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Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by

persistent synovial inflammation and progressive joint destruction. Macrophages

are key effector cells that play a central role in RA pathogenesis through their ability

to polarize into distinct functional phenotypes. An imbalance favoring pro-

inflammatory M1 macrophages over anti-inflammatory M2 macrophages

disrupts immune homeostasis and exacerbates joint inflammation. Multiple

signaling pathways, including Notch, JAK/STAT, NF-kb, and MAPK, regulate

macrophage polarization towards the M1 phenotype in RA. Metabolic

reprogramming also contributes to this process, with M1 macrophages

prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation.

Redressing this imbalance by modulating macrophage polarization and metabolic

state represents a promising therapeutic strategy. Furthermore, complex

bidirectional interactions exist between synovial macrophages and fibroblast-like

synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-

derived factors promote aggressive phenotypes in FLS, while FLS-secreted

mediators contribute to aberrant macrophage activation. Elucidating the

signaling networks governing macrophage polarization, metabolic adaptations,

and crosstalk with FLS is crucial to developing targeted therapies that can restore

immune homeostasis and mitigate joint pathology in RA.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disorder

marked by inflammation of synovial tissue, destruction of cartilage

and bone, affecting approximately 1% of the population and

imposing significant burdens on individuals and society (1–3).

Timely diagnosis and intervention are essential in preventing

disease progression and enhancing treatment outcomes for RA

patients (4). However, the pathological mechanism of RA is not

fully understood. Synovial macrophages are associated with the

severity of RA and cartilage damage (5). Macrophages, as versatile

cells, play a crucial role in tissue remodeling and repair by

eliminating invasive pathogens and senescent cells, thereby

safeguarding the human body from infections, injuries, and

cancer (6). These cells originate from various lineages during

development and maintain their diversity into adulthood (7, 8).

Following pathogen infiltration or tissue injury, tissue-resident

macrophages typically transition to an activated or inflammatory

state, a phenomenon referred to as macrophage polarization (9).

These cells are commonly called macrophages (M1) and

alternatively activated macrophages (M2) types (10, 11). M1

macrophages that mediate resistance to pathogens and tissue

destruction by produce pro-inflammatory cytokines like tumor

necrosis factor (TNF), Interleukin (IL)-6 (IL-6) and IL-1b, C-C
motif chemokine ligand 2 (CCL2), IL-8, IL-12 and IL-23 (12, 13).

M2 macrophages can remove debris and promote tissue repair by

produce anti-inflammatory cytokines consisting of transforming

growth factor-b (TGF-b), IL-10, IL-4, IL-13 (14, 15). Exploring the
polarization of macrophages in RA is a hot field (16). The abnormal

immune microenvironment in RA patients promotes metabolic

reprogramming, alters macrophage polarization, disrupts the

dynamic balance of M1 and M2 macrophages, and promotes

tissue inflammation. Macrophages exist in every tissue of the

human body and exhibit anatomical and functional diversity (9).

There is an imbalance of M1/M2 in the synovial fluid (17),

synovium (18), and peripheral blood (15) tissues of RA patients.

Macrophages produce a large amount of pro-inflammatory

cytokine TNF. Current treatment options such as disease-

modifying antirheumatic drugs and monoclonal antibodies

targeting TNF blockade can alleviate some of the effects on

macrophage activation, but have no specificity for macrophages.

At present, there is no therapy that has been proven to be effective

and safe in specifically eliminating RA macrophages. Deciphering
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how the process of macrophage polarization and functions affect

RA may provide landscape for the targeted therapy.
2 Macrophage polarization in RA

Research indicates a positive correlation between macrophage

abundance and the extent of synovial hyperplasia, as well as a direct

relationship with disease activity as measured by DAS28 scores and

joint erosion in patients (19). Notably, M1 macrophages are

predominantly present in individuals with active rheumatoid

arthritis (RA), whereas M2 macrophages are associated with

lower disease activity or clinical remission in RA patients (20).

Macrophage polarization is intricately regulated by a variety of

signaling pathways, such as notch signaling pathway (Notch), Janus

kinase/signal transducer and activators of transcription (JAK/

STAT), mitogen-activated protein kinase (MAPK), and nuclear

factor kappa-B (NF-kb) pathways. Specifically, AKT, p65/p50,

p38, NF-kB, and AP-1 are associated with M1 polarization, while

SMAD3, p50/p50, and SMADs are associated with M2 polarization

(21, 22).

