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1 Introduction

The luminal surface of the digestive tract is one of the largest surfaces where human

body meets environment (1). One of the key functions of the gut lining is selective

permeability allowing nutrients to cross the barrier while keeping out the pathogens from

entering the system. The gut barrier is composed of microbial biofilms, mucus layer,

epithelial cells and their tight junctions, and the resident immune system. Increased

permeability of the intestinal barrier, colloquially termed “leaky gut”, has been correlated

with several gastrointestinal (GI) diseases and extraintestinal disorders including metabolic,

neurodegenerative, neurodevelopmental, and psychiatric diseases (2). Abnormal barrier

function was also reported in functional GI disorders such as irritable bowel syndrome (3).

Gut epithelial barrier dysfunction contributes to the pathophysiology of inflammatory

bowel disease (IBD) (4), a debilitating disorder characterized by bouts of acute intestinal

inflammation and clinical remission.

The intestinal epithelial barrier is recognized as a potential therapeutic target (5). It is

regulated by the interplay between the epithelial cells, resident immune cells, enteric

nervous system (ENS), innervation from the central nervous system (CNS), and

vasculature (6–8). In this article, we give our attention to the interaction between the

epithelial cells, enteric glia, and immunocytes, and how they contribute to the gut

epithelial barrier function. Several recent reviews also addressed this topic (9–14), so here

we briefly focus on some advances that were not previously discussed in detail.
2 Enteric glia and epithelial cells are in proximity
and make direct structural and
functional connections

Enteric glia are present in all layers of the gut (Figure 1A). Within the intestinal

mucosa, glial cells are in proximity to the gut epithelium in humans (18) and mice (Figure
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A, arrow). 3D electron microscopy revealed cell-to-cell contacts

between the mucosal glia and enteroendocrine cells (19), a subtype

of the gut epithelial cells. Thus, glial cells are ideally positioned to

integrate signals from the ENS and CNS and may directly regulate

epithelial functions.

Glia cannot generate action potentials (20), but their activation

is encoded by an increase in the cytosolic calcium concentration

(21). Chemogenetics is one way to specifically increase glial calcium

in intestinal tissue by utilizing Designer Receptors Exclusively

Activated by Designer Drugs (DREADD) technology. The

selective glial activation evoked ion movement comparable to the

direct activation of neurogenic ion transport (15). Glia-driven

responses consisted of two components, one sensitive to a

neurotoxin tetrodotoxin, and another independent of action

potentials (Figure 1B). The latter suggests that glial activity

regulates ion transport by direct effects on epithelial cells. These

findings also place glia as important players in intestinal fluid
Frontiers in Immunology 02
transport and suggest a new mechanistic target for the treatment

of functional diarrheal diseases.

Whether the epithelial cells signal to glia is still an open

question. One expectation is that mucosal glia connected to the

enteroendocrine cells could regulate the first synapse on the direct

route from the gut epithelium to the brain (see below section 5 for

more discussion).
3 Epithelial barrier function – is this
reserved for reactive glia?

The role of enteric glia in regulation of the epithelial barrier is

not in agreement, as nicely cataloged in a recent review (14). Here

we offer another perspective that could explain this disagreement.

We provide evidence for and against the theory that only reactive
A
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FIGURE 1

