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Tertiary lymphoid structures:
new immunotherapy biomarker
Fangyuan Yang1†, Jiahe Yang2†, Meijuan Wu2*, Cheng Chen2*

and Xiaoyuan Chu1,2*

1Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China,
2Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing
University, Nanjing, China
Immunotherapy shows substantial advancement in cancer and is becoming

widely used in clinical practice. A variety of biomarkers have been proposed to

predict the efficacy of immunotherapy, but most of them have low predictive

ability. Tertiary lymphoid structures (TLSs), the aggregation of multiple

lymphocytes, have been found to exist in various tumor tissues. TLSs have

been shown to correlate with patient prognosis and immunotherapy response.

This review summarizes the characteristics of TLSs and the inducing factors of

TLS formation, presents available evidence on the role of TLSs in predicting

immunotherapy response in different cancers, and lastly emphasizes their

predictive potential for neoadjuvant immunotherapy efficacy.
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1 Introduction

Immunotherapy has revolutionized cancer treatment and rejuvenated the field of

tumor immunology by enhancing patient’s immune response (1–3). Cancer

immunotherapy provides unprecedented rates of durable clinical benefits for patients

with different types of cancer, but the identification of potential responders before

immunotherapy remains to be a challenge (4).

Tertiary lymphoid structures (TLSs), sometimes referred to as ectopic lymphoid

structures, are organized aggregates of immune cells resembling secondary lymphoid

organs (SLO, e.g. lymph nodes and spleen). Different from SLO, TLSs arise postnatally in

nonlymphoid tissues under chronically inflamed environments, such as autoimmune

diseases, allograft rejection, chronic inflammation and cancer (5). Although the mature

TLSs have similar structure to SLO, the cellular makeup and molecular pathways involved

in the process of TLS formation vary due to different local tissue context and disease. The

presence of TLSs typically contributed to superior prognosis of cancer patients (6).

Moreover, it has been reported that the presence of TLSs in tumor could predict an

improved outcomes in cancer patients treated with immune checkpoint inhibitors (ICI)

independently of PD-L1 status (7, 8). For example, the survival rate of TLS positive patients

has been proved to be higher than that of TLS negative group in non-small-cell lung cancer
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(NSCLC) patients treated with ICI (9). However, not all TLSs

positively contribute to the immune response against cancer,

which may be attributed to distinction in TLS density, location or

maturation status.

Therefore, this review aims to describe the characteristics of

TLSs, including cellular composition, density, location, maturity

and gene signature, and provide new insight into the predictive

value for immunotherapy response in cancers.
2 Characterization of TLSs

The main characteristics of TLSs include composition, density,

location, maturation status, and signature (Figure 1). We

summarized the findings concerning the performance of these

TLS features in cancer patient prognosis (10–16) (Table 1).
2.1 TLS composition

TLSs mainly consist of CD3+T-cell-rich region, CD20+B-cell-

rich region, plasma cells (PCs), dendritic cells (DCs), and

fibroblastic reticular cells (FRCs) (36, 37). Cytotoxic granule-

expressing CD8+ T cells have been detected in surrounding T cell

zone, as have CD4+ T cells orientated towards a Th1 cell phenotype

and CD4+ regulatory T (Treg) cells (38). The inner B cell zone also

includes CD21+ follicular dendritic cells (FDCs), germinal center

(GC), CD83+ mature DCs, which are markers of mature TLSs (5).

The vicinity of TLSs consists of lymphatic vessels, which express

podoplanin and produce CC-chemokine ligand 21 (CCL21), and

high endothelial venules (HEVs), which are characterized by the
Frontiers in Immunology 02
markers of peripheral node addressin (PNAd) (38). The follicles can

further contain scattered CD68+ macrophages for clearance of

apoptotic cells (5).

