis and immune cell type
deconvolution calculation independently for each batch. We then

concatenated our results and saw that even though the TFs analysis was

not affected by the batch effect, this was still present in the deconvolution
results. We then used Combat_seq from the sva R package (61 (v3.50.0)) to

remove batch effects from our counts and maintain the integrity of the raw
counts (Supplementary Figure 4B). Finally, after log2(TPM + 1) normalization

we calculated deconvolution features from batch corrected datasets.

SUPPLEMENTARY TABLE 1

Deconvolution methods and signatures.

SUPPLEMENTARY TABLE 2

Immune-scores hallmarks.

SUPPLEMENTARY TABLE 3

Composition of deconvolution features subgroups on all samples from Lung

Predict cohort.

SUPPLEMENTARY TABLE 4

Composition of TF modules obtained from all samples from Lung

Predict cohort.

SUPPLEMENTARY TABLE 5

Composition of deconvolution features subgroups on early stage samples
from Lung Predict cohort.

SUPPLEMENTARY TABLE 6

Composition of TF modules obtained from early stage samples from Lung
Predict cohort.

SUPPLEMENTARY TABLE 7

Composition of cell groups obtained from early stage samples from Lung

Predict cohort.

SUPPLEMENTARY TABLE 8

Differential expression markers between NK peripheral (pct.1) and NK

dysfunctional (pct.2) (p_val_adj <0.05 and abs(avg_log2FC) > 1).

SUPPLEMENTARY TABLE 9

Differential expression markers between NK peripheral (pct.1) and NK Tissue
resident (pct.2) (p_val_adj <0.05 and abs(avg_log2FC) > 1).

SUPPLEMENTARY TABLE 10

Differential expression markers between NK Dysfunctional (pct.1) and NK

Tissue resident (pct.2) (p_val_adj <0.05 and abs(avg_log2FC) > 1).
References
1. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot A, Mezquita L, et al. Immune
check- point inhibitors for patients with advanced lung cancer and oncogenic driver
alterations: results from the IMMUNOTARGET registry. Ann Oncol. (2019) 30:1321–
8. doi: 10.1093/annonc/mdz167

2. Zhang C, Zhang Z, Zhang G, Zhang Z, Luo Y, Wang F, et al. Clinical significance
and inflammatory landscapes of a novel recurrence-associated immune signature in
early-stage lung adenocarcinoma. Cancer Lett. (2020) 479:31–41. doi: 10.1016/
j.canlet.2020.03.016

3. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al.
Comprehensive evaluation of transcriptome-based cell-type quantification methods for
immuno-oncology. Bioinformatics. (2019) 35:i436–45. doi: 10.1093/bioinformatics/
btz363
frontiersin.org

https://doi.org/10.1093/annonc/mdz167
https://doi.org/10.1016/j.canlet.2020.03.016
https://doi.org/10.1016/j.canlet.2020.03.016
https://doi.org/10.1093/bioinformatics/btz363
https://doi.org/10.1093/bioinformatics/btz363
https://doi.org/10.3389/fimmu.2024.1394965
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hurtado et al. 10.3389/fimmu.2024.1394965
4. Avila Cobos F, Alquicira-Hernandez J, Powell JE, Powell JE, Mestdagh P, Preter
De K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat
Commun. (2020) 11:5650. doi: 10.1038/s41467-020-19015-1

5. Merotto L, Zopoglou M, Zackl C, Finotello F. Next-generation deconvolution of
transcriptomic data to investigate the tumor microenvironment. In: International
review of cell and molecular biology. Academic Press (2023).

6. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al.
Comprehensive integration of single-cell data. Cell. (2019) 177. doi: 10.1016/
j.cell.2019.05.031

7. Ruan X, Ye Y, Cheng W, Xu L, Huang M, Chen Y, et al. Multi-omics integrative
analysis of lung adenocarcinoma: An in silico profiling for precise medicine. Front Med.
(2022) 9:894338. doi: 10.3389/fmed.2022.894338

8. Andrews S. FastQC: a quality control tool for high throughput sequence data
(2010). Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
. (accessed March 10, 2022)

9. Wingett S, Andrews S. FastQ Screen: A tool for multi-genome mapping and
quality control. F1000Res. (2018) 7:1338. doi: 10.12688/f1000research

10. Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. (2013) 29:15–21. doi: 10.1093/
bioinformatics/bts635

11. Li B, Dewey C. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinf. (2011) 12:323. doi: 10.1186/1471-
2105-12-323

12. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general-purpose program
for assigning sequence reads to genomic features. Bioinformatics. (2014) 30:923–30.
doi: 10.1093/bioinformatics/btt656

13. Love M, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

14. Morandat F, Hill B, Osvald L, Vitek J. Evaluating the design of the R language. In:
Noble J, editor. ECOOP 2012 – object-oriented programming, vol. 7313 (2012) (Berlin,
Heidelberg: Springer).

15. R Core Team. R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing (2020). Available at: https://www.R-
project.org/.

16. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, et al.
Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. (2004) 5:R80. doi: 10.1186/gb-2004-5-10-r80

17. Huber W, Carey V, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.
Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods.
(2015) 12:115–21. doi: 10.1038/nmeth.3252

18. Yu G, Wang L, Han Y, He Q-Y. clusterProfiler: an R package for comparing
biological themes among gene clusters. A J Integr Biol. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

19. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
multi- dimensional genomic data. Bioinformatics. (2016) 32:2847–9. doi: 10.1093/
bioinformatics/btw313

20. Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication- ready volcano plots
with enhanced colouring and labeling. (2018). doi: 10.18129/B9.bioc.EnhancedVolcano

21. Leote AC, Wu X, Beyer A. Regulatory network-based imputation of dropouts in
single-cell RNA sequencing data. PLOS Comput Biology. (2024) 18(2):1009849.
doi: 10.1371/journal.pcbi.1009849

22. Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al.
Perturbation-response genes reveal signaling footprints in cancer gene expression.
Nat Commun. (2018) 9:20. doi: 10.1038/s41467-017-02391-6
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