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Necroptosis, a recently discovered form of cell-programmed death that is

distinct from apoptosis, has been confirmed to play a significant role in the

pathogenesis of bacterial infections in various animal models. Necroptosis is

advantageous to the host, but in some cases, it can be detrimental. To

understand the impact of necroptosis on the pathogenesis of bacterial

infections, we described the roles and molecular mechanisms of necroptosis

caused by different bacterial infections in this review.
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1 Introduction

Initially, researchers thought there were only two ways of cell death: apoptosis and

necrosis. Apoptosis is active and program-controlled, and its key regulator is caspase. The

morphological changes associated with apoptosis mainly include cell shrinkage and

chromatin condensation, the formation of apoptotic bodies and cytoskeleton

disintegration. Necrosis is passive and unprogrammed and can be activated in various

ways, e.g., by bacterial infection (1), toxins (2), and ischemia (3); the morphological changes

characteristic of necrosis include cellular swelling, plasma membrane rupture, and the

release of cellular content (4, 5). In 2005, Professor Junying Yuan first demonstrated that

nonapoptotic cell death induced by death receptor signaling is programmed (6), and coined

the term “programmed necrosis” (also known as necroptosis). Necroptosis was originally

named receptor-interacting protein 1 (RIP1)-dependent necrosis, referring to a caspase-

independent form of programmed cell death that was characterized by both necrosis and

apoptosis. During necroptosis, cells undergo changes such as membrane rupture, organelle

swelling, and nuclear and cytoplasmic disintegration (7, 8).

Necroptosis depends on the activity of receptor interacting protein kinase-1 (RIPK1),

receptor interacting protein kinase-3 (RIPK3), and mixed lineage kinase domain-like

protein (MLKL) (9–11). Necroptosis can be initiated by tumor necrosis factor receptor

(TNFR) (12), pattern recognition receptors (PRRs), including Toll-like receptor (TLR3/4),

Nod-like receptors (NLRs), and RIG-I-like receptors (RLRs) (4, 13–16), INF-a receptors
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(17, 18), adhesion receptors (19), and DNA-dependent activator of

IFN (DAI) (also known as ZBP-1) (20, 21). The most classical

pathway is TNF-induced necroptosis, which is described in

Figure 1. After TNF binds to TNFR1 on the cell membrane, it

recruits TNFR1-associated death domain protein (TRADD) and

RIPK1 to form an early complex, which is subsequently detached

from TNFR and recruits TNF receptor-associated factor 2 (TRAF2),

cellular inhibitors of apoptosis (cIAPs) (including cIAP1/2) and

linear ubiquitin chain assembly complex (LUBAC) to form complex

I. At this time, RIPK1 is ubiquitinated by cIAPs and LUBAC, and

the result of ubiquitination is the stabilization of complex I, which

then continues to recruit downstream proteins, such as TGF

activated kinase 1 (TAK1), TAK1 binding protein 2/3 (TAB2/3),

and an IkB kinase complex (IKK) composed of IKKa, IKKb, and
NF-kB essential modulator (NEMO) (4, 22). The recruited

downstream proteins activate the NF-kB and mitogen-activated

protein kinase (MAPK) pathways, resulting in increased expression

of proinflammatory genes, which contribute to the production of

proinflammatory factors (4, 22). Blocking cIAPs or cylindromatosis

protein (CYLD) to remove the ubiquitin chain on RIPK1 (23) can

inhibit the ubiquitination of RIPK1 and induce the formation of

complex IIa/b, which is composed of TRADD, RIPK1, and FAS-

associated death domain protein (FADD). Complex IIa/b activates

caspase-8 and then induces apoptosis (5, 24). RIPK1 contains an N-
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terminal kinase domain, a C-terminal death domain (DD), and an

RIP homotypic interaction motif (RHIM). When the activity of

caspase-8 is blocked and apoptosis is inhibited, RIPK1 recruits

RIPK3 through interactions between the RHIM domains, and

RIPK3 continues to recruit downstream MLKL and forms a

complex, called a necrosome. RIPK3 recruits MLKL and

phosphorylates MLKL, which subsequently translocates to the

plasma membrane, triggers necroptosis, and releases damage-

associated molecular patterns (DAMPs) from the cell (25–27),

leading to excessive inflammation (28). However, the immune

system has evolved RIPK1-independent necroptosis, and RHIM

domain-containing protein molecules such as ZBP1 and TIR

domain-containing adapter-inducing interferon-b (TRIF) can

both induce necroptosis through the binding of their own RHIM

domain to RIPK3 (20).

Dysregulated necroptosis can be involved in the occurrence of

neurological diseases, such as Parkinson’s disease (29) and

Alzheimer’s disease (30). In addition, necroptosis can play a

different role in tumor diseases. For example, in gastric

adenocarcinoma (31) and non-small cell lung cancer (32), the body

can provide a favorable environment for the growth of cancer cells by

downregulating the expression of proteins related to the necroptosis

pathway. Therefore, activating necroptosis may be an effective

anticancer strategy. However, some studies have also demonstrated
FIGURE 1

The classical mechanism of necroptosis. After TNF binds to its receptor, it can recruit RIPK1 and TRADD to form a complex. Subsequently, RIPK1 and
TRADD dissociate from the TNF receptor and recruit LUBAC, TRAF2, and cIAPs to form complex I. At this stage, RIPK1 undergoes ubiquitination by
LUBAC and cIAPs, which stabilizes the complex. When cIAPs are inhibited or when the ubiquitin chains on RIPK1 are removed using CYLD, a
complex called complex IIa/b, consisting of TRADD, RIPK1, and FADD, is formed. Complex IIa/b activates caspase-8, which then induces cell
apoptosis. When caspase-8 activity is blocked, cell apoptosis is inhibited. Subsequently, RIPK1 recruits RIPK3 through interactions between their
RHIM domains. RIPK3 then recruits MLKL, forming necrosomes. MLKL is phosphorylated, and phosphorylated MLKL molecules aggregate and
translocate to the plasma membrane, thereby triggering necroptosis. (Created with BioRender.com).
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that the upregulation of RIPK3 expression can also promote the