TLS formation could be induced by tissue-specific expression of

chemokines. Heterogeneity of these driving factors may lead to

differences in TLS components. Intriguingly, some specific cell types

have been observed in the TLSs under certain conditions. LAMP+

DCs (mature DCs) have been considered to be reliable marker of

TLSs in NSCLC as they were almost exclusively found in these

structures (39). The density of LAMP+ DCs has been proved to be

correlated with favorable clinical outcomes in NSCLC (17). A

qualitative shift in the organization of TLSs has been found in

Helicobacter hepaticum (Hhep) colonized mice in colorectal cancer

(CRC), in which an increased presence of CD11c+ cells was found in

the T cell zone of TLSs, consistent with an increase in DCs (40). A

novel CD20+CD22+ADAM28+ B-cell subpopulation within TLSs

has been reported to be present in ICI responders. These cells were

named as ICI‐Responsive B cells (BIR) and were further identified

as a subset of memory B cells that promoted the response to ICI

therapy (41).
2.2 TLS density

TLS density varies among different individuals, even for a given

cancer type and stage of the disease, emphasizing that individual

tumor microenvironment (TME) can be more or less permissive to

lymphoid neogenesis (42). High TLS density in tumors generally

correlates with better prognosis. It has been reported that the

expression of transcription factors related to adaptive immunity

was significantly upregulated in TLS-high tumors (18). Patients
FIGURE 1

Model of TLS characteristics. TLS characteristics include composition, density, location, maturation status and signature.
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with high TLS density exhibited significantly improved overall

survival (OS) in hepatocellular carcinoma (HCC), ovarian cancer

(OV), skin cutaneous melanoma (SKCM) and uterine corpus

endometrial carcinoma (UCEC) (19, 43). In a lung squamous cell

cancer (LSCC) cohort, high TLS density significantly correlated

with improved progression-free survival (PFS) (16). Apart from

primary tumors, a higher level of TLSs in metastatic tumors also

showed significantly better OS (44–47).
Frontiers in Immunology 03
2.3 TLS location

TLSs can be found in the peritumor, invasive margin and center

of tumors (27). The location of TLSs may be important in

predicting outcomes, associated with its function in the tumor

immune response (48).

Some studies showed that patients with high level of

peritumoral TLSs exhibited worse disease-free survival (DFS) and
TABLE 1 Prognostic value of TLS characteristics in human cancers.

TLS features Cancer types Prognostic value References

Composition

B cell CRC positive (10)

Mature DC NSCLC positive (17)

Plasmacytoid DC Colon cancer positive (11)

HEV

ICC positive (12)

BC positive (13)

CRC positive (14)

Density High density

LSCC positive (18)

HCC positive (19)

OV positive (19)

SKCM positive (19)

UCEC positive (19)

Location

Intratumoral

HCC positive (20, 21)

nmCRC no prognostic value (22)

PDAC positive (23)

OC positive (15)

Peritumoral

HCC negative (24)

nmCRC positive (22)

PDAC no prognostic value (23)

OC positive (15)

Invasive margin BC positive (25)

Maturity Mature TLS

EC positive (16)

PDAC positive (26, 27)

ESCC positive (28)

GC positive (29)

nmCRC positive (30)

Signature

12-chemokines

ccRCC positive (31)

LUAD positive (32)

melanoma positive (33, 34)

bladder cancer positive (34)

CD79B, CD1D, CCR6, LAT, SKAP1,
CETP, EIF1AY, RBP5, PTGDS

melanoma positive (35)
CRC, colorectal carcinoma; NSCLC, non-small-cell lung cancer; ICC, intrahepatic cholangiocarcinoma; BC, breast cancer; LSCC, lung squamous cell carcinoma; OV, ovarian cancer; SKCM, skin
cutaneous melanoma; UCEC, uterine corpus endometrial carcinoma; HCC, hepatocellular carcinoma; nmCRC, non-metastatic colorectal carcinoma; PDAC, pancreatic ductal adenocarcinomas;
OC, oral cancer; EC, endometrial cancer; ESCC, oesophageal squamous cell carcinoma; GC, gastric cancer; ccRCC, clear cell renal cell carcinoma; LUAD, Lung adenocarcinoma.
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OS in breast cancer, cholangiocarcinoma (CCA), HCC and

colorectal cancer liver metastases (CRLM) (24, 25, 49, 50). Zhang

et al. found that the frequency of CD4+Bcl6+ T follicular helper

(Tfh) cells was significantly increased in intratumoral TLSs

compared to peritumoral TLSs in CRLM (50). However, one

study found peritumoral TLSs as an independent and favorable

prognostic factor in both OS and DFS for non-metastatic colorectal

carcinoma (nmCRC) patients (22).

