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Artificial intelligence and
neoantigens: paving the path for
precision cancer immunotherapy
Alla Bulashevska1, Zsófia Nacsa1, Franziska Lang2,
Markus Braun1, Martin Machyna1, Mustafa Diken2,
Liam Childs1 and Renate König1*

1Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany, 2TRON - Translational
Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH,
Mainz, Germany
Cancer immunotherapy has witnessed rapid advancement in recent years, with a

particular focus on neoantigens as promising targets for personalized treatments.

The convergence of immunogenomics, bioinformatics, and artificial intelligence

(AI) has propelled the development of innovative neoantigen discovery tools and

pipelines. These tools have revolutionized our ability to identify tumor-specific

antigens, providing the foundation for precision cancer immunotherapy. AI-

driven algorithms can process extensive amounts of data, identify patterns, and

make predictions that were once challenging to achieve. However, the

integration of AI comes with its own set of challenges, leaving space for

further research. With particular focus on the computational approaches, in

this article we have explored the current landscape of neoantigen prediction, the

fundamental concepts behind, the challenges and their potential solutions

providing a comprehensive overview of this rapidly evolving field.
KEYWORDS
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1 Introduction

Recently, there has been an increasing number of reports on promising treatment

paradigms based on reactivation of the immune system against cancer cells. Cancer

immunotherapies aim to counteract the tactics employed by tumors that deactivate the

immune system. Nevertheless, solely reactivating the immune system is not enough for the

thorough elimination of tumors. It is essential that the reactivated immune system can

distinguish malignant cells from their healthy counterparts.

The immune recognition of tumor tissues primarily relies on tumor antigens. Short

antigenic peptides derived from tumor antigens are presented on the surface of the tumor

cell by major histocompatibility complex (MHC) molecules serving as targets for the

antitumor immune response. In humans, the MHC-I and MHC-II proteins are encoded by
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Human Leukocyte Antigen (HLA) genes, which are polymorphic in

the human population. Given that the tumor antigens are the major

target for antitumor T cells, they play a pivotal role in effective

tumor elimination. Tumor antigens are typically categorized as

tumor-associated antigens (TAA) and tumor-specific antigens

(TSA). TAAs include antigens derived from genes overexpressed

in cancer cells due to their malignant transformation, and comprise

a class of normal self-proteins that are minimally expressed by

healthy tissues. TAAs are generally weakly immunogenic due to

central immune tolerance mechanisms. In contrast, TSAs are

expressed exclusively on tumor cells. Most TSAs are neoantigens

resulting from somatic mutations, such as insertion or deletions

(INDELs), single nucleotide variants (SNVs), frameshifts and gene

fusions (1). Since these neoantigens are products of tumor-specific

irregularities, they are less susceptible to central immune tolerance,

making them suitable candidates for therapeutic targeting.

Neoantigen cancer vaccines have emerged as a novel clinical

approach to treat cancer (2). The purpose of a personalized

anticancer vaccine is to direct T cells towards tumor eradication

by leveraging neoantigens while preserving healthy tissue. There are

two broad categories of immunotherapy treatments. Vaccinating

against cancer induces long-lasting de novo antitumor immunity

and is termed active immunotherapy (3, 4). Adoptive cell therapy

(ACT) approaches, such as adoptive transfer of tumor-infiltrating

lymphocytes (TILs), transgenic T cells, or chimeric antigen receptor

T cells are based on the in vitro generation of tumor-specific T cells

with subsequent infusion to the patient (passive immunotherapy).

Currently, there is a variety of clinical trials, testing neoantigen-

based anticancer vaccines either independently or in conjunction

with other immunotherapies, checkpoint inhibitors or novel drugs

under investigation. Numerous articles comprehensively review the

field of mutation-derived neoantigen cancer vaccines. For detailed

insights into preclinical and clinical studies, we recommend the

review of Aurisicchio et al. (5). The review paper of Shemesh et al.

(6) presents the clinical trial landscape of personalized therapeutic

cancer vaccines, highlighting their opportunities and emerging

challenges. Further insights into the challenges associated with

targeting cancer neoantigens are outlined in the work of Chen
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et al. (7). Designing neoantigen cancer vaccines, trials, and trial

outcomes are described in Biswas et al.’s work (8).

Detection of neoantigens is crucial for developing personalized

cancer immunotherapies. Currently artificial intelligence (AI) is widely

used to assess the factors that shape tumor immunogenicity. The use

of AI for neoantigen prediction enhances the accuracy, efficiency, and

personalized nature of cancer immunotherapy development by

effectively analyzing and interpreting complex genomic data.

However, the identification of putative neoantigens from genomic

data still remains a challenge. To address this, specialized software

tools have been developed for specific sub-tasks such as HLA typing

and in silico prediction of peptide binding affinity to MHC molecules.

Complex pipelines that encompass multiple analytical tasks have also

been created. Current strategies for the identification of neoantigens

are extensively reviewed in multiple articles (9–11).

For the successful implementation of AI vast amount of data is

required. Genomic data comes in various forms, such as DNA

sequences, RNA expression profiles. AI models can be trained to

handle diverse data types, allowing for a more comprehensive, fast

analysis of the factors influencing neoantigen formation. Significant

amounts of high-throughput biomedical data, including omics and

immunological data, have been accumulated in public databases, and

can be transformed into novel insights. These data can be used for

training a model with AI - based computational algorithm to properly

interpret the data and learn from it in order to make accurate

decisions based on the input information provided (Figure 1).

Additionally, AI models can help to identify novel neoantigens by

recognizing patterns and associations in the molecular and cellular

profiling data that may be challenging with the traditional methods.

Most state-of-the-art computational approaches for ranking and

selecting candidate neoantigens predominantly rely on prediction

methods, rooted in conventional machine learning (ML) algorithms,

including artificial neural networks (ANNs), and modern AI

architectures, trained on large experimental datasets.

Artificial Neural Networks are computational models inspired by

biological neural networks. They learn the relationship between the

inputs and outputs using samples from the training dataset (e.g., peptide

sequences) and make predictions for the new samples. ANN’s are
FIGURE 1

Schematic overview of AI algorithm training on public databases. A group of subjects, specific for the condition of interest is chosen for the
experimental procedures. After completing the experimental pipelines, the generated data is stored in a public database. AI algorithms can then be
trained on these datasets.
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optimized by adjusting their parameters (weights and biases) based on

the difference between the predicted values and actual values, utilizing

the error-correction-learning rule known as back propagation.

Deep Learning (DL), a subset of machine learning and artificial

intelligence stemming from ANNs, has gained increasing attention

over the past years. The most commonly applied architectures

include deep neural networks (DNNs) and convolutional neural

networks (CNNs). DNNs consist of an input layer, multiple hidden
Frontiers in Immunology 03
layers, and an output layer with nodes in adjacent layers fully

interconnected. CNNs primarily feature convolutional and pooling

layers, often followed by fully connected layers. For an in-depth

understanding of deep learning principles and concepts, we

recommend the book of Goodfellow et al. (12). For definitions of

AI and DL-related terms, please refer to our AI glossary (Table 1).