occurrence of some tumor diseases, such as aggressive and recurrent

breast cancer, which can promote the strong proliferation of cancer

cells (33). This dual role of necroptosis in the body is also reflected in

pathogen infection. Necroptosis is a growing concern in the

pathogenesis of bacterial infections (34). Cell death is a common

result of interactions between bacteria and hosts (35). Necroptosis is

the lytic death of cells, is generally considered highly
Frontiers in Immunology 03
proinflammatory, and plays an important role in the pathogenesis

of bacterial infections (4, 36, 37). Necroptosis may protect the host.

Conversely, in some cases, necroptosis has an adverse effect on the

host. Therefore, understanding the role of necroptosis in the process

of bacterial infection and its mechanism of action in the defense

against bacterial infection is important. This paper focuses on

whether necroptosis during bacterial infection is beneficial or

harmful and discusses the mechanism of action (Figure 2, Table 1).
FIGURE 2

Mechanisms of bacterial induction of necroptosis. (A) Toxic virulence factors secreted by Staphylococcus aureus, such as Hla, PAM, PVL, and LukAB,
can induce necroptosis in macrophages through the RIPK1-RIPK3-MLKL pathway. Among them, PSMa can induce TNFa secretion, leading to MLKL-
dependent necroptosis in neutrophils. In addition, the virulence factor PFT can induce necroptosis in macrophages. The S. aureus-secreted SSL-10
binds to TNFR on the cell membrane to induce RIPK3-dependent necroptosis in HEK293T cell and HUVECs. S. aureus can induce necroptosis in
gEECs, and the trigger is Ca2+ influx. (B) Mycobacterium tuberculosis triggers SIRPa in macrophages, leading to the inhibition of autophagy and the
promotion of necroptosis. Additionally, M. tuberculosis can downregulate the expression of FAK in macrophages to evade host immunity. M.
tuberculosis also shapes an environment that promotes necroptosis in macrophages by upregulating MLKL, TNFR1, ZBP1 expression and
downregulating cIAP1 expression. (C) Following invasion of the heart by the TIGR4 strain of Streptococcus pneumoniae, the secretion of Ply can
induce necroptosis in both cardiac myocytes and recruited macrophages. During the asymptomatic colonization of S. pneumoniae in the
nasopharynx, Ply can induce necroptosis in nasopharyngeal epithelial cells (nECs). In the case of coinfection with influenza A virus and S.
pneumoniae, the surface protein A (PspA) of S. pneumoniae acts as a cell adhesin and binds to GAPDH in dying cells, thereby increasing the
localization of S. pneumoniae in the lower airways and exacerbating secondary infection following influenza. (D) The pSLT-encoded SpvB effector
factor inhibits K-48-mediated ubiquitination of RIPK3, thereby mediating the formation of cell membrane pores through the RIPK3-MLKL pathway,
resulting in necroptosis of intestinal epithelial cells (IECs). The effector factor SopF of the T3SS can induce necroptosis of IECs by blocking the
activity of caspase-8, thereby enabling Salmonella enterica to spread to the intestinal lamina propria. SopB, encoded by SPI-1, can prevent the
necroptosis of goblet cells, LS174T cells, and epithelial cells. S. typhimurium utilizes the host’s IFN-I response to induce necroptosis in macrophages
mediated by RIPK1-RIPK3. Additionally, S. typhimurium induces the expression of miR-155, which promotes macrophages necroptosis. This effect is
a result of miR-155 targeting of the RIPK1-RIPK3 pathway, which further promote apoptosis. (E) During sepsis, the lipopolysaccharide (LPS) by
Escherichia coli can upregulate the expression of the necrosis-related proteins RIPK1, RIPK3, and MLKL, leading to intestinal epithelial cells
necroptosis. (F) After infection with Enterococcus faecalis, DsbA can induce microinjury in the heart of Caenorhabditis elegans. Subsequently, at the
site of microinjury in the heart, E. faecalis can induce the apoptosis and necroptosis of cardiomyocytes. In refractory apical periodontitis, E. faecalis
can induce necroptosis in macrophages mediated by RIPK3-MLKL. Strains of E. faecalis isolated from root canals (CA1, CA2) and the OGERF strain
can induce apoptosis, pyroptosis, and necroptosis in RAW264.7 macrophages. (Created with BioRender.com).
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TABLE 1 Mechanism of necroptosis in bacteria.

Bacteria Virulence factor Cell Mechanism of necroptosis references

Staphylococcus aureus

Hla,PSM,LukAB,PVL Macrophage

Virulence factors induce necroptosis by activating
RIPK1-RIPK3-MLKL pathway, thereby escaping
host immunity, in which PFT induces necroptosis
of macrophages through membrane rupture.

(36)

PSMa Neutrophil
PSMa induces the secretion of TNFa through
FPR2 to trigger necroptosis.

(38)

SSL-10 HEK293T,HUVEC
SSL-10 binds to TNFR1 on the cell membrane and
triggers necroptosis through the RIPK1-RIPK3-
MLKL and RIPK3-CaMKII-mPTP pathways.

(39)

Unknown gEECs
Necroptosis is induced by RIPK1-RIPK3-MLKL
pathway, and its upstream triggering event is Ca2
+ inflow.

(40)

Mycobacterium
tuberculosis

Unknown Macrophage
M. tuberculosis induces necroptosis of
macrophages by activating SIRPa.