Unlike the dual role of peritumoral TLSs in prognosis

evaluation, intratumoral TLSs have been proved to be associated

with better outcome for cancer patients, including HCC and

pancreatic cancer (20, 21, 23). Tumor tissues with intratumoral

TLSs showed significantly higher infiltration of T and B cells and

lower infiltration of immunosuppressive cells (23). TLSs at the

invasive margin have also been validated as an important positive

predictor of patient outcomes (48, 51).
2.4 TLS maturity

According to the cellular compositions, TLSs can be classified as

follows: 1) Early TLSs (E-TLSs), distinguished by lymphocytic

aggregates that lack a DC scaffold and vascularization; 2) Primary

follicle-like TLSs (PFL-TLSs), also known as immature TLSs,

comprised of T-cell and B-cell zones with FDCs but no GC; 3)

Secondary follicle-like TLSs (SFL-TLSs), also known as mature

TLSs, comprised of lymphatic vessels, isolated T-cell zones and a

B-cell follicle with GC (30). Numerous studies have demonstrated

that plasma cells, CD8+ T cells, and CD4+ T cells were more

enriched in PFL-TLSs and SFL-TLSs (22, 28, 52).

Mature TLSs were reported to improve the prognosis of

oesophageal squaenmous cell carcinoma (ESCC) and gastric

cancer patients (28, 29). The cumulative risk of recurrence was

significantly higher in patients with low SFL-TLSs in nmCRC (30).

Mature TLSs supported antitumor adaptive immunity in pancreatic

ductal adenocarcinomas (PDAC) (26, 27) and their formation was

associated with a better prognosis in laryngeal squamous cell

carcinoma (LSCC) with immunotherapy (52). Thus, mature TLSs

have been confirmed to positively correlate with the prognosis and

immunotherapy response of cancer patients.
2.5 TLS signature

Apart from H&E staining and immunohistochemistry (IHC)

with multiplex selected markers to detect TLSs, transcriptomic

analyses have also been developed to determine TLS-associated

gene signatures in recent years (53). A 12-chemokine signature

(including CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19,

CCL21, CXCL9, CXCL10, CXCL11, and CXCL13) is the most

widely used signature for the quantification of TLSs in multiple

solid tumors, including CRC, melanoma, HCC and breast cancer, etc

(19, 33). Studies found that patients with high TLS signature

displayed a better survival than those with low TLS signature,

showing a marked association between TLS signature and the

survival of cancer patients (32). Li et al. validated the clinical utility
Frontiers in Immunology 04
of the 12-chemokine TLS signature for predicting immunotherapy

response by using two publicly available datasets. A high TLS

signature score indicated strong immune infiltration and immune

responses in both datasets (34). Another study by Xu et al. established

TLS clusters in clear cell renal cell carcinoma (ccRCC) using machine

learning algorithms and the 12-chemokine gene signature. Distinct

differences were observed in survival, immune cell distribution,

immunotherapy response among the TLS clusters (31). Cabrita

et al. developed a gene signature (CD79B, CD1D, CCR6, LAT,

SKAP1, CETP, EIF1AY, RBP5, and PTGDS) associated with TLSs

in melanoma patients, which predicted clinical outcomes of

melanoma patients treated with ICI (35).
3 Inducing factors of TLS formation

Tumor specific lymphocytes and stromal cells offer chemokines

or cytokines required for TLS formation. Chemokines and

lymphotoxins (LTs) are essential for the clustering of B/T cells and

the development of lymphoid structures during TLS neogenesis. For

example, CXCL13 and CXCL12 promoted the recruitment of B cells

(54); CCL21 induced LTs expression on naive CD4 T cells and

induced more organized infiltrates (55). In this section, we

summarized the main cellular inducers of TLSs and potential

pharmaceutical manners to induce TLS formation (Figure 2).
3.1 Cellular inducers of native TLSs