Notable applications of deep learning in biomedicine, including

medical imaging and drug discovery, are comprehensively covered
TABLE 1 – AI glossary.

Terms Definitions

Artificial Intelligence (AI)
Field of computer science developing approaches possessing intelligent capabilities for learning, reasoning,
planning, prediction, problem-solving and decision making.

Artificial Neural Network (ANN) Models of computation inspired by human brain and consisting of a collection of interconnected neurons.

Attention module
Assigns weights to individual parts of the input and learns to assign higher weights, attention values, to those
inputs that make a greater contribution to the prediction.

Back propagation
Algorithm used for training of ANN i.e. updating its parameters by applying the chain rule of differentiation
starting from the network output and propagating the gradients backward.

Bidirectional Encoder Representations from
Transformers (BERT)

A large scale model pre-trained on large amounts of unannotated data, which can be fine-tuned to the final
model using another smaller task-specific dataset.

Bidirectional Recurrent Neural Network (BiRNN)
Labels each element of the input sequence based on the element’s past and future contexts by concatenating
the outputs of two RNNs, one processing the sequence from left to right, the other one from right to left.

Binary classification Classification task where each input sample should be categorized into two exclusive categories.

Capsule Neural Network (CapsNet)
Type of ANN attempting to better model hierarchical relationships and mimic biological neural organization
more closely.

Convolutional Neural Network (CNN)
Employs convolutional layers which function as feature detectors learning filters (sets of weights) applied to all
parts of the input in parallel.

Deep Learning (DL)
Type of ML imitating the way how brain gains knowledge, employing highly nonlinear neural network models
to learn representations or features of the data for the prediction task at hand.

Embedding
Multidimensional numeric vector or intermediate CNN output which can be considered as encoding or
representation of the input data.

Ensemble Learning
Technique to combine multiple machine learning algorithms to generate more accurate prediction than a
single model.

Explainable AI/Explainability
AI approaches having the goal to make decision logic and reasoning of AI algorithms trusted and easily
understood by humans.

Fine-tuning Additional training of existing, pre-trained model on a new context- or task- specific data.

Gated Recurrent Unit (GRU) Variation of LSTM without memory unit. Works better for smaller datasets.

Generalization refers to how well the trained model performs on data it has never seen before.

Generative Pre-trained Transformer (GPT) Large language model (LLM) developed by OpenAI. LLMs can have billions of parameters.

Learning or Optimization the process of adjusting a model to get the best performance possible on the training data.

Long Short-Term Memory (LSTM)
Evolution of RNN capable to learn which information from the past (previous words of the sentence) should
be used for the current output and which can simply be forgotten.

Machine Learning (ML)
Process of construction a model based on sample data or experience, known as training data, capable to make
predictions or decisions about the future previously unseen samples.

Multiple Instance Learning
Learning paradigm which allows the training of a classifier from ambiguously labeled data. In particular, rather
than providing the learning algorithm with input/label pairs, labels are assigned to sets or bags of inputs.

Natural Language Processing (NLP)
Subfield of AI focusing on the ability of computers to read and analyze large volumes of unstructured language
data (e.g., text).

Neuron (Perceptron)
Computational unit. Computes a weighted sum of its inputs and applies a nonlinear activation function to
calculate its output.

(Continued)
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in Wainberg et al. (13), while Wen et al. (14) delve into DL methods

in proteomics.

Deep learning requires all input and output variables to be numeric.

One important aspect of DL is data preprocessing or input encoding,

which transforms raw data, such as peptide or protein sequences, into a

suitable format for learning. Designing novel representation methods

for protein sequence data is an active research direction. For example,

the DeepLigand (15) approach treats each peptide sequence as a

sentence, and each amino acid as a word, using the deep language

model ELMo (16) to embed peptides into vector representations for

tasks like peptide-MHC binding affinity prediction.

In addition to DNN and CNN, other DL architectures, such as

gated recurrent unit (GRU) and long short-term memory (LSTM)

neural networks, have proven effective for the peptide sequence-

based prediction tasks. These methods can model dependences

between amino acid residues within peptides of varying lengths

without artificial lengthening or shortening, and they tend to be

substantially faster than standard neural networks.

Recent advances in Natural Language Processing (NLP) have

demonstrated the effectiveness of complex models, such as

Transformers, including BERT (Bidirectional Encoder Representations

from Transformers) (17), and GPT (Generative Pretrained

Transformer) (Radford et al., 2018)1, in learning rich contextual word

representations. They can be trained to understand semantics from text

without labels (self-supervised learning) (18). Similar techniques have

also been applied to learn features from a large corpus of protein

sequence data from public datasets (19, 20).

Another important characteristic of DL is transfer learning,

which involves initializing training with representations learned

from a previous task. Instead of training a new network from

scratch, pretrained models can be downloaded and further trained
1 Radford A, Narasimhan K, Salimans T, Sutskever I. Improving Language

Understanding. (2018) 4. OpenAI.com.
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for a new task by adding additional layers or fine-tuned using the

new data. Examples include BERTMHC (21), MHCRoBERTa (22)

which use transformers and transfer learning for peptide-MHC

binding prediction. The authors found that leveraging self-

supervised pretraining on large protein sequence corpora can lead

to improved performance, particularly when training data is limited.

Achieving optimal prediction accuracy requires the tuning of

model settings, or hyperparameters, e.g. determining how fast the

weights of NN should be adjusted during training. Hyperparameter

search techniques use validation examples that are held out from

training. We provide the reader with a helpful background for

understanding approaches assessing the performance of AI systems

and establishing the trust in it.

Numerous publications have explored the application of AI in

cancer research, precision medicine (23), cancer immunotherapy

(24), and neoantigen identification (25). To gauge the potential of

AI-driven software solutions, several benchmarking studies have

been conducted. Evaluating and comparing tools is an essential part

for their future application in the medical field and everyday clinical

practice, as no single approach is universally applicable and having

a dependable predictor or genotyper is vital. Despite the continually

improving performance, critical questions regarding the application

of AI technology in cancer immunotherapy remain. In this review,

we summarize the core neoantigen calling pipeline, the recent

research progress, and discuss the potential of artificial

intelligence-enabled neoantigen identification, along with its

current limitations and challenges.
2 Computational hunting
for neoantigens

The core computational pipeline established for the process of

identification and selection of genomically encoded antigens that

are of immunological significance includes the following steps (25):
TABLE 1 Continued

Terms Definitions

Overfitting
Occurs when a model learned patterns that are specific to the training data but irrelevant when it comes to
new data.

Parameters
A set of numerical values in an AI model (e.g. weights of neural connections in ANN) that are determined
by training.