Macrophages are acknowledged as key contributors to the

production of inflammatory mediators, including TNF-a, IL-6,
and IL-1b, which are essential in initiating the inflammatory

cascade. Furthermore, these mediators can also promote

macrophage polarization towards the M1 phenotype through

diverse signaling pathways. In RA, the transcription factor STAT3

plays a crucial role in directing macrophage polarization towards

the M1 phenotype (23), with IL-6 serving as the primary activator of

STAT3 in this context (24). The activation of STAT3 by IL-6

contributes to joint destruction in RA by promoting the

upregulation of receptor activator of nuclear factor kappa-B

ligand (RANKL) in osteoblasts and facilitating the differentiation

of osteoclasts (25). The activation of the NF-kB signaling pathway

by TNF-a and IL-1 results in the phosphorylation and dissociation

of the IkBa/NF-kB complex (26). In RA, NF-kB activation

facilitates M1 polarization, ultimately resulting in the secretion of

a substantial quantity of mature inflammatory cytokines (27).

Additionally, activation of Toll-like receptor 4 (TLR4) induces

NF-kB signaling in M1macrophages, resulting in the secretion of

IL-6, TNF-a, and IL-1b in synovial macrophages of patients with

RA (28). In RA, the pro-inflammatory cytokines TNF-a, IL-1 b,
and IL-6 stimulate the activation of the MAPK signaling pathway by

inducing phosphorylation of ERK1/2, JNK, and p38 kinases in

synovial cells (29). This activation of the stress-activated protein

kinases (SAPK)/MAPK pathway by pro-inflammatory cytokines in

RA leads to enhanced macrophage proliferation and survival (30).

Furthermore, the proteins c-Fos and c-Jun exhibit elevated levels of

expression in RA synovial tissue and play a role in the polarization

of macrophages (31, 32). Specifically, c-Fos functions by directly

suppressing the expression of Arginase (Arg) 1 in macrophages,

thereby diminishing their anti-inflammatory properties. On the

other hand, c-Jun promotes the upregulation of cyclooxygenase-2

(Cox-2) in macrophages, suppresses Arg1 expression, and

influences the polarization of macrophages towards the

M1 subtype.
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The polarization and transformation of macrophages can

contribute to the exacerbation of joint inflammation in RA (33).

Throughout the progression of RA, numerous factors can disrupt

the delicate balance between M1 and M2 macrophages, leading to

an increase in M1 macrophages and subsequently intensifying the

inflammatory response in RA (17, 34, 35). Recent research has

indicated that natural medicines, such as traditional Chinese

medicine, along with nano formulations, have the ability to

modulate M1 to M2 repolarization through pathway signaling

and antioxidant properties, thereby mitigating joint inflammation

and tissue damage in RA.
2.1 M1 macrophage polarization worsens
RA by releasing inflammatory factors

The signaling pathways implicated in the polarization of

macrophages towards the M1 phenotype are extensively

documented in the literature. Previous research has identified key

pathways associated with inflammation mediated by M1

macrophages, such as the Notch, ERK, MAPK, JAK/STAT, and

MAPK signaling pathways.

Notch signaling appears to be a causative factor in the

imbalance between M1 and M2 macrophages in RA, thus playing

a significant role in the pathogenesis of RA. Sun et al. (36) observed

that M1 macrophages derived from bone marrow (BM) exhibit

activated Notch signaling in the inflamed joints of TNF-a-
transgenic mice. Furthermore, they found that RA synovial tissue

promotes the activation of Notch signaling in BM-derived

macrophages, leading to M1 polarization. Treatment with

thapsigargin, a Notch inhibitor, reduces TNF-a-induced M1

macrophage polarization and mitigates inflammation and joint

bone loss by promoting a switch from M1 to M2 macrophages.

The Notch signaling pathway is crucial in regulating osteoclast

differentiation and bone-resorbing activity by directly influencing

osteoclast precursors, as well as indirectly affecting cells of the

osteoblast lineage and immune system (37). In joints affected by RA,

Notch1 is upregulated and activated in fibroblast-like synoviocytes,

Th17 cells, and M1 macrophages, promoting the secretion of pro-

inflammatory cytokines such as TNF-a, IL-6, and IL-17. This

cascade of events ultimately results in inflammation, bone

degradation, and joint bone loss (38). The ERK signaling

pathway, a member of the MAPK family, plays a significant role

in regulating macrophage phenotype (39). Activation of the ERK1/2

pathway during LPS-induced inflammatory responses can lead to

M1 polarization and suppression of inflammatory reactions (40).