3.1.1 CXCL13-producing T follicular helper cell
Tfh cells, a subset of CD4+ T helper cells, are specialized in helping

B cell proliferation, survival, and differentiation, thus supporting

antibody production and memory formation. The CXCL13-

expressing Tfh cells are commonly co-localized with B cells in the

tissue, allowing for Tfh cell to help the function of B cells and associated

with the formation of TLSs (49, 56). Notably, enhanced generation of

Tfh cells created a chemokine niche that promoted spontaneous

assembly of TLSs at tumor beds (57). A recent study implied that

CXCL13-producing CD4+ T cells were involved in the early stage of

TLS formation (58), which consistent with another study indicating

that TLS formation was dependent on CXCL13 signaling, potentially

due to its effect on the recruitment of CXCR5+ B cells (59).
3.1.2 Stromal cell
Stromal cells can differentiate into lymphoid tissue organizer

(LTo) cells following stimulation by the lymphotoxin (LT) b
receptor. LTo cells express chemokines and cell adhesion

molecules that recruit and organize the B and T cell areas of the

organ. LTo cells undergo further differentiation into the stromal cell

subsets present in adult lymph nodes (LN) such as FRCs of the T

zone, FDCs present in B cell follicles and GCs (60). Within the

tumor microenvironment, the local cross-talk between immune

cells and stromal elements leads to the production of a series of pro-

inflammatory cytokines and TNF receptor family components that

determine the formation of TLSs (51).
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Zhu et al. created a mouse model of TLSs by implanting LN-

derived stromal cells that express markers of FRCs. They found that

TLSs were formed by expansion of stromal cells and gradual infiltration

of B cells, CD4+ and CD8+ T cells (61). Nayar et al. demonstrated that

fibroblasts could drive TLS formation in a melanoma model wherein

they developed characteristics of LTo cells in response to TNF-receptor

signal (62). Others found a CXCL13-CXCR5 chemotactic axis

supported the proliferation of cancer associated fibroblasts (CAF)

with LTo characteristics and TLS development (63, 64).

3.1.3 HEV
HEVs express high levels of ligands for lymphocyte adhesion

molecules, which facilitate the trafficking of T and B cells to the local

tissue microenvironment. Tumor HEVs boost intratumoral

lymphocytes infiltration, facilitating TLS maturation (65). Wang

et al. induced endothelial differentiation from pluripotent stem cells

and then constructed HEV-like organoids (HEVO). Upon

transplantation into mice, HEVO promoted functional TLS

formation by recruiting lymphocytes and enhanced antitumor

activity (66).
3.2 Manners of TLS induction

3.2.1 STING agonist
Multiple stimulators of interferon gene (STING) agonists have

been developed for cancer therapy and have achieved promising
Frontiers in Immunology 05
results in pre-clinical work (67). Treatment with low-dose STING

agonist ADU-S100 slowed tumor growth and promoted the

formation of non-classical TLSs in murine B16 melanomas (68).

Activation of STING within the TME increased the production of

antiangiogenic factors and TLS-inducing chemokines and

cytokines, resulting in improved vascular normalization (VN),

enhanced tumor infiltration of CD11c+ DCs and CD8+ T cells

and local TLS neogenesis (69, 70).

3.2.2 Vaccines
Vaccines can stimulate body’s innate immunity and strong T

cell response to combat infectious diseases and cancers. Lutz et al.

first reported that granulocyte-macrophage colony-stimulating

factor (GM-CSF)–secreting, allogeneic PDAC vaccine (GVAX)

induced TLS formation and more T-cell infiltration in PDAC

patients (71). Maldonado et al. observed memory T cells

infiltration and TLS formation in vaccinated subjects with high-

grade cervical intraepithelial neoplasias (72). TLS formation was

also observed in resected stage IIB-IV melanoma after vaccination

with AS15 and IFA (two cancer vaccines) (73).

Emerging of nanovaccines has improved targeted delivery,

prolonged circulation and antigen presentation (74). Wen et al.

demonstrated that the nanovaccine consisting of Epstein-Barr virus

nuclear antigen 1 (EBNA1) and a bi-adjuvant of Mn2+ and cytosine-

phosphate-guanine (CpG) formulated with tannic acid can foster TLS

formation. The nanovaccine activated LT-a/b pathways,

subsequently enhancing the expression of downstream chemokines
FIGURE 2

Inducing factors of TLS formation. The main cells for TLS formation are CXCL13 -expressing Tfh cells, stromal cells and HEVs. Methods to induce
TLS formation include STING agonist, vaccine and biomaterials.
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CCL19/CCL21, CXCL10 and CXCL13 in the TME (75). Recently,

researchers developed antigen-clustered nanovaccine (ACNVax) to

activate immune cell. ACNVax plus anti-PD-1 antibody stimulated

TLS formation and achieved long-term antitumor efficacy (76).