(41)

Streptococcus
pneumoniae

Ply Macrophage

The formation complex of RIPK3, RIPK1, MLKL
and MCU induces mitochondrial calcium uptake
and mROS production, and RIPK3 can initiate
necroptosis through mROS mediating the opening
of mPTP.

(42)

Ply nEC
During asymptomatic colonization of the
nasopharynx by S. pneumoniae, nEC can die from
Ply dependent necroptosis.

(43)

PspA Pulmonary epithelial cells
PspA binds to dead cells and increases the
localization of S. pneumoniae in the lower airway.

(44)

Streptococcus
pneumoniae

(TIGR4 strain)
Ply Macrophage

After TIGR4 strain invaded the heart, Ply caused
necrptosis of macrophages.

(45)

Salmonella

Unknown Macrophage
Salmonella uses host IFN-I response to induce
RIPK1-RIPK3-mediated necroptosis.

(46, 47)

SpvB IEC
SpvB induces cell death via the RIPK3-MLKL
pathway by down-regulating K-48-mediated
RIPK3 ubiquitination.

(48)

SopF IEC

SopF blocks the activity of caspase-8 by activating
the PDK1-RSK pathway, thereby promoting
necroptosis, leading to bacterial spread and
exacerbating systemic infection.

(49)

SopB goblet cell,IEC,LS174T
SopB protects cells from necroptosis, but causes
bacteria to replicate in the cell and infect
neighboring cells.

(50)

Escherichia coli LPS Intestinal cell
LPS induces cell necroptosis by up-regulating
RIPK1-RIPK3-MLKL pathway-related proteins.

(51)

Enterococcus faecalis

DsbA Myocardial cell
DsbA induced cardiac microlesions and MLKL-
dependent necroptosis of cardiomyocytes.

(52)

Unknown Macrophage
In RAP lesions, E. faecalis induces RIPK3-MLKL
mediated necroptosis of macrophages.

(53)

Pseudomonas aeruginosa Unknown Lung epithelial cells

P. aeruginosa mediates the necroptosis of lung
epithelial cells,which can promote the change of
mitochondrial membrane potential and thus
release ROS.

(54)

Listeria monocytogenes Unknown IECs
RIPK3-/- mice had significantly increased Listeria
proliferation and resulted in systemic infection.

(55)

Francisella tularensis Unknown Macrophage
Caspase-dependent apoptosis and RIPK1-RIPK3-
dependent necroptosis can occur simultaneously
in macrophages infected by F. tulafera.

(56)

(Continued)
F
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2 The role of necroptosis in
bacterial infection

2.1 Staphylococcus aureus

Staphylococcus aureus is the main pathogen of nosocomial

infections and can cause a variety of diseases, such as pneumonia,

endocarditis, sepsis, and osteomyelitis, which seriously threaten

human health (58). In the process of infection, in addition to being

able to induce inflammatory cells to release inflammatory factors

and accumulate at the site of infection to trigger an inflammatory

response (59–63), S. aureus can also induce necroptosis in host cells,

such as macrophages (36) and neutrophils (38).

A typical feature of S. aureus pneumonia is toxin-induced

necroptosis of immune and resident cells. Virulence factors

secreted by S. aureus, such as Hla, PSM, LukAB and PVL, can

induce necroptosis in macrophages through the RIPK1-RIPK3-

MLKL pathway (36). PSMa reportedly triggers neutrophil

necroptosis via FPR2-induced TNFa secretion (38). Some S. aureus

phagocytosed by polymorphonuclear neutrophils (PMN) can survive

in phagosomes, thereby inducing PMN necroptosis, and this process

is dependent on RIPK3 and independent of RIPK1 and MLKL (64,

65). Examples of necroptosis independent of active RIPK1 or MLKL

have been reported. TLR3 or TLR4 can activate RIPK3 through TRIF,

thereby directly initiating necroptosis through TRIF-RIPK3-MLKL

(16). RIPK3 can also induce necroptosis of cardiomyocytes through

calmodulin-dependent protein kinase II (CaMKII) and

mitochondrial pathways (66). Thus, delineating the molecular

pathways that ultimately lead to PMN death will provide new

targets for the treatment of S. aureus infections. After S. aureus is

phagocytosed by macrophages, approximately 10% of the S. aureus

population will persist in macrophages, with the remaining bacteria

eliminated by bacteriolysis. However, excessive bacteriolysis can

cause cell death (67). Further studies confirmed that this type of

cell death is not apoptosis or pyroptosis (It is characterized by

dependence on inflammatory caspase enzymes, mainly caspase-1,

4, 5, 11, accompanied by the release of a large number of pro-

inflammatory cytokines) but rather AIM2-mediated necroptosis (67).

Apoptosis is known to be important for clearing pathogens (68), and

the authors propose a potential immune manipulation strategy by

which S. aureus sacrifices the minority to trigger a limited

necroptosis, thereby releasing signals from dead cells to inhibit

apoptosis and other anti-inflammatory cascades of live cells,

eventually surviving within host cells and establishing infection

(67). In addition to AIM2, there are other pattern recognition

receptors that mediate necroptosis, such as NLRC4, which inhibits
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the IL-17A-dependent recruitment of neutrophils by upregulating IL-

18 expression and inducing necroptosis during S. aureus pneumonia.

Loss of NLRC4 signaling contributes to host protection against S.

aureus pneumonia, and treatment with necroptosis inhibitors or IL-

18 gene ablation has been shown to enhance defenses against S.

aureus in mice (69). Therefore, modulating the function of NLRC4

may be a potential approach for the treatment of S. aureus infection.

However, stimulator of interferon genes (STING), which is an

intracellular pattern recognition receptor (70), enhances the host

response to S. aureus infection by inhibiting the necroptosis

of macrophages.