Recurrent Neural Network (RNN)
Type of ANN introduced for sequential data processing. Each node in the RNN functions as a memory cell, in
which the output is transmitted back to the RNN neuron rather than only passing it to the next node.

Self-supervised Learning
supervised learning without human-annotated labels. The labels are still involved but they’re generated from
the input data.

Supervised Learning
Consists of learning to map input data to known targets (also called annotations), given a set of examples
(often annotated by humans).

Transfer Learning
The process of using pre-trained model and quickly retrain it for the new task, or add additional layers on top,
rather than training a new model from scratch.

Transformer
NLP model trained on a large data set of sentences for the task of inferring missing words that fit both in
terms of grammar and semantics taking into account the surrounding context.

Unsupervised Learning Finding interesting patterns or transformations of the input data without the help of any annotations.
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Fron
Whole exome or genome sequencing (WES or WGS) data of

tumor and matched normal DNA samples

Somatic mutation calling

Conversion of detected coding DNA somatic mutations to

corresponding mutated peptide sequences

HLA-allele typing

Peptide prioritization, neoantigen calling

o Prediction of peptide-MHC binding affinity

o Prediction of T cell receptor (TCR) recognition, TCR binding

affinity and T cell response

o Immunogenicity prediction

o Expression analysis of putative neoantigens, using e.g. RNA-

seq data
The effective pattern recognition by AI allows for the

development of personalized cancer treatments by considering the

unique genomic profile of each patient’s tumor. As standard

practice, neoantigens are predicted from the mutated peptides by

assessing their ability to trigger an immune response. The

development of AI-based prediction tools allows immunologists

to streamline the search for neoantigen candidates that require

experimental validation (Figure 2).

In the following, we provide an overview of the most common

computational methods used in the neoantigen identification

pipeline and outline the challenges associated with the process.
2.1 Somatic mutation calling

The process of somatic mutation calling is well-established and

includes several critical steps, such as quality control of sequencing

reads, alignment to the reference genome, base quality recalibration

and INDEL realignment, comparison of healthy and tumor

alignments. For quality control of sequencing reads in a WES (or

WGS) dataset, FastQC (26) is commonly used, and BWA (27) is a

widely employed aligner. Base quality recalibration and INDEL

realignment around clusters of putative somatic mutations are both

integral tools of Genome Analysis Toolkit (GATK) (28). There are

numerous somatic mutation callers available, including MuTect

(29), Abra (30), Strelka (31), and VarScan (32). For best practices in

variant calling in clinical sequencing, readers are referred to the

work of Koboldt (33). A comprehensive overview of the variant

calling tools and their pros and cons is provided in the paper of

Cai et al. (25).

Various databases can be used for variant annotation, such

as CancerHotspots (34), and the Catalogue Of Somatic Mutations

In Cancer COSMIC (35). The Variant Interpretation for Cancer

Consortium (VICC) has standardized the curation, representation,

and interpretation of clinically-relevant evidence associated with

genomic variation in cancers. VICC guidelines (36) can be used to

classify variants in known cancer genes (37).
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2.2 False-positive mutation calls

There is a possibility that an identified mutation may yield a

false-positive result potentially leading to the treatment of a patient

with a drug targeting a nonexistent somatic mutation. To mitigate

clinical efficacy risk, mutation calls from DNA sequencing should

be cross-verified with the results of replicate sequencing runs.

Moreover, utilizing extra sequencing data, like RNA-seq from the

same tumor sample, to identify somatic mutations and check for

overlaps reduces false positives. Yet, it may raise the risk of false

negatives due to transient gene expression and variable read

coverage (38). Combining multiple somatic mutation callers has

been observed to significantly reduce the false positive rate (39, 40).
2.3 Identified mutation is a SNP

There is a possibility that an identified mutation exists in both

tumor and healthy (germline) cells, representing a single nucleotide

polymorphism (SNP) rather than a somatic mutation. Deep

sequencing of germline DNA samples is essential to identify

potential SNPs with high sensitivity.
2.4 False-negative mutation calls

There is a possibility that variant callingmay fail to detect a somatic

mutation that could produce a highly immunogenic neoantigen. While

this omission does not harm the patient directly, it can result in a

missed candidate neoantigen for the vaccine. To minimize this risk,

deep sequencing of DNA samples (typically ~200x) is recommended to

ensure high coverage across the entire protein-coding region. Unlike

germline testing, which typically requires a minimum of 30x coverage

with balanced reads, the identification of somatic variants in tumor

specimens demands significantly higher read depths. This necessity

arises from the presence of tissue heterogeneity, encompassing

malignant cells, supporting stromal cells, inflammatory cells, and

contaminant tissue. Additionally, intra-tumoral heterogeneity,

represented by various tumor subclones, and considerations of

tumor viability further underscore the need for elevated coverage. In

instances of low tumor cellularity in tissue specimens, achieving an

average coverage of at least 1000x may be essential to confidently detect

heterogeneous variants. Additionally, the option to include multiple

targets (e.g., up to 20 candidate neoantigens) in an individual drug

product should limit the impact of missed mutations.
2.5 Sources of cancer neoantigens beyond
single-nucleotide variants

Emerging evidence suggests the existence of alternative sources

of cancer neoantigens, such as alternative splicing variants (41),

post-translational modifications (42), and transposable elements
frontiersin.org
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(1), and gene fusions (43). These alternative sources may serve as

attractive novel targets for immunotherapy (44). Nevertheless,

addressing the tumor-specificity still remains a challenge.
3 HLA-allele typing

HLA typing of the individual patient samples, specifically the

accurate identification of the individual set of HLA alleles (HLA

allotypes), is essential. Peptide-MHC affinity strongly depends on

HLA alleles, resulting in distinct immune responses among

individuals (45). Genotyping the class I genes HLA-A, -B and -C,
Frontiers in Immunology 06
as well as the class II genes HLA-DRB1, -DQB1, and -DPB1

presents a non-trivial task.

Sequence-based typing (SBT) based on Sanger sequencing can

be used for HLA typing. However, due to certain limitations, such

as the need for additional sequencing to identify cis/trans

polymorphism, the concordance rate of Sanger sequencing-based

HLA genotyping is approximately 84% among different laboratories

(46). Commercial software, such as uTYPE (Life Technologies.

Brown Deer, WI), Assign-SBT (Conexio, San Francisco, CA) (47),

and SBTEngine (GenDx, Utrecht, Netherlands) (48), along with

some open-source tools, e.g. SOAPTyping (49) are capable of

producing predictions from Sanger sequencing data. However,
FIGURE 2

Steps of neoantigen selection from patient data. A set of diagnostic procedures are completed on patient derived samples. Ideally all of the above-
mentioned patient data (WES, WGS, HLA typing, RNA-seq) are available before proceeding. After a candidate peptide selection is generated from the
patient data, the AI model of preference is applied. The AI model will compute a ranked peptide list from the candidate peptides. Careful design of
personalized vaccine is available, based on the peptide rankings.
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they are increasingly being replaced by NGS-based methods. High-

throughput WES and RNA-seq sequencing data also serve as a

foundation for HLA typing. Most HLA genotyping tools take NGS

sequencing data as the input and output HLA types. The algorithms

employed by the tools primarily differ in how they map sequencing

reads to a panel of reference HLA allele sequences and the strategy

they use to subsequently score candidate alleles (50).