Nesfatin-1 induces c-c motif chemokine ligand 2 (CCL2)

overexpression through the MEK/ERK pathway in RA synovial

fibroblast, in which overexpressed CCL2 enhanced the polarization

of M1 macrophages by treating THP-1-derived (M0) macrophages

with synovial fibroblast conditioned medium (41). Nesfatin-1

identified as a potential risk factor for RA (42, 43). CCL2 levels

are high in RA synovial tissue (44), which induces the recruitment

and migration of monocytes to inflammatory sites in arthritis (45),

thereby facilitating the progression of knee synovitis in affected

individuals (46). The JAK-STAT pathway is stimulated by diverse
Frontiers in Immunology 03
inflammatory stimuli, influencing the differentiation of

macrophages and the inflammatory response. Specifically, the

activation of the JAK/STAT1 signaling cascade by IFN- g
facilitates the release of pro-inflammatory mediators by M1

macrophages. STAT1 activity is conducive to M1 polarization and

its inhibition can lead to M2 polarization (47, 48).
2.2 Repolarizing macrophages from M1 to
M2 can help relieve RA

Natural products, such as extracts derived from traditional

Chinese medicine, have the potential to effectively manage RA by

modulating the repolarization of M1 to M2 macrophages.

Specifically, Tripterygium wilfordii glycosides have been shown to

suppress the secretion of pro-inflammatory cytokines (IL-1, IL-6,

CXCL8, TNF-a, and VEGF-A) by M1 macrophages while

concurrently enhancing the expression of the anti-inflammatory

cytokine IL-10 in M2 macrophages. The results of liquid phase chip

quantitative analysis demonstrate that Triptolide decreases TNF in

arthritis models, as well as levels of a, CXCL2, and VEGF, while

increasing levels of IL-4 and IL-10. Additionally, Triptolide A

inhibits NF- kB, PI3K/AKT, and p38 MAPK signaling pathways,

thereby ameliorating RA joint inflammation (49). Wuweiganlu

(WGL) is a renowned formulation primarily utilized for the

management of RA and other chronic condit ions as

recommended by Tibetan medicine. In vitro experiments have

shown that WGLWE induces the polarization of M1

macrophages towards the M2 phenotype, while also inhibiting the

secretion of proinflammatory cytokines TNF-a and IL-6 (50).

In addition to pro-inflammatory cytokines, the pathogenesis of

RA encompasses a multitude of pathological factors that

synergistically contribute to the perpetuation of the inflammatory

response and exacerbation of tissue damage. Metabolically, M1

macrophages predominantly rely on aerobic glycolysis, whereas M2

macrophages predominantly utilize oxidative phosphorylation (51).

In the setting of joint inflammation, the formation of synovial

pannus and the establishment of hypoxic inflammatory

microenvironments significantly enhance the glycolytic

metabolism of macrophages, driving their polarization towards

the M1 phenotype. HIF-1a, NF-kB, Notch-1, and JAK-STAT

have been identified as factors influencing alterations in

macrophage metabolic phenotype. Of particular note, the

activation of HIF-1a in macrophages has emerged as a crucial

signaling mechanism governing aerobic glycolysis and M1

polarization in recent research (52). Inhibition of HIF-1 in

macrophages suppresses glycolysis levels and M1 polarization, as

well as impairs cell migration and bactericidal function (53, 54). The

PI3K-AKT-mTOR-HIF-1a pathway serves as the fundamental

mechanism for improving angiogenesis in RA (55). In

comparison to synovial macrophages in healthy control groups,

macrophages in RA synovium exhibit heightened expression of

HIF-1 a (56), leading to enhanced transcription of glycolytic

enzymes and upregulation of critical pro-inflammatory cytokines

like IL-1 b (57). The accumulation of succinate, an intermediate

metabolite of the tricarboxylic acid (TCA) cycle, is hypothesized to
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induce the activation of HIF-1 a, subsequently resulting in the