In addition to immune cells, S. aureus-induced necroptosis is

also observed in some nonimmune cells. When the human lung

epithelial cell line A549 was infected with S. aureus, TNFa
enhanced pulmonary epithelial cell injury by S. aureus, and the

mechanism is related to RIPK3-mediated necroptosis (71). S. aureus

secretes the toxic protein staphylococcal superantigen-like protein-

10 (SSL-10), which has been shown to interfere with host cell

inflammatory responses by binding to ERK2 (72), but whether SSL

family proteins can induce cytotoxicity remains unknown.

However, a recent study showed that SSL-10 can bind to the

receptor TNFR1 on the cell membrane and exert strong cytotoxic

effects in two types of nonimmune cells, HEK293T cells and

HUVECs, by inducing RIPK3-dependent necroptosis; this study

also showed that necroptosis is activated by two distinct signaling

pathways, the RIPK1-RIPK3-MLKL and RIPK3-CaMKII

mitochondrial permeability transport pore (mPTP) pathways

(39). This study described the cytotoxicity of the SSL-10 protein,

an inducer of necroptosis, and provided a potential target for the

clinical treatment of S. aureus-related diseases (39). However,

whether other proteins in the SSL family have the same effect

remains to be further investigated. Furthermore, in another

nonimmune cell type, S. aureus-induced necroptosis played a

pathological role, and S. aureus-induced goat endometrial

epithelial cells (gEECs), by increasing the expression of key

proteins in the RIPK1-RIPK3-MLKL pathway, induced significant

necroptosis. The authors found that the inducers of necroptosis in

gEECs were not traditional TLRs or TNFRs but membrane

disruption and ion imbalances (40), that is, Ca2+ influx;

furthermore, blocking membrane permeability with glycine

protected gEECs from S. aureus-induced cell death. Necroptosis

initiated during S. aureus infection is mostly detrimental to the host;

therefore, inhibitors targeting necroptosis may be an effective

strategy for the treatment of S. aureus infection. In a recent

report, a salt-inducible kinase (SIK) inhibitor, HG-9–91-01, was

found to block necroptosis by inhibiting RIPK3 activity, thereby
TABLE 1 Continued

Bacteria Virulence factor Cell Mechanism of necroptosis references

Shigella flexneri OspC1 IECs
The effector OspC1 blocks caspase-8 signaling to
prevent apoptosis and subsequently triggers
necroptosis as a host defense mechanism.

(57)
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attenuating necroptosis-mediated inflammatory damage (73).

However, the consequences of necroptosis are not necessarily

proinflammatory. Necroptosis results in the elimination of cells

that produce cytokines and inflammatory products, and therefore

the bacteria inside the cells are released. These bacteria to be

eliminated by neutrophils, leading to an overall reduction in

inflammation (74, 75). In a previous study, necroptosis was found

to play an immunoprotective role in a skin model of S. aureus

infection, not by participating in cell death but by limiting damage

caused by excessive inflammation (76). In the authors’ study, failure

to activate necroptosis was associated with excessive local pathology

and impaired S. aureus clearance. Thus, necroptosis contributes to

host recovery after S. aureus infection.
2.2 Mycobacterium tuberculosis

Over a quarter of the world’s population is infected with

Mycobacterium tuberculosis (Mtb), the causative agent of

tuberculosis (TB). TB remains a major burden on global public

health (77). Understanding the host response to M. tuberculosis

infection is a key aspect of eradicating TB through the development

of effective vaccines and immunotherapies. During infection, M.

tuberculosis can trigger substances in macrophages to damage the

body. Signal regulatory protein alpha (SIRPa), which is mainly

expressed in myeloid cells, such as monocytes/macrophages and

dendritic cells (78), can participate in the pathogenesis of M.

tuberculosis. The cytoplasmic region of SIRPa contains four

immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that,

upon ligand binding, become phosphorylated and interact with

the SH2-domain-containing tyrosine phosphatases (PTPase) SHP-1

and SHP-2 to mediate various biological functions (79). In the

process of M. tuberculosis infection, SIRPa can inhibit the

autophagy of macrophages and promote the necroptosis of

macrophages. The occurrence of necroptosis is the main way that

affects the weakening of the killing ability of macrophages against

M. tuberculosis. The tail structure of SIRPa in the cell can directly

bind to protein tyrosine kinase 2B (PTK2B) to affect the activity of

PTK2B. When SIRPa is knocked out, it can promote the binding of

SHP-1 to PTK2B, resulting in the activation of PTK2B. Therefore,

PTK2B can bind to the death domain of RIPK1 to inhibit

necroptosis of macrophages (41). The bactericidal capacity of

macrophages was enhanced when necroptosis was blocked with

the RIPK1 inhibitor NEC-1 (41). The results of this study suggest

that targeting SIRPa may become a new therapy for the treatment

ofM. tuberculosis. However, studies have shown that SIRPamutant

mice have increased susceptibility to Salmonella typhimurium

infection, suggesting that SIRPa may help the host defend against

infection by the pathogen (80). Therefore, the role of SIRPa in host

defense against pathogen infection is complex and requires further

exploration. In addition, focal adhesion kinase (FAK) in human

macrophages can block the occurrence of M. tuberculosis-induced

macrophage necroptosis andM. tuberculosis can downregulate FAK

expression, thereby evading host immunity (81).M. tuberculosis can

also shape the environment to promote macrophage necroptosis by
Frontiers in Immunology 06
upregulating MLKL, TNFR1, and ZBP1 expression and

downregulating cIAP1 expression (82). However, blocking

necroptosis by knocking out the mlkl gene or inhibiting RIPK1

had no effect on the survival of infected human or mouse

macrophages (82). Taken together, these results indicate that the

inhibition of macrophage necroptosis may alleviate disease

pathogenesis after M. tuberculosis infection, but not change the

outcome of the disease.
2.3 Streptococcus pneumoniae

Streptococcus pneumoniae is a gram-positive bacterium that

often colonizes the nasopharynx (83), and asymptomatic bacterial

colonization can cause invasive diseases, such as pneumonia and

meningitis (84), under certain conditions. S. pneumoniae carries

two key virulence proteins, including pneumococcal surface protein

A (PspA) and pulmonary hemolysin (Ply) (85, 86). RIPK3 is

considered a key regulator of inflammation and cell death, and

significantly elevated RIPK3 protein concentrations have been

detected in patients with S. pneumoniae pneumonia (42). Further

studies showed that RIPK3, RIPK1, MLKL and the mitochondrial

calcium uniporter (MCU) combine to form complexes during S.