3.2.3 Biomaterials
Recent studies revealed that some biomaterials not only serve as

drug carriers, but also have intrinsic immunoregulatory effects (77).

Collagens are major components of the extracellular matrix of

connective tissues (78). Suematsu et al. initially used a collagen

sponge biomatrix embedded with LTa-expressing stromal cells and

transplanted in vivo to induce structures similar to TLSs (79).

Subsequently, TLSs were also successfully induced using collagen

sponge scaffolds contain chemokines and soluble RANK

ligand (80).

Hydrogels are three-dimensional crosslinked polymer

meshwork. With its properties, hydrogels can extend residence

time as drug vector and are suitable for biomedical applications

(81). Hydrogel preparations with BAFF-producing stromal cells

and IL-4 promoted GC-like reaction in B cell and antibody class

switching in vitro (82, 83). Another study described that STING-

activating hydrogel (ZCCG) facilitated the formation of TLSs by

recruiting immune cells and enhanced antitumor immunity (84).
Frontiers in Immunology 06
4 The role of TLSs in predicting
immunotherapy response

ICI plays an important role in cancer immunotherapy, and

sustains a long-term immune response for cancer patients. The two

leading ICI approaches are anti-PD1/PD-L1 and anti-CTLA-4

antibodies (85). ICI treatment induced the expansion of CD8+ T

cells which was not observed before treatment, indicating that ICI

response was driven by incoming T cells. TLSs may be instrumental

to restart antitumor defense during ICI treatment by mounting a

fresh adaptive immune response using incoming B and T cells (36).

Studies have demonstrated that TLSs could serve as potential

biomarker in predicting response to ICI therapy (86) (Table 2).
4.1 Melanoma

Immunotherapy has become an important part of the treatment

for patients with advanced melanoma, but its clinical efficacy varies

among patients. The majority of patients treated with ICI did not

show significant clinical benefits (93). Griss et al. demonstrated that

the frequency of plasmablast-like B cells in pre-therapy melanomas

predicted response and survival to immune checkpoint blockade.
frontiersin.o
TABLE 2 Response rates to immunotherapy based on TLS status.

Cancer
type

Treatment Method
Percent of

patients with
positive TLS

Response
rate in

patients with
positive TLS

References

GI anti PD-1 IHC, TLS signature (12-chemokine signature) NR NR (29)

Melanoma anti CTLA-4
IHC, TLS signature (CD79B, CD1D, CCR6, LAT, SKAP1,

CETP, EIF1AY, RBP5, and PTGDS)
NR NR (35)

NSCLC

anti PD-1 H&E 11/20 (Intratumoral) 11/11 (86)

anti PD-1
plus

chemotherapy
H&E, IHC 34/40 (Intratumoral) 17/34 (87)

CCA
anti PD-1

plus
chemotherapy

H&E, IHC, TLS signature (PAX5, TCL1A, TNFRSF13C,
and CD79A)

NR NR (88)

ESCC anti PD-1
H&E, IHC, TLS signature (POU2AF1, LAMP3, CD79A,

and MS4A1)
29/34 (Peritumoral) 9/29 (89)

HNSCC anti PD-1
TLS signature (LAMP3, CCL2, CCL3, CCL4, CCL5, CCL18,

CCL19, CCL21, CXCL9, CXCL10, CXCL11, CXCL13,
and CXCR4)

NR NR (90)

STS anti PD-1 H&E, IHC, TLS signature (CXCL12 and CCL18) 48/24 (Intratumoral) 14/30 (91)

UC
anti PD-1 plus

CTLA-4
H&E, IHC NR NR (92)
NR, not reported; GI, gastrointestinal cancer; CCA, cholangiocarcinoma; HNSCC, head and neck squamous cell carcinoma; STS, soft-tissue sarcomas; UC, urothelial carcinoma; IHC,
immunohistochemistry; H&E: hematoxylin and eosin staining.
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Anti-CD20 treatment caused a downregulation of tumor-induced

plasmablast-like B cells along with a significant reduction in TLSs in

metastatic melanoma (94). Ding et al. confirmed that melanoma

patient who responded to ICI had increased number of GC B cells

and its associated Tfh cells, indicative of TLS formation, and had

significantly longer OS than those with none (95). Another study by

Alexandra et al. gathered a collection of tumor biopsies from

melanoma patients who were receiving CTLA-4 blockade.