generation of downstream IL-1 b (57). Recent studies have

demonstrated that the reduction of citrate in M1 polarized

macrophages (58) and the blockade of HIF-1a-related signaling

pathways (59) can effectively suppress the overactivation of

glycolytic metabolism in M1 cells. Additionally, the activation of

the AMPK pathway results in the reprogramming of M1 glycolysis

(60), inhibition of mTORC1 activity, suppression of protein

synthesis, regulation of macrophage glucose metabolism and

proliferation, and enhancement of mitochondrial enzyme activity

to facilitate oxidative phosphorylation (61). Besides, lysine

acetyltransferase 2A in synovial tissue promotes macrophage

glycolytic reprogramming by inhibiting the activity of nuclear

factor-erythroid 2-related factor 2 and downstream antioxidant

molecules (62). These biological processes ultimately result in a

phenotypic transition from M1 to M2.
3 Synovial macrophage and fibroblast
crosstalk during RA pathogenesis

The synovial membrane typically consists of two distinct layers:

the inner lining layer and the sub-lining layer (63). The inner lining

layer, composed of synovial lining cells (SLCs), is further

categorized into type A (macrophage-like) and type B (fibroblast-

like) cells (64), which originate from bone marrow mononuclear

phagocytes and mesenchymal stem cells, respectively (65). Among

the cells comprising the synovial lining layer, macrophages

represent approximately macrophage-like synoviocytes (MLS)

represent approximately 20% while fibroblasts-like synoviocytes

(FLS) make up the remaining 80% (66, 67). Macrophage-like cells

demonstrate a highly activated phenotype and secrete numerous

pro-inflammatory cytokines, chemokines, and growth factors,

which in turn stimulate local fibroblast-like synovial cells (FLS) to

produce IL-6, prostaglandins, and matrix metalloproteinases

(MMPs). This cascade establishes a paracrine/autocrine network

that perpetuates synovitis and leads to continuous degradation of

the extracellular matrix (68, 69).
3.1 MLS regulates FLS phenotypes in RA

In recent years, research has demonstrated that macrophages

can modulate the phenotype of FLS via diverse biological

mechanisms, including post-translational protein modifications.

This highlights the regulatory role of macrophages in controlling

the phenotype of FLS. The post-translational modifications of

malondialdehyde acetaldehyde (MAA) and citrulline (CIT) are

implicated in the pathogenesis of RA (RA). Upon modification by

MAA and/or citrullinated fibrinogen, macrophages secrete soluble

platelet-derived growth factor (PDGF) PDGF-BB subtypes, which

can promote fibroblast-like synoviocyte (FLS) differentiation into

invasive phenotypes. Compared to the control group, there is an

upregulation of the expression of phosphorylated c-Jun N-terminal

kinase (p-JNK), phosphorylated extracellular signal-regulated
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kinase 1/2 (p-Erk1/2), phosphorylated protein kinase B (p-Akt)

signaling pathways, as well as vimentin (VIM) and type II collagen

(COL2A1), indicating an increase in mRNA expression of these

genes (70). Extracellular traps (ET) are composed of histones,

double-stranded DNA, myeloperoxidase, or elastase and are

considered the primary source of citrullinated autoantigens in

RA, leading to the production of anti-citrullinated protein

antibodies (ACPA). Macrophages produce a specific type of ET

known as macrophage extracellular trap (MET) (71). The

stimulation of the DNA sensor GMP-AMP synthase (cGAS) in

RA RA-FLS by macrophage-derived microvesicles (METs) from

HP-1 cells triggers the activation of the PI3K/Akt signaling

pathway, leading to enhanced proliferation, migration, invasion,

and expression of inflammatory cytokines in RA-FLS. The findings

indicate a significant upregulation of proinflammatory cytokines

such as TNF and IL-1b, as well as matrix-degrading enzymes MMP-

9 and MMP-13, in MET-stimulated RA-FLS compared to untreated

controls (72). As single-cell sequencing and transcriptome

techniques have advanced in the study of RA (RA), numerous

investigations have explored the heterogeneity of macrophage

subtypes, indicating that macrophage polarization extends beyond

the traditional M1 andM2 classifications. Through extensive single-

cell RNA sequencing (scRNA seq) analysis, thorough phenotypic,

spatial, and functional assessments, Alivernini S et al. (73) identified

two distinct populations within the macrophage-like synoviocytes

(MLS), further stratified into nine clusters with distinct

characteristics. The MerTKnegCD206neg cluster elicits the

production of pro-inflammatory cytokines and instigates

inflammatory responses in FLS. The MerTKposCD206pos cluster

in RA patients is associated with the production of lipid mediators

during the continuous remission phase of the disease, which

resolves inflammation and promotes the repair phenotype of FLS.