pneumoniae infection, inducing mitochondrial calcium uptake and

mROS production (42). In macrophages, RIPK3 can mediate

mitochondrial permeability transport pore opening through

mROS to initiate necroptosis and activate the NLRP3

inflammasome (inflammasome is a multiprotein complex

assembled by cytoplasmic PRRs, inflammasome can recognize

PAMPs or DAMPs, recruit and activate the proinflammatory

protease caspase-1.) through the mROS-AKT pathway to protect

against S. pneumoniae invasion (42). Furthermore, during

asymptomatic colonization of the nasopharynx by S. pneumoniae,

nasopharyngeal epithelial cells (nECs) die via Ply dependent

necroptosis. When the mlkl gene was knocked out and bacteria

were colonized, or wild-type mice were colonized with ply deficient

strains, mice had reduced production of the antibody against the

bacterial surface protein PspA, delayed bacterial clearance, and

increased vulnerability to secondary attack by S. pneumoniae (43).

Therefore, Ply induced necroptosis contributes to the protective

immunity of the host. S. pneumoniae can invade the heart after

causing bacteremia, both the TIGR4 and D39 strains can effectively

invade the myocardium, and macrophages recruited after TIGR4

invades the heart die from pneumolysin-induced necroptosis (45).

However, whether neutralizing pulmonary hemolysin or blocking

necroptosis is beneficial to the host remains unclear. In a recent

study, the TIGR4 strain induced necroptosis in cardiomyocytes

after invading the heart, a process mediated by Ply, and treatment

with a necroptosis inhibitor reduced pneumonia in heart

streptococcal lesions and decreased serum troponin levels (87).

Therefore, the cardiac injury that occurs during invasive

pneumococcal disease is due in part to cardiomyocyte

necroptosis, and necroptosis inhibitors may be an effective

treatment. Coinfection with influenza A virus (IAV) and S.

pneumoniae leads to high mortality (88). IAV infection can
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promote the translocation of S. pneumoniae to the heart, and IAV

can promote the adhesion of S. pneumoniae to cardiomyocytes by

upregulating the expression of cardiomyocyte adhesion factors. In

an in vitro model of cardiomyocyte infection, IAV enhanced Ply

induced necrotic cell death by promoting oxidative stress, thereby

increasing S. pneumoniae cytotoxicity (89). IAV infection can cause

the death of lung epithelial cells through apoptosis, pyroptosis and

necroptosis. Recently, PspA was reported to act as a cytoadhesin

and bind to GAPDH in dead cells, thereby increasing the

localization of S. pneumoniae in the lower airways and

exacerbating secondary infection after influenza infection (44).

This finding also helps explain why IAV patients have an

increased susceptibility to pneumococcal infection.
2.4 Salmonella

Salmonella enterica is one of the leading causes of bacterial

gastrointestinal infections in humans and animals (90); Salmonella

can be transmitted to humans and animals via the fecal-oral route,

and the gastrointestinal tract is the first site of host–pathogen

interaction after the ingestion of Salmonella. Salmonella virulence

factors mainly include pathogenicity islands, virulence plasmids,

enterotoxins and endotoxins (91, 92). Pathogenicity islands are

directly related to bacterial invasiveness, especially for SPI-1 and

SPI-2. SPI-1 is essential for nonphagocytic invasion and is

responsible for Salmonella-induced inflammation in colitis,

whereas SPI-2 is essential for bacterial survival and proliferation

in phagocytes and plays an important role in systemic infection

(93, 94). The type III secretion system (T3SS) encoded by SPI-2 is

the most widely studied and important virulence factor in

Salmonella. After Salmonella enters the host, it uses the T3SS

to secrete effectors into host cells. These effectors can

promote bacterial colonization and intracellular survival (95).

Therefore, Salmonella can successfully localize to the gut and

infect a variety of cell types, such as intestinal epithelial cells and

macrophages (95).

A key virulence strategy of Salmonella typhimurium is the

induction of macrophage death. S. typhimurium can exploit the

host’s type I IFN (IFN-I) response to eliminate macrophages by

inducing RIPK1-RIPK3-mediated necroptosis (46). In this process,

IFN-I activates RIPK3, which in turn impairs the Nrf2-dependent

antioxidant stress response, thereby enhancing necroptosis in

macrophages (47). In addition, S. typhimurium-induced miR-155

also enhances necroptosis in macrophages by targeting RIPK1-

RIPK3 (96). Intestinal epithelial cells (IECs) and the microbiota in

the intestinal mucosa form a barrier to protect against invasion by

foreign pathogens (97), and when intestinal epithelial cells are

damaged, pathological damage to the intestine can be induced.

Recently reports show that Salmonella can disrupt the integrity of

the intestinal epithelial barrier by inducing IECs necroptosis,

thereby promoting the invasion of Salmonella into the intestine.