OptiType (51) is a HLA genotyping algorithm based on integer

linear programming, capable of producing accurate 4-digit HLA

genotyping predictions (for example, A01:01) from NGS data. To

maximize the number of explained reads by simultaneously

considering all major and minor HLA-I loci when predicting 4-

digit HLA genotypes, this process involves aligning sequences from

whole exome/genome/transcriptome sequencing data with a known

MHC class I allele reference. Many tools for HLA typing are freely

available for academic use, such as seq2HLA, ATHLATES,

HLAminer, SOAP-HLA-2.2. A comprehensive list is provided in
Frontiers in Immunology 07
Table 2. Figure 3 depicts a generalised workflow for NGS-based

HLA genotyping.
3.1 Benchmarking of HLA genotyping tools

There are multiple studies benchmarking HLA genotyping

tools. Matey-Hernandez et al. (67) found that HLA typing tools

based on WES and RNA-seq data exhibit prediction power almost

equivalent to gold standards like PCR. Li X. et al. (45) focused on

TCGA (68) cohorts, revealing superior performance of HLA class I

over class II, with POLYSOLVER (60), OptiType (51) and xHLA

(63) demonstrating high accuracy in HLA class I calling, and an

ensemble HLA calling from the top-3 tools outperformed individual

ones. Claeys et al.’s (69) study assessed 13 MHC class I and/or class

II HLA callers, highlighting OptiType and arcasHLA (66) for

MHC-I calling accuracy and HLA-HD (62) for MHC-II calling
TABLE 2 – HLA-allele typing.

HLA-allele typing

Algorithm Year Input URL

seq2HLA
2012
(52)

RNA-seq https://github.com/TRON-Bioinformatics/seq2HLA

HLAminer
2012
(53)

WES/WGS/RNA-seq/Long Reads http://www.bcgsc.ca/platform/bioinfo/software/hlaminer

ATHLATES
2013
(54)

WES https://github.com/cliu32/athlates

SOAP-HLA
2013
(55)

Target capture sequencing/WGS http://soap.genomics.org.cn/SOAP-HLA.html

HLAforest
2014
(56)

RNA-seq https://code.google.com/p/hlaforest/

OptiType
2014
(51)

WES/WGS/RNA-seq https://github.com/FRED-2/OptiType

PHLAT
2014
(57)

WES/WGS/RNA-seq https://sites.google.com/site/phlatfortype

hla-genotyper
2014
(58)

WES/WGS/RNA-seq https://pypi.org/project/hla-genotyper/

HLAreporter
2015
(59)

WES http://paed.hku.hk/genome/

POLYSOLVER
2015
(60)

WES http://www.broadinstitute.org/cancer/cga/polysolver

HLA-VBSeq
2015
(61)

WGS/WES http://nagasakilab.csml.org/hla

HLA-HD
2017
(62)

WES/WGS/RNA-seq/Long reads https://www.genome.med.kyoto-u.ac.jp/HLA-HD/

xHLA
2017
(63)

WGS/WES https://github.com/humanlongevity/HLA

Kourami
2018
(64)

WGS/WES https://github.com/Kingsford-Group/kourami

HLA*LA (HLA*PRG)
2019
(65)

WGS/WES https://genomeinformatics.github.io/HLA-PRG-LA/

ArcasHLA
2020
(66)

RNA-seq https://github.com/RabadanLab/arcasHLA
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accuracy. The study concludes that the optimal HLA genotyping

strategy from NGS data depends on factors like data type, dataset

size, and computational resources, recommending OptiType and

HLA-HD if resources permit (69).
4 Peptide-MHC binding prediction

T cells recognize peptides presented on MHC molecules of

tumor cell. These molecules come in two main classes: peptide-

MHC class I complexes, found on nucleated cells and recognized by

CD8 + T cells, and peptide-MHC class II complexes, displayed on

antigen-presenting cells like dendritic cells, activating CD4 + T cells.

The diverse peptide repertoire is influenced by allele-specific amino

acid preferences of MHC molecules. Due to individual variations in

MHC alleles, the presented repertoire varies across people, with
Frontiers in Immunology 08
certain alleles being more common. The peptide-MHC interaction

determines neoepitope presentation, impacting the level and type of

T cell responses generated. While experimental MHC binding

assays involve synthesizing and testing peptides, this is laborious

and expensive on a large scale. Consequently, various

computational algorithms and tools have been developed to

predict peptide-MHC binding or assess binding affinity between

mutated peptides and the patient’s MHC alleles (70).

It is important to note that other biologic processes can impact

antigen presentation and immunogenicity of a particular

neoantigen beyond MHC binding. Other factors, such as delivery

of antigen to antigen presenting cells, antigen cleavage and

processing by immunoproteasomes, peptide-MHC complex

stability, are also important determinants of immunogenicity (7).

Early prediction tools relying on techniques as position-specific

scoring matrices (PSSM) or sequence-scoring functions, such as
FIGURE 3

NGS-based HLA genotyping. Sequence data generated by sequencing technologies is mapped against the reference allele repository (IPD-IMGT).
Corresponding to the HLA genotyping algorithm used either the raw reads or assembled contigs are aligned.
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SYFPEITHI (71), RANKPEP (72), PickPocket-1.1 (73),

MixMHCpred (74), encountered difficulties in recognizing

correlated effects. These effects manifest when an amino acid’s

binding is influenced by the other amino acids in the peptide.

The limitations of earlier tools in recognizing such correlated effects

emphasize the suitability of neural networks as methods adept at

considering these complex interactions (75).

Over the last decade, MS-based MHC peptidomics has become

the dominant source of information about MHC binding

specificities, with the ability to analyze ligands at greater depths

than in vitro binding assays. Compilation of MHC ligandome data –

the entirety of HLA presented peptides has been advanced by mass

spectrometry (MS) based immunopeptidomics, in which the whole

immunopeptidome of the cell is harvested and then eluted ligands

(EL) are identified using MS. First application of direct neoepitope

candidate identification using MS in native human tumors was

presented in the paper of Bassani-Sternberg et al. (76). The authors

assembled the ligandomes from human melanomas to a depth of

95,500 ligands. Eleven ligands were derived from candidate

neoantigens, and four were proven to be immunogenic in T cell

validation assays. MS profiling of HLA-associated peptidomes in

mono-allelic cells enabled more accurate MHC-I epitope prediction

in the study of Abelin et al. (77). MS immunopeptidomics is also

able to identify protein hotspots, or regions within a protein prone

to proteasomal cleavage and ligand production (78). Freudenmann

et al. (79) constructed their own dataset and identified thousands of

peptides bound to 16 different HLA class-I alleles to assess critical

factors needed to epitope presentation.