Enteric glia contribute to homeostasis of the gut epithelium in health and disease. (A, B) Enteric glia and epithelial cells are in proximity and make
functional connections. (A) Confocal differential interference contrast image of a transmural section of the mouse colon stained with glial marker
s100b (green). Note the s100b positive cells in proximity to the base of the colonic crypt (arrow). (B) Glial stimulation emulates neuron‐evoked
changes in transepithelial ion movement and is not completely blocked by tetrodotoxin. (B’) Representative short-circuit current (ISC) recordings
from distal colon preparations of GFAP::hM3Dq mice (red) and their wild‐type (WT) littermates (blue) in response to the hM3Dq agonist clozapine‐
N‐oxide (CNO). Neuron depolarization and epithelial cell stimulation were induced by veratridine (Ver.) and the secretagogue forskolin (Forsk),
respectively. Drugs were added at times indicated by arrows. Note that WT mice do not respond to CNO. (B’’) Representative ISC recordings from
distal colon preparations pretreated with the voltage‐gated sodium channel inhibitor tetrodotoxin (TTX). Other drugs were added as mentioned
above. Note that CNO still elicits response in GFAP::hM3Dq mice although veratridine response is completely blocked. (B’’’) CNO (dark grey),
veratridine (vertical stripes), and TTX‐preincubated CNO (checker board)‐induced responses of WT littermates (left) and GFAP::hM3Dq preparations
(right) normalized to the individual forskolin responses. Horizontal bars at the top mark comparisons of the same drug treatment between the
genotypes. Comparisons of the same drug treatment between the genotypes are marked by horizontal bars at the top. **P < 0.01; ns, not significant,
Student’s t test. Comparisons of different drug treatments within the same genotype are marked by angled bars mark. ‡P < 0.05; ‡‡P < 0.01, analysis
of variance (ANOVA) followed by Tukey/Kramer post hoc test. &CNO and Ver responses are pooled from vehicle‐treated GFAP::hM3Dq mice and
CNO‐treated WT littermates. N = 3–6 animals per group. (C–E) Glial purinergic signaling has opposite roles in barrier function following acute
colitis. (C) A photo of a Ussing chamber. A cell impermeable dye fluorescein-sulfonate (FS, 478.32 Da) was added to the mucosal side and the
serosal side was sampled every 20 minutes to assess the paracellular permeability. (D) Paracellular permeability of the control mice (black and grey)
and Ectonucleoside triphosphate diphosphohydrolase-2 knockouts (Entpd2-/-, red and pink) two weeks after the dextran sulfate sodium (DSS)
treatment (grey, pink) or their healthy littermates (black, red). ***P0.001, two-way ANOVA and Tukey’s post hoc test. N = 7=8 mice. (E) Glial A2BRs
mediate persistent gut barrier dysfunction after inflammation. Normalized rate of transmural FS translocation in the mouse distal colon. *P = 0.032,
2-way ANOVA, Sidak’s multiple comparisons test. N = 4–6 mice per group. (F) Schematic depicting glial roles in epithelial functions in health and
disease. Enteric glia make structural and functional contacts with the epithelial cells. In health enteric glia regulate secretomotor reflex. During
inflammation, enteric glia protect the epithelial barrier via ATP hydrolysis by NTPD2, or exacerbate the barrier dysfunction via adenosine signaling
and activation of immunocytes. (A–E) were sourced and modified from published literature (15–17). (F) was created with BioRender.com. CM,
circular muscle; SP, submucosal plexus.
frontiersin.org

http://www.BioRender.com
https://doi.org/10.3389/fimmu.2024.1394654
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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glia significantly affect the epithelial barrier and that the effect on

the barrier is dependent on specific molecular mechanisms.

Enteric glia are heterogeneous and composed of 4

subpopulations based on their location and morphology (22).

More recently, single-cell/-nuclei RNA sequencing identified 7

transcriptionally distinct enteric glial cell subtypes (23, 24), but

we still do not know the specific biological function of these

subpopulations. In addition, enteric glia are plastic, meaning their

transcriptome changes in response to injury, infection, and

inflammation. This state is known as activated or reactive gliosis

and is characterized by upregulation of Gfap expression and

downregulation of Plp1 expression (25, 26).

Early data from enteric glial ablation models supported a critical

role in barrier function since their ablation produced fulminant

jejunoileitis (27). This method of glial ablation included the Gfap

promoter-driven expression of thymidine kinase gene of the herpes

simplex virus (HSV-Tk) mice that were subsequently treated with

ganciclovir. This approach, however, also induces ablation of

neighboring cells (28). Glial role in the epithelial barrier function

was reinforced by in vitro studies which showed that glial mediators

such as GDNF, GNSO, and TGFb have direct effects on epithelial

cells (29–31). However, these mediators are not exclusive to glial

cells but are also expressed by other cell types in the mucosa,

including epithelial and smooth muscle cells, so it is not clear what

is the contribution of the glia-produced factors (14). Furthermore,

no overt “leaky” gut or intestinal inflammation was observed in

scenarios where mucosal glia are absent in germ-free mice (32) or

when these cells are ablated using a Plp1 promoter-driven

expression of diphtheria toxin (33). The latter also found that

ablated Plp1+ cells do not affect the progression of intestinal

inflammation induced by dextran sodium sulfate (DSS). Another

study used thymidine kinase to ablate GFAP+ glia with reduced

ganciclovir dosage and did not see fulminant colitis or a change in

the progression of the DSS-induced inflammation (34). This study

did not achieve total ablation of GFAP+ cells suggesting that there

may be a threshold for glial subpopulation that is required for

recovery of normal gut barrier function.