In this process, the virulence plasmid of S. typhimurium (pSLT) that

encodes the SpvB effector plays a crucial role. SpvB mediates the

formation of cell membrane pores via the RIPK3-MLKL pathway by

inhibiting K-48-mediated RIPK3 ubiquitination to achieve cell
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death (48). This process is considered RIPK1-independent

necroptosis because cell death still occurred after the use of an

RIPK1 inhibitor (48). SopF is a newly discovered T3SS effector that

promotes bacterial dissemination in mice (98). During S.

typhimurium infection, SopF blocks the activity of caspase-8,

which is defined as the molecular switch for PANoptosis. When

the activity of caspase-8 is blocked, it can inhibit apoptosis and

pyrodeath of IEC cells, and promote IEC necroptosis of IEC (49).

Therefore, necroptosis may related to the S.typhimurium to spread

the lamina propria and cause systemic infection. Further studies

revealed that SopF, as a phosphoinositide (PIP)-binding effector,

can block caspase-8 by activating the 3-phosphoinositide-

dependent protein kinase 1 (PDK1)-ribosomal S6 kinase (RSK)

signaling pathway and, after treatment with AR-12 (PDK1

inhibitor) and BI-D1870 (RSK inhibitor), can reverse abnormal

apoptosis, pyroptosis and necroptosis (49). In addition, Salmonella

exoprotein B (SopB), encoded by SPI-1, plays an important role in

the Salmonella infection. Studies have shown that SopB is

responsible for cell invasion after Salmonella infection (99). In

contrast to SpvB-induced necroptosis, SopB plays a role in

preventing necroptosis; for example, SopB can prevent

necroptosis in nonimmune cells such as goblet cells, LS174T cells,

and epithelial cells. Necroptosis in cecal goblet cells, LS174T cells,

and epithelial cells can be promoted by increasing MLKL

phosphorylation after infection with SopB-deficient strains (50).

However, even though the presence of SopB protects epithelial cells

from necroptosis, it also allows Salmonella to replicate in epithelial

cells, which subsequently promotes bacterial escape from epithelial

cells and increases their ability to infect neighboring cells, which

may play a role in bacterial dissemination (50). In addition, SseK1

and SseK3 inhibited NF-kB activation and necrotizing apoptosis

during Salmonella infection of macrophages in a study of the T3SS

effector protein SseK (100). Inhibition of both proinflammatory

signaling and host cell death by SseK1 and SseK3 may be a strategy

that Salmonella plays to reproduce in host cells, thus providing

Salmonella with robustness and flexibility in counteracting host

immune responses.

However, many studies have also shown that Salmonella does

not activate necroptosis. Non-invasive S. typhimurium does not

naturally induce RIPK3-dependent macrophage death, whereas

macrophage necroptosis can only be induced when caspase is

inhibited using Z-VAD-FMK, and RIPK3 induction (after caspase

inhibition) does not affect host survival after systemic Salmonella

infection (101). Furthermore, the induction of RIPK3 leads to the

recruitment of hypoinflammatory myeloid cells, contrary to the

usual characterization of necroptosis as highly proinflammatory.

Similarly, the synergistic role of RIPK3 and caspase-3/11 in

regulating Salmonella burden in vivo was described in another

study (102). Furthermore, mice with previously known caspase-3/

11 deletions were shown to have an impaired ability to control the

Salmonella burden, whereas RIPK3 deletion alone did not affect the

innate immune response to Salmonella infection (102). In addition,

studies in recent years have shown that single deletion of cell death,

apoptosis, or necroptosis has little effect on Salmonella control, and

that combination of these cell death pathways leads to loss of

bacterial control in mice and their macrophages (103).
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2.5 Escherichia coli

Escherichia coli is a common gram-negative bacterium with

many virulence factors, including endotoxin, a capsule, a type III

secretion system, adhesin and exotoxins; exotoxins include Shiga

toxin, thermostable enterotoxin and heat labile enterotoxin (104).

When these virulence factors are present in different types of E. coli,

they have different pathogeneses and disease outcomes.

Lipopolysaccharide (LPS) is a component of the outer cell wall of

gram-negative bacteria, and LPS is an endotoxin that has toxic

effects on the host. LPS induces necroptosis in host cells to promote

disease (105). During sepsis, E. coli LPS can induce the intestinal cell

necroptosis, activate the necroptosis signaling pathway, and

upregulate the expression of the necrosis-related proteins RIPK1,

RIPK3, and MLKL; furthermore, LPS is associated with intestinal

morphology and functional damage (51). Pretreatment with the

RIPK1 inhibitor NEC-1 reduces the extent of ultrastructural

changes caused by necroptosis (51). Therefore, NEC-1 may

prevent some intestinal damage during sepsis. Intestinal epithelial

cell injury and inflammation can also be induced by enterotoxigenic

E. coli (ETEC), but unsaturated fatty acids (EPA) and arachidonic

acid (ARA) can alleviate enterotoxigenic E. coli induced intestinal

damage by modulating necroptosis signals (106) because EPA and

ARA inhibit the expression of the RIPK1, RIPK3, and MLKL

proteins. The T3SS effectors NleB and EspL of EPEC block cell

necroptosis; NleB works by inactivating the death domains of

proteins, including TRADD, FADD, RIPK1, and TNFR1, to block

TNFa-induced necroptosis (107). EspL inhibits TNF-induced

necroptosis by cleaving the RHIM domains of RIPK1, RIPK3,

TRIF and ZBP1/DAI (108). Therefore, the inhibition of

necroptosis contributes to the continued colonization of EPEC in

vivo, thereby contributing to disease progression.
2.6 Enterococcus faecalis

Enterococcus faecalis is a common gram-positive bacterium and

part of the normal flora in the intestinal tract of animals. Generally,

E. faecalis is harmless to humans and animals. However, recent

studies have shown that some E. faecalis strains have evolved more

virulence genes that allow them to infect the human body and cause

a variety of diseases, such as endocarditis and peritonitis (109).