This interaction between the MerTKposCD206pos cluster and FLS in

the remission phase of RA plays a crucial role in maintaining joint

immune homeostasis.
3.2 FLS regulates MLS phenotypes in RA

FLS has the capacity to induce macrophage polarization

through distinct mechanisms, diverging from the traditional M1/

M2 polarization paradigm. Prolonged exposure to pro-

inflammatory conditions may result in heightened prostaglandin

(PGE2) production in FLS. In conjunction with inflammatory

mediators, macrophages have a tendency to polarize towards

heparin-bound EGF-like growth factors (HBEGF) that deviate

from the traditional M1 and M2 polarization phenotypes. The

presence of HBEGF-enriched inflammatory macrophages in

rheumatoid arthritis has been shown to give rise to distinct

subpopulations of inflammatory mediators, including IL-1 and

the growth factor HB-EGF, as well as surface embryonic protein.

These macrophages also exhibit heightened expression of pro-

inflammatory genes such as IL1B and CXCL2. Pathway analysis

indicates that FLS may influence the metabolic profile of

macrophages treated with TNF, resulting in a collective
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suppression of factors involved in oxidative phosphorylation. On

the other hand, it has been observed that HBEGF inflammatory

macrophages have the ability to stimulate the invasiveness of FLS,

whereas EGFR inhibitors, originally designed for cancer treatment,

have shown efficacy in inhibiting the fibroblast responses induced

by macrophages in RA tissue (74). Extracellular vesicles (EVs) are

small membrane-bound particles released by cells into the

extracellular space, containing a variety of biomolecules such as

RNA, lipids, proteins, and DNA. These EVs have the ability to

transfer their contents to recipient cells, influencing their

phenotype. Exosomes, a subtype of EVs with a diameter of ≤ 100-

150 nm, are formed within multivesicular bodies. The PTX3 protein

found in exosomes derived from RA-FLS does not impact the

mRNA expression of TNF, IL6, and IL1B in M1 macrophages.

However, experimental results from transwell migration assays

indicate that PTX3 can enhance macrophage migration (75).

PTX3 is an innate immune inflammatory modulator consisting of

lipopolysaccharide, IL-1b, TNF-a, and other inflammatory factors.

These components are associated with processes such as

angiogenesis, atherosclerosis, cell proliferation, and tumor evasion

(76). Furthermore, research conducted on animals has

demonstrated that the interaction between MLS and FLS in

inflammatory environments can trigger metabolic alterations,

enhancing the longevity of MLS and contributing to the

development of chronic inflammation in RA (77). Separate mouse

arthritis tissue-derived synovial macrophages (ADSM) and arthritis

tissue-derived synovial fibroblasts (ADSF), and culture ADSM in

serum-free conditioned medium of ADSF. The expression levels of

inflammatory macrophage markers Nos2, Tnf, Il-1b, and CD86

were significantly increased in ADSM. Metabolic flux analysis

revealed upregulation of glycolysis and mitochondrial respiration

in ADSMd, suggesting a potential long-lived phenotype in ADSM.

The crosstalk between MLS and FLS has been shown to impact

the pathogenesis of RA by promoting bone destruction (78).

Additionally, the interaction between macrophages and fibroblasts

plays a role in mediating cartilage degradation and facilitating the

migration of pathogenic osteoclast precursors to the inflamed

synovium. Endothelial cells and synovial fibroblasts are significant

sources of CX3CL1, a chemokine that has been implicated in these

processes. Recent research has identified a specific subset of

macrophages, characterized by high expression of CX3CR1 and

low expression of Ly6C, F4/80, and I-A/I-E, known as arthritis-

associated osteoclast macrophages (AtoMs), as a precursor

population of pathogenic osteoclasts in arthritis. The bidirectional

signal is produced between synovial macrophages and fibroblasts

via the interaction of CX3CR1 CX3CL1. However, the precise

mechanism remains unclear (79). Li and colleagues (80)

conducted an examination of the influence of CCR2 expression

on RA-FLS by co-culturing them with macrophages in an in vitro

model. The results showed that treatment of RA-FLS with a CCR2

antagonist led to reduced expression of IL-1, IL-6, and TNF-a in

macrophages, as well as induction of M2-type differentiation. The

specific mechanism underlying these effects, potentially involving

the downregulation of inflammatory cytokines and matrix

metalloproteinases in RA-FLS, remains unclear.
Frontiers in Immunology 05
4 Conclusion