However, in EL MS workflows typically pan- or locus-specific

antibodies are used for immunoprecipitation (IP) during the

purification of peptide–MHC complexes. This results in

inherently poly-specific or Multi Allelic (MA) data, which

comprises peptides that align with multiple cognate MHC

binding motifs (80). For example, any of the six different MHC-I

proteins present in a cell might be responsible for a peptide

observation. These data need to be deconvoluted, i.e. transformed

to Single Allelic (SA) or single peptide-MHC annotations, to be

employed for the training of MHC-specific binding predictors. The

method NNAlign_MA (81) resolved this limitation by

incorporating into the prediction algorithm training procedure a

strategy called pseudolabeling, which clustered EL sequences with

ambiguous cognate MHCs into single MHC specificities.

Various AI-based tools have been developed to predict peptide-

MHC binding using a range of neural network architectures and

strategies in an attempt to improve predictive performance and

generalizability of their models. They work on multiple data types

including peptide sequences and mass spectrometry profiles.

One major issue impeding the generalizability of ML models is

the lack of binding affinity data for rare MHC alleles. This can be

addressed using various approaches such as using the sequence

homology of rare MHC alleles with common MHC alleles to infer

potential ligand preferences as NetMHCpan (82, 83) does. Also,

NNAlign_MA was deployed in NetMHCpan to deconvolute

ligandomes from MS datasets (80).

Another way is to use transfer learning by pre-training models

on more common MHC classes and fine-tuning the models on the
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data for rare MHC classes. This approach is used by tools such as

MHCnuggets (84), ImmunoBERT (85) and MHCRoBERTa (22).

ImmunoBERT used transfer learning from the Tasks Assessing

Protein Embeddings (TAPE) (86). The TAPE model was trained on

a dataset of over 31 million protein sequences from the Pfam

database. The authors of MHCRoBERTa used self-supervised

training with label-agnostic protein sequences from UniProtKB

(87) and Swiss-prot databases, and then fine-tuned the training

with data from the Immune Epitope Database and Analysis

Resource (IEDB) (88).

Many tools use approaches adopted from other domains. From

the image processing domain comes the convolutional neural

network which can learn multiple intrinsic features of the peptide

sequence that can be used to predict binding affinity. Examples of

these tools include ConvMHC (89), HLA-CNN (90) and DeepMHC

(91). MHCSeqNet (92) uses techniques from the natural language

processing domain by treating epitope peptide sequences as

sentences composed from amino acids as individual words.

Some tools use ensemble learning, a technique that combines

the output of several models using a weighted or uniform

consensus. The concept behind the consensus methods is that

prediction performance can be further improved by integrating

the outputs from several individual tools using a weighted scheme.

This includes tools such as MHCflurry (93) and NetMHCcons (94).

MHCflurry is supporting only a fixed set of alleles (95).

Others tools provide or require additional data. Tools such as

HABIT (96) provides an interpretation of the impact of amino acid

variants alongside the binding affinity prediction. EDGE (97) and

MARIA (98) require transcript abundances and flanking sequence

in addition to the peptide sequence and MHC allele.

A class of tool use mass spectrometry and immunopeptidomics

data as input data instead of peptide sequence data. This class of

tool includes HLAthena (99) which shows 1.5-fold enhanced

accuracy compared to sequence based tools and SHERPA (100).

An overview of tools used for MHC binding prediction is shown

in Table 3.

Other tools focus on visualizing and comparing different MHC

molecule binding specificities to aid the understanding of main

binding properties An example of such as tool is MHC Motif Atlas

(128, 129) which contains 1,013,733 ligands interacting with 135

MHC-I and 88 MHC-II molecules, including information about

binding motifs, peptide length distributions, motifs of

phosphorylated ligands, multiple specificities and enables users to

download curated datasets of MHC ligands, MHC sequences and

MHC X-ray crystallography structures.
4.1 Identification of MHC class II
neoantigens is challenging

Predicting MHC class II binding poses an extra challenge

compared to class I due to limited training data and the complex

nature of HLA-II ligands. In humans, HLA class II is encoded by

three different loci (HLA-DR, -DQ, and -DP) with numerous allelic

variants and polymorphisms clustered around the peptide-binding

groove, resulting in a wide range of distinct peptide binding
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TABLE 3 – Peptide-MHC binding affinity prediction.

Peptide-MHC binding affinity prediction

Algorithm Year Strategy MHC URL

NetMHC-4.0
2016
(101)

Gapped sequence alignment
using ANN

MHC-I https://services.healthtech.dtu.dk/services/NetMHC-4.0/

MixMHCpred 1.0
2017
(74)

Fully unsupervised and
semi-supervised ML

MHC-I
Only updated version is available at:
https://github.com/GfellerLab/MixMHCpred

ConvMHC
2017
(89)

DCNN MHC-I https://github.com/aidanbio/convmhc

HLA-CNN
2017
(90)

DCNN MHC-I https://github.com/uci-cbcl/HLA-bind

NetMHCpan-4.0
2017
(83)

ANN MHC-I https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/

DeepMHC
2017
(91)

DCNN MHC-I http://mleg.cse.sc.edu/deepMHC/

MHCflurry
2018
(93)

ANN MHC-I
Only updated version is available at:
https://github.com/openvax/mhcflurry

AI-MHC
2018
(102)

DCNN
MHC-I
MHC-II

https://baras.pathology.jhu.edu/AI-MHC/index.html

MHCSeqNet
2019
(92)

DCNN MHC-I https://github.com/cmbcu/MHCSeqNet

EDGE
2019
(97)

DCNN MHC-I Not available

MARIA
2019
(98)

RNN MHC-II https://maria.stanford.edu/

DeepHLApan
2019
(103)

GRU combined
with attention

MHC-I http://biopharm.zju.edu.cn/deephlapan

CNN-NF
2019
(104)

DCNN MHC-I https://github.com/zty2009/MHC-I

DeepLigand
2019
(15)

Deep language model
(ELMo) pre-trained on
natural ligands, combined
with deep residual network

MHC-I https://github.com/gifford-lab/DeepLigand

PUFFIN
2019
(105)

Deep residual network-
based approach that
quantifies uncertainty
in prediction

MHC-I
MHC-II

https://github.com/gifford-lab/PUFFIN

NeonMHC2
2019
(106)

Ensemble of CNNs MHC-II https://neonmhc2.org/

MHCherryPan
2019
(107)

LSTM, CNN MHC-I Not available

DeepSeqPan
2019
(108)