Trichotomizing gene-expression data on the basis of the TLS

signature revealed that TLS-high tumors were associated with

significantly increased survival after CTLA-4 blockade (35).
4.2 NSCLC

With the discovery of immunotherapy, the therapeutic

paradigm for patients with advanced lung cancer has

fundamenta l ly t rans formed (96) . The revo lut ion in

immunotherapy, especially the development of ICIs, has

dramatically altered the NSCLC treatment landscape (97). Brunet

et al. confirmed that the presence of TLSs was not only a prognostic

marker in advanced stages of NSCLC, but also a specific biomarker

predictive of response to ICIs (98). Likewise, Patil et al.

demonstrated that plasma-cell-rich tumors may portend OS

benefit in NSCLC patients treated with ICI. The plasma cell

signature was enriched in tumors with TLSs and/or lymphoid

aggregates. Patients with TLS positive tumors exhibited improved

OS with PD-L1 blockade (atezolizumab) (9). Wu et al. found that

overexpression of most genes in TLS signature indicated a good

prognosis in patients with NSCLC receiving ICI therapy (41).
4.3 Gastrointestinal (GI) cancers

GI cancers include esophageal, gastric, liver, biliary system,

pancreatic, and colorectal cancer. A meta-analysis including 32

studies demonstrated that TLSs were significant predictor of the

prognosis of GI cancer and have the potential to become biomarker

for immunotherapy responses in GI cancer patients (99). Jiang et al.

found that higher TLS score was correlated with a superior response

to PD1 blockade therapy in patients with gastric cancer, indicating

that the TLS score might be a new predictor for PD1 inhibitor therapy

response (29). Shang et al. analyzed a cohort of 100 CCA patients

who received first-line chemotherapy combined with ICIs to prevent

postoperative recurrence. Further data indicated that a high density

of intratumoral TLSs in pre-treatment tumor tissues predicted a

better prognosis in patients with immunotherapy and the presence of

intratumoral TLSs were associated with a prolonged OS and PFS. The

study established a four-gene TLS signature as practicable biomarker

for TLS identification and demonstrated that the spatial distribution

and abundance of TLSs profoundly affected the prognosis and the

immunotherapy response in CCA (88). Kinker et al. showed that the

expression of a gene signature reflecting mature TLSs were enriched

in pretreatment biopsies from PDAC patients with longer survival

after receiving different chemoimmunotherapy regimens (26).

Hayashi et al. derived a 4-gene TLS signature comprised of
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POU2AF1, LAMP3, CD79A and MS4A1 and found a significantly

higher expression of this 4-gene TLS signature in responders to anti-

PD-1 therapy as compared to non-responders in ESCC (89).

Küçükköse et al. established a series of patient-derived organoids

(PDOs) from MSI-H mCRC tumors to generate spontaneous

metastasis models in mice with or without a human immune

system (HIS). HIS mice with PDO-initiated MSI-H mCRC were

then used to model ICI therapy. Anti-PD-1 and anti-CTLA-4

strongly reduced the growth of primary tumors and liver

metastases, but peritoneal metastases were refractory to ICI. B cell

influx and TLS formation were observed in ICI-responding primary

tumors and liver metastases, while ICI-refractory peritoneal

metastases were devoid of B cells and TLSs (100).
4.4 Other cancers

Some studies reported an upregulation of genes encoding

chemokines involved in TLS formation in the responder patients of

HNSCC, bladder cancer or soft-tissue sarcomas (STS) treated with

ICIs. These high TLS signatures were associated with better OS (90,

91, 101). Meylan et al. evaluated the B cell responses within TLSs in

RCC, and found IgG- and IgA-producing plasma cells infiltated into

the TLS-positive tumors. RCC patients with high IgG-stained tumor

cells had longer PFS and higher immunotherapy response rates (102).
5 The role of TLSs in evaluating
neoadjuvant immunotherapy efficacy