Disulfide bonding protein A (DsbA) was found to be essential for

fecal enterococcal virulence in a model of E. faecalis infection of the

Shirley Cryptococcus nematode. DsbA can cause microdamage

during heart formation. Subsequently, at the site of cardiac

microinjury, E. faecalis can induce cardiomyocyte apoptosis and

necroptosis, which in turn contribute to cardiac microinjury (52);

however, although the EntV protein is a substrate of DsbA, in this

study, the absence of EntV did not alleviate the symptoms of the

disease, and therefore, future studies should explore and identify

other substrates of DsbA to determine whether they contribute to

cardiac micropathology. In addition, in immune cell studies, root

canal isolates (CA1 and CA2) and OGERF induced upregulated

expression of RAW264.7 macrophage apoptosis-related proteins

associated with pyroptosis and necroptosis (110). In refractory
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apical periodontitis, E. faecalis can induce RIPK3-MLKL-

mediated necroptosis in macrophages. This study suggested that

inhibitors or treatments targeting necroptosis are a viable strategy

for the treatment of refractory apical periodontitis (53). Notably, the

increase in MLKL phosphorylation does not necessarily indicate

necroptosis (111).
2.7 Other bacteria

2.7.1 Pseudomonas aeruginosa
Acute lung injury caused by Pseudomonas aeruginosa is a

disease that seriously endangers public health. Recent reports

indicated that P. aeruginosa-mediated necroptosis of epithelial

cells plays an important role in this pathological process. P.

aeruginosa mediated acute lung injury and lung inflammation can

be alleviated by inhibiting the necroptosis pathway. Moreover, the

NLRP3 inflammasome is involved in this pathological process, and

MLKL-dependent necroptosis signaling can promote changes in

mitochondrial membrane potential, thereby releasing reactive

oxygen species (ROS), which are important triggers for

inflammasome activation (54). In addition, in a recent study

showing that the RIPK3 scaffold plays a regulatory role in lung

inflammation during P. aeruginosa infection, blocking the RHIM

domain in RIPK3 with M45 reduced the inflammatory response to

infection in vitro (112). Therefore, the inhibition of RHIM signaling

is a potential strategy for reducing lung inflammation

during infection.
2.7.2 Listeria monocytogenes

As an important mediator of necroptosis, RIPK3 can be

abundantly expressed in the gastrointestinal; and after oral

infection with Listeria monocytogenes, compared with wild-type

mice, RIPK3-/- mice exhibited significantly increased Listeria

proliferation, resulting in systemic infection (55). Moreover,

Studies have shown that the activation of MLKL induced by

Listeria infection does not cause intestinal epithelial cell

necroptosis, on the contrary, MLKL can directly bind to Listeria,

thereby inhibiting pathogen replication (55). This finding illustrates

the importance of necroptosis in the defense against bacterial

infection. However, in Listeria-induced acute liver injury, the

inhibition of necroptosis significantly ameliorated mitochondrial

dysfunction in mouse livers (113). In addition, Listeria infection can

also rapidly induce necroptosis of macrophages (114, 115).
2.7.3 Francisella tularensis

Francisella tularensis is the pathogen responsible for tularemia,

and the infection of host cells induces host cell death (116).

Caspase-dependent apoptosis and RIPK1-RIPK3-dependent

necroptosis can occur simultaneously in macrophages infected by

F. tularensis, and the presence of z-VAD-FMK (caspase inhibitor)

and NEC-1 significantly reduces the level of cell death (56). What
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has not been fully explained, however, is how cell necroptosis is

initiated in the early (< 72h) period of tularemia without TNF

production (56). We believe that this understanding of TNF

independent necroptosis mechanisms could help identify

drug targets.
2.7.4 Shigella flexneri

Shigella flexneri is a pathogen responsible for bacillary

dysentery that can invade and colonize the intestinal epithelial

cells of the host, eventually leading to severe inflammatory colitis.

Cell death is thought to be a key aspect of host resistance to

bacterial invasion (117, 118). However, in Shigella-infected

intestinal epithelial cells, no cell death was observed (119). A

recent study demonstrated that effectors of Shigella’s T3SS play a

crucial role in blocking host cell death. After Shigella infects

intestinal epithelial cells, the effector OspC1 blocks caspase-8

signaling to prevent apoptosis and subsequently triggers

necroptosis as a host defense mechanism (57). However, to

counteract the host response to bacterial infection, Shigella

employs OspD3 to target and cleave the RHIM domains of

RIPK1 and RIPK3, thereby degrading RIPK1 and RIPK3 and

inhibiting necroptosis in host cells (57). Therefore, this

phenomenon of “cell death cross-talk” promotes the survival

and proliferation of Shigella within host cells.
3 Conclusion and opinions

Currently, the emergence of multidrug-resistant bacteria, such

as methicillin-resistant Staphylococcus aureus (120), has become a

focus of concern; therefore, finding more effective targets to fight

infection by pathogens is critical. In this article, we describe the

roles and molecular mechanisms of necroptosis caused by different

bacterial infections. In recent years, a wealth of evidence has

indicated that necroptosis plays a significant role in various types

of bacteria. Bacteria can utilize their own virulence factors or alter

the composition of host cells to activate or inhibit necroptosis.

These effects can benefit the host (42) or harm the host (105).

Therefore, unraveling the role of necroptosis in different bacterial

infections is crucial. Here, we review the current understanding of

necroptosis in bacterial infection. More detailed information is

provided for S. aureus, M. tuberculosis, S. pneumoniae ,

Salmonella, E. coli, and E. faecalis in this review because of the

comprehensive or controversial functions of necroptosis reported in

these bacteria compared with other bacteria.

After bacteria invade the host, necroptosis mainly occurs in two

major types of cells. One is immune cells that play a phagocytic role

after bacteria enter the body. In this article, we mainly focus on

neutrophils and macrophages because they are the main cells that

play a role in the early stages of bacterial infection. The other is

resident cell at the site of bacterial invasion or colonization.