DCNN MHC-I https://github.com/pcpLiu/DeepSeqPan

DeepSeqPanII
2019
(109)

RNN combined
with attention

MHC-II https://github.com/pcpLiu/DeepSeqPanII

ACME
2019
(110)

Attention-based CNNs MHC-I https://github.com/HYsxe/ACME

MHCnuggets
2020
(84)

LSTM networks and GRUs
MHC-I
MHC-II

https://github.com/KarchinLab/mhcnuggets

USMPep
2020
(111)

Learned embedding layer;
AWD LSTM with one
hidden layer

MHC-I
MHC-II

https://github.com/nstrodt/USMPep

(Continued)
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TABLE 3 Continued

Peptide-MHC binding affinity prediction

Algorithm Year Strategy MHC URL

IConMHC
2020
(112)

DCNN MHC-I Not available

MHCAttnNet
2020
(113)

Attention-based deep
neural model, MHC alleles
classes I and II

MHC-I
MHC-II

https://github.com/gopuvenkat/MHCAttnNet

MHCflurry 2.0
2020
(95)

ANN MHC-I https://github.com/openvax/mhcflurry

NetMHCpan 4.1
2020
(80)

ANN MHC-I https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/

BERTMHC
2021
(21)

BERT-based architecture
and multiple
instance learning

MHC-II
https://bertmhc.privacy.nlehd.de/, https://github.com/
s6juncheng/BERTMHC

DeepAttentionPan
2021
(114)

DL pan-specific model with
improved
attention mechanism

MHC-I https://github.com/jjin49/DeepAttentionPan

DeepNetBim
2021
(115)

DL model based on
network analysis by
harnessing binding and
immunogenicity
information

MHC-I https://github.com/Li-Lab-SJTU/DeepNetBim

SHERPA
2021
(100)

Composite model
incorporating binding
affinity, monoallelic and
multiallelic data constructed
with gradient boosting
decision trees

MHC-I Not available

MATHLA
2021
(116)

Bidirectional LSTM and
multiple head
attention mechanism

MHC-I https://github.com/MATHLAtools/

ImmunoBERT
2021
(85)

BERT-based architecture MHC-I https://github.com/hcgasser/ImmunoBERT

MHCRoBERTa
2022
(22)

Pan-specific prediction
through transfer learning
with label-agnostic
protein sequences

MHC-I https://github.com/FuxuWang/MHCRoBERTa

FIONA
2022
(117)

Flexible Immunogenicity
Optimization
NN Architecture

MHC-II http://therarna.cn/fiona.html

HLApollo
2022
(118)

Transformer model with
diverse negative coverage,
deconvolution and protein
language features

MHC-I Not available

HLAB
2022
(119)

BiLSTM feature learning
from ProtBert-
encoded proteins

MHC-I http://www.healthinformaticslab.org/supp/resources.php

DeepNeo
2023
(120)

DCNN
MHC-I
MHC-II

https://deepneo.net/

IEPAPI
2023
(121)

Transformer-based feature
extraction, incorporating
antigen presentation
and immunogenicity

MHC-I https://github.com/ddd9898/IEPAPI

(Continued)
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specificities. This complexity of HLA-II ligands results in binders

with longer and more heterogeneous peptide sequences and varying

peptide length distributions, making their prediction more

challenging (106, 130). A comprehensive trans-allelic model for

prediction of peptide-MHC-II interactions for all three human

MHC-II loci was proposed by Degoot et al. (131). The authors

investigated contributions of certain binding pockets to the binding

energy and found that binding pocket P5 of HLA-DP contributes

strongly to the binding energy. Most HLA class II prediction

algorithms have primarily targeted HLA-DR molecules, given the

extensive data available for them (127). On the other hand, HLA-

DQ molecules are more complex to study experimentally.

NetMHCIIpan-3.2 (132) and NetMHCIIpan-4.0 (80) predict

antigen presentation for any HLA class II molecule. For HLA-DQ

and DP heterodimers, both a- and b-chain sequences are needed.

Nilsson et al. (127) used a DQ-specific antibody during purification

to obtain immunopeptidome data for 14 different HLA-DQ

molecules from 16 homozygous B Lymphoblastoid Cell Lines

(BLCLs) using liquid chromatography coupled with mass

spectrometry (LC-MS/MS) to train NetMHCIIpan-4.2.

Benchmarked against MixMHC2pred-2.0 (122), on independent

DQ data consisting of EL data from 15 donor samples enriched with

random negative peptides, NetMHCIIpan-4.2 excelled in motif

deconvolution and identifying DQ ligands. BERTMHC is an

transformer-based peptide-MHC class II interaction prediction

method (21). The pretrained BERT from TAPE repository was

used to model the input amino acid sequences. Additionally,

multiple instance learning was employed to account for the

limitation that mass spectrometry data often cannot precisely

identify the exact MHC molecule to which a peptide was bound.

Four methods (MHCnuggets (133), AI-MHC (102), PUFFIN

(105), and USMPep (111)) can make predictions for both MHC

classes. A majority of the responses to neoantigens in preclinical

and clinical setting are MHC class II restricted (134). Therefore,

improvement of algorithms on MHC class II binding interactions is
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crucial, since it will significantly enhance the selection of MHC-

class II restricted neoantigens.
4.2 Challenges of mass spectrometry
limiting MHC ligandome datasets

MS data has inherent biases such as overrepresentation of

“flyable” peptides and neglect of cysteine-containing peptides,

limiting the detectable set of ligands (80). Some MHC molecules,

such as HLA-C and HLA-DQ, have limited ligand datasets (80).

The performance of AI-based approaches used for predictions relies

on quality and diversity of the training data. Therefore,high-quality

data sets covering a broad range of HLA alleles, are crucial. Future

work exploiting antibodies with improved specificities or using

engineered cell lines with tagged HLA molecules might help to

resolve this.
4.3 Benchmarking of peptide-MHC binding
prediction tools

Benchmarking peptide-MHC binding predictors is not

straightforward due to differences in the MHC alleles, peptide

sizes, and non-standardized outputs of the methods. In 2014, the

Immune Epitope Database automated benchmark was established

to address the need for an unbiased evaluation of the MHC-I

binding predictors (135). They assembled a blind test which ensures

that the data will be new to all of the participating tools (135, 136).