Do enteric glia support the epithelial barrier function in vivo?

Baghdadi, et al. identified 3 mucosal subgroups: GfapHigh/Plp1Low,

GfapLow/Plp1High, and GfapMid/Plp1Low and combined diphtheria

toxin-induced ablation of Gfap+ and Plp1+ cells (25). They found

that these populations of enteric glia have redundant homeostatic

roles, but the GFAP+ subpopulation of enteric glia plays a

particularly important role in the mucosa by promoting epithelial

regeneration through effects on the self-renewal of intestinal stem

cells (25). This study also suggested that Plp1+ cells serve as a

reserve pool for Gfap+ cells and gut inflammation induces the

transition of Plp1+ cells into Gfap+ cells. The effects of glia on the

epithelial barrier also depend on the extracellular environment and

cell signaling mechanism. Activation or suppression of glial Ca2+

signaling does not change transepithelial conductance or

paracellular permeability in healthy intestine (15). However,

ablating NTPDase2, an ATP hydrolyze that is predominantly

expressed by enteric glia, increases paracellular permeability

during acute DSS colitis (16) (Figures 1C, D).
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Taken together, it looks like the enteric glia in the healthy

intestine play redundant roles in barrier integrity, but are

important during intestinal inflammation or tissue injury when glia

become reactive and increase GFAP expression (35). Of note, at basal

state enteric glia express higher levels of GFAP than other cell types

that also express GFAP such as astrocytes and Schwann cells,

presumably a consequence of cues from the gut microenvironment

(36). Upregulation of GFAP expression is a sign of reactive gliosis that

changes the phenotype of the glial cells (9). Likewise, most of the in-

vitrowork may be also dealing with the reactive glia because culturing

increases GFAP expression, a sign of glial reactivity. Some of the

reactivity seen/observed in vitro could be controlled by reducing the

levels of serum in the culture media (37).

These findings suggest that enteric glia play a more prominent

role in barrier regulation during inflammation than in health.

Indeed, glia play a critical role in recovery from ischemic injury

during early postnatal period (38). It would be interesting to see

how young germ-free mice without mucosal glia (32) would behave

when challenged by acute intestinal inflammation or ischemic

injury. Of note, human mucosal glial cells are present at birth and

their homeostasis is independent of microbiota (39).
4 Glial purine signaling in acute colitis
as a double-edged sword for the
barrier function

Purine nucleotides are involved in the regulation of many

processes including inflammation. During the initial inflammation

phase, there is a surge of ATP that serves as a cell death signal

and acts proinflammatory. During intestinal inflammation, ATP

causes P2X7-depended death of enteric neurons (40) and P2X2-

dependent enteric gliosis (41). Extracellular ATP is degraded by

ectonucleotidases nucleoside triphosphate diphosphohydrolases

(NTPDases), these enzymes are expressed on the extracellular side

of the cell membrane and they hydrolase ATP into ADP and AMP.

NTPDase2 is expressed almost exclusively by enteric glia and

ablation of the NTPDase2 encoding gene increased gut

permeability following chemically-induced colitis (16)

(Figures 1C, D). In other words, glia-specific extracellular

nucleotide phosphohydrolysis by NTPDase2 substantially reduces

gut barrier dysfunction during intestinal inflammation. This

outcome is relevant for the development of novel ways of

preventing or postponing IBD flareups and improving the quality

of life during remission. Many patients in clinical remission still

suffer from an underlying “leaky gut” and complain of abdominal

pain and diarrhea (42). The persistent epithelial barrier dysfunction

during the IBD remission also speeds up the advent of new episodes

of active IBD (43).

The enzymatic degradation of ATP leads to an increase in

adenosine, traditionally considered an anti-inflammatory molecule

important for the resolution of inflammation. This increased

adenosine concentration activates the exclusive low-affinity

adenosine 2B receptors (A2BR). However, global knockout animals
frontiersin.org
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or the use of the A2BR inhibitors resulted in opposing results which

suggested a cell type-specific A2BR signaling. Indeed, specific deletion

of the A2BR from the epithelial cells worsened the colitis outcomes

(44) while glia-specific A2BR ablation ameliorated the inflammation-

induced increase in the tissue damage (17) (Figure 1E).