In this review, we aimed to elucidate the signaling networks that

regulate macrophage polarization, metabolic adaptations, and

interactions with FLS in order to develop targeted therapies that

can restore immune homeostasis and alleviate joint pathology in

rheumatoid arthritis (Figure 1). In RA, macrophages that are

excessively activated upregulate the expression of toll-like receptors,

leading to the initiation of synovitis and cartilage degradation

through the secretion of chemokines, pro-inflammatory cytokines,

and proteolytic enzymes. It has been suggested that the selective

elimination of synovial inflammatory macrophages in RA can be

achieved through the use of CD64-directed immunotoxins (81). In

RA patients, inflammatory macrophages in synovial fluid exhibit

elevated levels of CD64 compared to monocytes in peripheral blood,

making them potential targets for selective elimination via apoptotic

cell death (81). Despite current efforts to target macrophages by

modulating their phenotypes, there are currently no specific drugs

available for this purpose (82). In individuals with RA, the aberrant

immune microenvironment facilitates metabolic reprogramming,

modulates macrophage polarization, disturbs the equilibrium

between M1 and M2 macrophages, and hinders tissue

inflammation through intricate mechanisms. Investigating the

intercellular communication and interaction between diverse cell

types, such as synovial fibroblasts and synovial macrophages, may

aid in restoring the dysregulation of macrophage M1/M2 balance.

Inhibiting M1 macrophage polarization and inducing M2

macrophage polarization have been identified as promising

approaches for drug development in the treatment of RA. Current

treatment modalities for RA are constrained by issues such as

frequent dosing, limited bioavailability, transient efficacy, and

significant long-term side effects. Consequently, researchers have

recently focused on the utilization of bioactive nanoparticles and

macrophage-derived large vesicle-coated nanoparticles to address

these challenges.

The overstimulation of macrophages resulting in the production of

inflammatory mediators has been a prominent focus of research in the

pathogenesis of rheumatoid arthritis. While significant progress has

been made in understanding the roles of macrophage polarization and

macrophage-fibroblast crosstalk in RA pathogenesis, several key

challenges remain. Defining the full spectrum of macrophage

phenotypes beyond the simplistic M1/M2 categorization is an area of

active research, as single-cell studies reveal a high degree of

heterogeneity. Unraveling the complex interplay between signaling

pathways, epigenetic modifications, and metabolic adaptations that

shape macrophage identity represents another major hurdle.

Developing therapeutic strategies to precisely modulate these

processes in vivo without off-target effects poses an additional

obstacle. Furthermore, the bidirectional nature of macrophage-

fibroblast communication underscores the need for a holistic

examination of the RA synovial microenvironment. Future efforts

should focus on mapping the spatiotemporal dynamics of these

cellular interactions at single-cell resolution, deciphering mechanisms

of intercellular signal integration, and evaluating the therapeutic impact

of simultaneously targeting both macrophages and fibroblasts.
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Multidisciplinary approaches combining advanced techniques like

spatial transcriptomics, computational modeling, and targeted

nanoparticle engineering may pave the way towards precision

immunomodulatory interventions tailored to individual RA patients.
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FIGURE 1

The polarization of macrophages and their intercellular communication with fibroblasts play a significant role in the pathogenesis of RA. Post-
translational modifications of MAA and CIT are linked to RA pathogenesis. MAA and citrullinated fibrinogen can lead to macrophages secreting
PDGF-BB, promoting invasive FLS differentiation. In RA-FLS cells, stimulation of cGAS by METs from HP-1 cells activates the PI3K/Akt signaling
pathway, resulting in enhanced proliferation, migration, invasion, and expression of inflammatory cytokines. A significant upregulation of
proinflammatory cytokines and matrix-degrading enzymes MMP-9 and MMP-13 was observed in stimulated RA-FLS. This diagram illustrates the
intracellular signaling pathways triggered by RA pro-inflammatory M1 macrophages in the pathogenesis of RA, along with the M1 glycolytic
metabolism process. These pathways within M1 macrophages are essential in driving RA inflammation (biorender.com).
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