Based on the criteria established by the benchmark a peptide is

deemed a binder if it was experimentally reported to qualitatively

bind to an MHC, or its half-life (T1/2) bound to the MHC is

reported to be longer than 120 min, or its IC50 is reported to be

lower than 500 nM (135). Peptides that do not meet any of those

criteria are considered non-binders (137).
TABLE 3 Continued

Peptide-MHC binding affinity prediction

Algorithm Year Strategy MHC URL

MixMHC2pred 2.0
2023
(122)

Deep motif deconvolution
with MoDec, fully
connected NNs

MHC-II http://mixmhc2pred.gfellerlab.org/

CapsNet-MHC
2023
(123)

Capsule neural networks MHC-I https://github.com/s7776d/CapsNet-MHC

DeepMHCI
2023
(124)

Anchor position-aware
deep interaction model

MHC-I https://github.com/ZhuLab-Fudan/DeepMHCI

MixMHCpred 2.2
2023
(125)

Fully unsupervised and
semi-supervised ML

MHC-I https://github.com/GfellerLab/MixMHCpred

TLimmuno2
2023
(126)

MHC class II antigen
immunogenicity through
transfer learning

MHC-II https://github.com/XSLiuLab/TLimmuno2

NetMHCIIpan-4.2
2023
(127)

ANN MHC-II https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.2/
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Trevizani et al. (137) investigated predictor rankings using a

benchmark. They found that due to the benchmark’s data update

rate, a new method had to wait at least four years to be compared

with existing ones. The top-performing tools consist of

NetMHCcons-1.1, NetMHCpan-4.0, ANN 3.4 (138) (updated to

ANN 4.0 (101) in 2016), NetMHCpan-3.0 (82) and NetMHCpan-

2.8 (139), with statistically indistinguishable scores. The authors

also determined that using percentile-ranked results from original

metrics provided reliable rankings across different data sets.

Another comprehensive performance assessment of 15 in silico

tools for MHC class I peptide binding prediction, including 6

scoring function-based, 7 ML-based and 2 consensus methods,

was described in Mei et al. (140). Extensive benchmarking tests

showed that MixMHCpred (141) performs best across most HLA-I

allotypes, while NetMHCpan and NetMHCcons achieve the overall

best performance among ML-based and consensus-based tools.
5 T cell receptor recognition

T cell receptors (TCRs) play a pivotal role in surveillance and

response to disease by recognizing peptide-MHC (pMHC)

complexes. However, not all neoantigen candidates elicit an

immune response from T cells even though they are expressed

and presented on the cell surface (11). Understanding the rules

governing how T cells recognize cognate antigen-MHC complexes

remains a challenge in systems immunology.

The TCR is a heterodimeric protein comprising an a- and b-
chain. Peptide specificity is primarily defined by the

complementarity-determining region 3 (CDR3) loops. The

diversity of the CDR3s results from genomic recombination of

the variable (V), diversity (D), and joining (J) genes (142). The

majority of previous studies have focused on the b-chain alone due

to its higher diversity, resulting from the V-, D-, J genes together

(142). In contrast, the a-chain results from V- and J recombination

which leads to lower diversity and less interest. However recent

research has highlighted the importance of both a- and b-chain
CDR3s in TCR specificity (143, 144).

T cell receptor sequencing (TCR-Seq) is an NGS approach

allowing scientists to study clonal expansion by selectively

amplifying and sequencing antigen-specific CDR3 regions of the

T cell receptor. However, TCR-Seq data analytics is challenging as

tumor-specific T cell responses constitute a small proportion of the

overall pool of in vivo T cell responses with irrelevant specificities

(145). New analytical tools have been developed to parse and draw

meaningful sequence concepts or motifs from the TCR-Seq data

(146). The TCRdb database contains more than 277 million TCR

sequences from over 8265 TCR-Seq samples across hundreds of

tissues, clinical conditions and cell types (147).

Assessing the interactions between neoepitopes and TCRs is

essential for designing immunotherapies. For instance, identifying

compatible TCRs in the patient’s circulation can help inform the

selection of neoantigen vaccine candidates. Various experimental

approaches, such as tetramer analysis (148), TetTCR-seq (149) and

T-scan (150), have been developed to detect pairing of TCR–pMHC

complexes. However, in vitro experiments associated with the
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testing of a large number of putative candidates demand

experimental time and costs.

TCRdist (143) represents an unsupervised distance-based

method exploiting the similarity between TCRs to produce

clusters of TCR sequences that likely recognize the same antigen,

and predicting binding for a given epitope sequence. The methods

like TCRex (151) and DeepTCR (152) trained antigen-specific TCR

models and would have problems to generalize to unseen peptides.

In response, the scientific community has turned to ML and AI-

based approaches to develop computational solutions for TCRs and

peptide–MHC and TCR–peptide interaction prediction.

NetTCR (153) facilitates sequence-based prediction of TCR

binding to pMHC complexes using CNNs. CNN is an

appropriate model to handle unaligned peptide and TCR

sequences differing in length. The model was trained on the IEDB

data, containing TCR b-chain CDR3 sequences and corresponding

peptide targets presented by most common MHC-I HLA-A*02:01

allele. Negative data examples were supplied for the learning by

generating wrong combinations of TCRs and peptides, and

additional negatives constructed from the TCRs of healthy

donors. For NetTCR-2.0 (142) is a “shallow” CNN model, similar

to NetTCR (153), it was exploited, but trained on paired TCR a and

b chain sequence data. Nonbinding peptide-CDR3b pairs derived

from 10X Genomics (154) Chromium Single Cell Immune Profiling

of four donors were used as negative data set. The model has the

potential to infer not only which TCRs are specific for a given

peptide, but also which peptide is specific for a given TCR. This

work also underlined the need for technologies for high-throughput

paired sequencing of TCRs with known pMHC targets. The current

optimal way to pair TCR a- and b- chain is through single-cell TCR

sequencing (scTCR-Seq) (155). The authors of NetTCR-2.1 (156)

provide lessons and guidance on how to develop models for TCR

specificity predictions, how to best define negative data, and why it

is recommended to apply similarity-based modeling, and include a

performance evaluation as a function of “distance” to the training

data when validating predictive power of ML-based approaches.

Most of the peptides in the published databases originate from

viruses but not from tumor-associated antigens and there are only a

few CDR3a sequences in databases available. Therefore, AI-driven

approaches with improved generalization ability are needed, which

do not show significant performance drop when evaluated on

peptide sequences not used during model training. This challenge

can be addressed by approaches based on transfer learning and

NLP, capable to benefit from unsupervised pre-training.

As an example for the application of a newly emerging DL

approach, Lu et al. (157) used transfer learning to develop pMTnet,

a model predicting the TCR binding specificity of class I pMHCs.

Utilizing the “Atchley factor” (158) they encoded TCR CDR3b
sequences with five numeric values per amino acid, providing

comprehensive biochemical characterization. These “Atchley

matrices” were input into a stacked auto-encoder, an effective

unsupervised learning algorithm. During training, the auto-

encoder reconstructed input data, generating a 30-neuron

numeric vector that encapsulates the inherent structure of the

original CDR3s. The embedding of pMHCs closely followed the

NetMHCpan algorithm. Fixed numeric encodings of TCRs and
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pMHCs were integrated into a DL network with a single neuron as

the final layer for pairing prediction. To train this model, Lu et al.