Neoadjuvant immunotherapy is thought to produce long-term

remissions through induction of immune responses and has entered

standard of care in NSCLC and melanoma (103–105). Many studies

have used TLSs as marker to evaluate neoadjuvant immunotherapy

efficacy. Wang et al. reported that TLS‐positive TNBC patients

achieved a considerable response after neoadjuvant immunotherapy

with six cycles of camrelizumab. The neoadjuvant immunotherapy

effect was not evident in TLS-negative patient (106). Another study

by Sun et al. confirmed that TLS abundance and maturity were higher

in the neoadjuvant chemoimmunotherapy group than in

neoadjuvant chemotherapy group and treatment naive group in

NSCLC. Patients with major pathological response (MPR) had

more mature TLSs than those with non-MPR in both neoadjuvant

chemoimmunotherapy and neoadjuvant chemotherapy group (87).

Helmink et al. assessed the density and distribution of B cells as well

as their relationship to TLSs in melanoma and RCC patients treated

with neoadjuvant ICI. The density of CD20+ B cells and TLSs were

higher in responders than in non-responders in neoadjuvant

melanoma cohort, particularly in early on-treatment samples (107).

Gao et al. reported the first pilot combination neoadjuvant trial with

anti-PD-L1 (durvalumab) plus anti-CTLA-4 (tremelimumab) in

cisplatin-ineligible urothelial carcinoma patients. They observed a

higher density of TLSs in pre-treatment tumor tissues of responder

patients as compared to non-responder patient. Higher density of

TLSs in pre-treatment tumor tissues was correlated with longer

OS (92).
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6 Discussion

TLSs can serve as attractive biomarker for the prediction of

immunotherapy response against cancer. However, heterogeneity of

TLS components induced by tissue-specific factors may lead to

differences in immune responses. In addition, the accumulation of

regulatory immune cells within TLSs may dampen immune

responses, leading to the inactivation of TLSs. Therefore, a

comprehensive evaluation of TLS features would provide more

accurate prediction efficacy.

Many studies have described the role of TLSs in cancer

immunotherapy, but the mechanisms underlying the formation of

TLSs in immunotherapy remain unclear. Rodriguez et al. showed that

immunotherapy can increase TLS number and size in mouse models

(63). Some studies explored the combination of cancer

immunotherapy with vaccines or biomaterials to induce TLSs,

probably through a mechanism involving a network of cells and

chemokines (75, 108). Recent advances demonstrated that artificial or

inducible TLSs (iTLSs) hold great promise to improve clinical

outcomes post-immunotherapy. In addition to STING angonist,

vaccine and biomaterials, iTLSs can also be achieved using stromal

vascular fraction (109) or cell-free constructs (110). Besides, oncolytic

virotherapies have the potential to switch cold tumors to hot tumors,

and therefore could be good drivers of TLS neogenesis (111). It seems

highly desirable to induce and/or augment TLS development as new

aspect of cancer immunotherapy. However, the heterogeneity of TLSs

in different tumors and individuals, as well as the difficulty in

selection of materials for inducing TLSs still make it a challenge for

iTLSs to be truly applied in clinical practice.

Unraveling the interplay between antitumor response and

autoimmunity mediated by T cells, B cells and autoantibodies

during TLS induction is imperative. Antitumoral immunity and

autoimmune response are associated in cancer patients. A study has

reported that TLSs were enriched in OMAS (an autoimmune

disease) associated neuroblastomas (112). This association may be

due to that an efficient TLS-induced antitumor response within the

TME leads to tumor cell death and subsequent release of massive

antigens that can activate autoreactive T and B cells.

In conclusion, this review revealed that the presence of TLSs

indicated active antitumor immune responses and beneficial

outcomes for cancer patients. The induction therapy of TLSs may
Frontiers in Immunology 08
prov ide new oppor tun i t i e s to improve the current

immunotherapeutic treatments.
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