In summary, glial purinergic signaling has opposing outcomes in

acute inflammation (Figures 1D, E). Ablation of the predominantly

glial NTPDase2 increased gut permeability following dextran sodium

sulfate (DSS) colitis (16) while deleting glial A2BRs prevented the

inflammation-induced increase in permeability (17). These

observations indicate that enteric glia play complex roles in the

intestinal epithelial barrier during inflammation that can result in

very different functional outcomes.

The caveat in the comparison of these two studies is that glial

A2BR ablated mice and their wt controls were treated with

tamoxifen and DSS while NTPDase2 null mice and their wt

littermates were treated with only DSS. Note that wt controls

recovered from DSS after two weeks (Figure 1D’’), but tamoxifen-

treated wt mice have a prolonged DSS-induced permeability

(Figure 1E). This indicates that tamoxifen co-administration via

chow can exacerbate tissue damage and increase gut dysfunction.

Indeed, tamoxifen administration in mice and humans showed

altered gastrointestinal motility (45) and tamoxifen-induced

intestinal epithelial barrier damage (46), respectively. Therefore,

tamoxifen administration should be controlled for the off-target

effects of tamoxifen treatment in GI.
5 Gut epithelial barrier and the
gut-brain axis

As already mentioned above, mucosal glia are in the perfect

position to integrate signals from the ENS and CNS innervation. For

example, cholinergic signaling in the gut protects the intestinal barrier

through activation of enteric glia (47). Enteric glia are critical for the

vagal nerve stimulation-induced limitation of intestinal inflammation

following injury (48). The lining of the gut communicates with the

CNS by direct innervation and via enteroendocrine hormones.

Enteroendocrine cells synapse to the vagal afferents (49) and they

are in direct contact with enteric glia (19) but we still don’t know the

physiological impact of glia-specific signaling. Perhaps glial

modulation of enteroendocrine cells or synaptic function between

enteroendocrine cells and intrinsic/extrinsic neurons affects the

production and/or release of GLP-2, a known enhancer of the

epithelial barrier function (50). Another way that the gut can

communicate with the brain is through intestinal immunocytes and

immune mediators that travel from the GI system into systemic

circulation, and reach the brain (51). Enteric glia communicate with

intestinal immunocytes such as macrophages, monocytes,

lymphocytes, and innate lymphoid cells (26). It would be

interesting to investigate glial roles in these modes of

communication in the gut-brain-gut axes.

Enteric glia play an important role in several extraintestinal

disorders. One of the most common neurodegenerative disorders,

Parkinson’s disease, is characterized by GI symptoms occurring at

any stage, even preceding the onset of CNS motor dysfunction in a
Frontiers in Immunology 04
significant number of patients. Enteric glia exhibit changes during

the earliest stages of Parkinson disease (52), and they may play a

major role in the disease development and progression in the

central nervous system through modulation of the intestinal

barrier, microbiota, and inflammation (53). Enteric glia also

mediate the impaired gut barrier function in psychiatric disorders

such as anxiogenic and depressive-like behaviors (54). In addition,

enteric glia are the site of entry to the CNS in infections such as

prion disease (55).

Just as enteric glia maintain fast bi-directional communication

with neurons, which is crucial in the regulation of GI functions,

recent studies suggest enteric glia may play a bi-directional role in

gut-brain axis as well. Researchers identified a key role that enteric

glia have in behavioral changes related to compromised gut epithelial

barrier function caused by low-grade inflammation induced by

chronic high-fat diet. The authors prevented development of

depressive- and anxiety-like behaviors in animals on high-fat diet

by disrupting the function of enteric glia (54). Enteric glia have a

critical role in mediating the effects of psychological stress on gut

function via glia-dependent activation of intestinal macrophages (56).

This is an important pathophysiological connection from

psychological stress to intestinal inflammation.
6 Conclusion

Enteric glia within intestinal mucosa are perfectly positioned to

interact with the innervation from the ENS and the CNS, gut

immune system, and intestinal epithelial cells. These glial cells have

active roles in the regulation of gut reflexes such as secretomotor

function (Figure 1F). Some roles of enteric glial cells within the

healthy intestine seem to be redundant, such as epithelial barrier

function. However, in inflamed and/or injured intestines enteric

glia have important roles in tissue repair, glia-immunocyte

interactions as well as tissue recovery (Figure 1F). Future studies

are needed to investigate the mechanisms of these interactions.
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