Neutrophils and macrophages are important components of

the natural immune system. Neutrophils are the most abundant

white blood cells in the systemic circulation, that can exert
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bactericidal effects through both oxygen-dependent pathways

(myeloperoxidase, MPO) and oxygen-independent pathways

(antimicrobial peptides and proteins) (121). Myeloperoxidase

(MPO) is released from primary particles, and produces reactive

oxygen species (ROS). Primary particles can also release

antimicrobial peptides, such as defensins. Secondary particles

can release antimicrobial proteins, such as lysozyme. Bacteria

have evolved multiple strategies to interfere with the bactericidal

mechanism of neutrophils. Inducing the death of neutrophils is

one of these strategies, and in this article, we mainly focus on

necroptosis as a programmed cell death pathway. For example, S.

aureus induces necroptosis in neutrophils by releasing its

virulence factor, PSMa (38). Macrophages have a range of

mechanisms to clear pathogens, including the release of reactive

oxygen species (ROS), active nitrogen (RNS), enzymes and

antimicrobial peptides, as well as the acidification of

phagolysosomes, nutrient restriction and autophagy (62).

Similarly, bacteria can evade macrophage killing through a

variety of strategies. S. aureus induces necroptosis in

macrophages through its virulence factors Hla, PSM, LukAB

and PVL (36). In addition, Salmonella (46) and E. faecalis (53)

also induce necroptosis of macrophages to interfere with bacterial

clearance by macrophages. Taken together, these examples suggest

that immune cell death is detrimental to the host and that

inhibiting key proteins associated with necroptosis to prevent

immune cell death may be an effective strategy for treating

bacterial infection. In addition, signaling regulatory protein

alpha (SIRPa), which is expressed mainly on the surface of

myeloid cells, may be an important target for the treatment of

M. tuberculosis infection. SIRPa promotes the necroptosis of

macrophages to reduce their ability to kill M. tuberculosis (41).

However, mice with SIRPa deficiency showed increased

susceptibility to S. typhimurium infection, indicating that SIRPa
may contribute to host defense against Salmonella infection (80).

We speculate that the different effects of SIRPa on the host may be

related to the different gram-negative nature of the bacteria.

Research has shown that the occurrence of necroptosis depends

on the activity of RIPK1, RIPK3, and MLKL. RIPK3, a key protein

in the necroptotic pathway, induces necroptosis in macrophages

during S. pneumoniae infection and activates the NLRP3

inflammasome in response to S. pneumoniae infection (42).

RIPK3 regulates the balance between inflammatory signaling,

which promotes bacterial clearance, and the lethal consequences

of excessive inflammation. RIPK3 activates the NLRP3

inflammasome to secrete proinflammatory cytokines, thereby

inducing immune cell recruitment and bacterial clearance while

also regulating necroptosis by clearing dead bacteria and cell debris

to prevent excessive inflammation and maintain immune

homeostasis (42). In recent years, there have been many reports

of macrophages necroptosis induced by bacterial infection.

However, neutrophils, as the most common circulating white

blood cells in the body, are rarely reported to undergo induce

necroptosis after bacterial infection. This distinction may be due to

macrophages expressing a wide range of pattern recognition

receptors, which can trigger a variety of bacterial sensing systems

that induce necroptosis.
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Epithelial cells are cells on the surface of the skin or lumen that

maintain tissue function by forming a barrier while also

participating in the immune response. Epithelial cell death caused

by bacterial invasion of the host may lead to barrier destruction,

thus facilitating bacterial invasion. For example, S. aureus can

induce necroptosis in gEECs (40). Salmonella and E. coli can

cause IEC death after intestinal invasion (48, 51). The process of

Salmonella infection in epithelial cells is complex. To establish

infection, Salmonella enters and replicates in epithelial cells and

subsequently escapes from them with the help of effectors (122).

Here, the authors propose that Salmonella has a time-regulating

ability. In the initial stages of infection, bacteria must prevent cell

death; for example, SopB, encoded by Salmonella SPI-1, protects

epithelial cells from necroptosis (50), thus providing a favorable

environment for bacteria to replicate. In the final stage of infection,

cell death is needed to promote Salmonella escape from epithelial

cells, a role reversal that requires the time regulation of effector

proteins (50). The ability of bacteria to regulate time may provide a

theoretical basis for understanding the pathogenesis of bacteria.

Successful control of S. aureus infection requires two major host

responses: rapid suppression of S. aureus replication and rapid

regulation of the subsequent excessive inflammatory response (75,

123). Therefore, we speculate that the dual role of necroptosis after

bacterial infection is related to the two factors. On the one hand, cells

can provide a favorable environment for bacteria to replicate, and

properly triggering necroptosis can inhibit bacterial replication.

However, excessive cell death may cause a breakdown of the host

barrier and allow for the release of bacteria, which are then internalized

by macrophages and spread throughout the body. Alternatively,

excessive immune cell death allows the bacteria to escape host

immunity. On the other hand, necroptosis may be involved in

regulating the balance between proinflammatory signals and excessive

inflammation, which can lead to the death of cells that produce

cytokines and inflammatory products, thus limiting excessive

inflammation. For example, necroptosis played a protective role in a

model of S. aureus skin infection by limiting excessive inflammation

(76). This imbalance may be related to the type of bacteria and the

severity of the infection. Overall, exploring the beneficial and

detrimental effects of necroptosis on the host is helpful for identifying

effective strategies for the treatment of bacterial infections. Furthermore,

research into the mechanisms and physiological effects of necrotic

apoptosis is needed to understand the effectors that target cell death,

which may trigger cancer cell death or an anticancer immune response.
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