(157) employed a differential learning schema, using known

interactions as positive data and introducing true and

mismatched pairs for negative data, resulting in ten times more

negative data by randomly mismatching TCRs and pMHCs. This

approach allowed them to capitalize on a substantial volume of

related TCR and pMHC data without explicit pairing information,

showcasing the effectiveness of transfer learning.

For their NLP-based approach BERTrand (159) the authors

constructed a hypothetical human TCR-peptide repertoire pre-

training set comprising peptides from MHC-I MS peptide

presentation experiments and TCRs from healthy donors, and

this hypothetical TCR-peptide repertoire was used to perform

masked language modeling (MLM), pre-training of the BERT

model. Then the pre-trained BERT model was fine-tuned to

predict TCR-peptide binding using the dataset of known TCR

binders with their cognate epitopes and negative decoy examples

generated by random pairing of reference TCRs with peptides.

ERGO (pEptide tcR matchinG predictiOn) (160) and ERGO-II

(161) utilize unsupervised TCR pre-training and use a pre-trained

LSTM neural network architecture.
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Further published tools for TCR-pMHC binding prediction are

shown in our Table 4.
5.1 Limitations of current data sets for
TCR–peptide binding prediction

Current datasets for TCR-peptide binding prediction present

challenges for the development of accurate and generalizable

models. As discussed in the perspective article of Hudson et al.

(171), the current data sets cover only a limited fraction of the

universe of possible TCR–antigen binding pairs. These datasets also

inadequately represent the universe of self and pathogenic epitopes

and of the varied MHC contexts in which they may be presented.

Furthermore, a significant proportion of known antigens reported

as binding a TCR are of viral origin, limiting their relevance to

human health.

Current sources of publicly available data for AI-based methods

to predict the interaction between TCR and pMHC complexes

include manually curated catalogs of pathology-associated TCR

sequences such as McPAS-TCR (172), Immune Epitope Database

IEDB (88), VDJdb (173), and TBAdb (174) databases. Additionally,
TABLE 4 – TCR-pMHC binding prediction.

TCR-pMHC binding prediction

Algorithm Year Strategy URL

TCRdist 2017 (143) Distance-based clustering of similar TCRs https://github.com/phbradley/tcr-dist

TCRex 2019 (151) Random Forest algorithm based on epitope-specific TCR data https://tcrex.biodatamining.be

ERGO-I 2020 (160)
Embeds TCR and peptide by LSTM and autoencoder followed by
fully connected NNs for pattern learning

https://github.com/louzounlab/ERGO

ERGO-II 2021 (161) Extends embedding of ERGO-I https://github.com/louzounlab/ERGO

DLpTCR 2021 (162) Ensemble DL framework from FCN, CNN and ResNet http://jianglab.org.cn/DLpTCR/

NetTCR-2.0 2021 (142) DCNN https://services.healthtech.dtu.dk/service.php?NetTCR-2.1

TCRAI 2021 (163)
Binary classification including embedding layers and convolutional
networks to predict TCR-pMHC–specific binding

https://github.com/regeneron-mpds/TCRAI

TCRGP 2021 (164)
Gaussian process classification, utilize CDR sequences from both
TCRa and TCRb chains, single-cell RNA-sequencing analysis of
HCC-patients

https://github.com/emmijokinen/TCRGP

pMTnet 2021 (157) LSTM and autoencoder followed by fully connected NNs https://github.com/tianshilu/pMTnet

ImRex 2021 (165)
DCNN using interaction maps representing TCR CDR3 and
epitope sequences

https://github.com/pmoris/ImRex

TITAN 2021 (166) Attention-based NNs pretrained with BindingDB https://github.com/PaccMann/TITAN

DeepTCR 2021 (152) DCNN https://github.com/sidhomj/DeepTCR

AttnTAP 2022 (167) Attention-based dual-input DL framework https://github.com/Bioinformatics7181/AttnTAP/

ATM-TCR 2022 (168) Attention-based NNs https://github.com/Lee-CBG/ATM-TCR

epiTCR 2023 (169) Random Forest https://github.com/ddiem-ri-4D/epiTCR

DeepMHCI 2023 (124) Anchor position-aware deep interaction model https://github.com/ZhuLab-Fudan/DeepMHCI

iTCep 2023 (170)
DL framework using fusion features derived from a feature-level
fusion strategy

http://biostatistics.online/iTCep/, https://github.com/
kbvstmd/iTCep/

BERTrand 2023 (159) BERT model augmented with hypothetical random TCR pairing https://github.com/SFGLab/bertrand
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positive data samples generated by Klinger et al. (175), known as the

MIRA set, are publicly available in the NetTCR-2.0 repository

(176). For successful training and development, balanced training

data is required. However, the publicly available datasets of TCR-

pMHC sequences almost exclusively contain examples of positive

binding pairs. Only the published 10X Genomics dataset contains

both positive and negative data points. The choice of negative data

is a critical factor when developing a binary classification model.

NetTCR and pMTnet chose 10X Genomics Immune Profiling data,

which contains validated non-binding complexes. Swapped

negatives are randomly generated negative data, generated by

other prediction tools (TCRGP (164), ERGO-I, ERGO-II, TITAN

(166)), by mispairing positive validated TCR–peptide pairs.

However, this approach risks to introduce false non-bindings into

the ground truth.

In the future, as high-throughput technologies such as T-scan

and 10X Immune Profiling are becoming more prevalent, it is

expected that more training data for TCR-pMHC pairing will be

available, providing a more accurate representation of the entire

space of potential epitopes for training. Frank et al. (177) provide an

overview of TCR sequencing platforms and the T cell repertoire

analysis methods.
5.2 TCR binding predictors fail to
generalize to unseen peptides

While many TCR-pMHC binding prediction methods perform

well with test sets containing peptides from the training set, the

ability to generalize to unseen peptides is crucial for neoantigen-

based cancer vaccine development. Grazioli et al. (178) investigated

the impact of various training/test splitting techniques on models’

test performance. They introduced Tchard, a sample collection with

positive samples from the databases IEDB, VDJdb, McPAS-TCR,

and the MIRA, along with negative samples from randomization

and 10X Genomics assays. After ensuring that testing samples were

not present in the training dataset, they found that modern DL

methods may struggle with generalization to unseen peptides. Deng

et al. (179) addressed this by comparing the performance of

different TCR-pMHC prediction tools on various datasets.

Regardless of model complexity, all tools, including TITAN,

NetTCR-2.0, ERGO, DLpTCR and ImRex, faced challenges

predicting unseen peptide examples. These challenges emphasize

the necessity for ongoing research to enhance the generalization of

TCR-pMHC binding predictors across a wider range of peptides.
6 Criteria for epitope selection

Only a small fraction of predicted neoepitopes can be

experimentally validated in vitro as true neoepitopes (180).

Several general criteria are currently employed in the field to

narrow down and prioritize the candidate epitopes. These criteria

guide the selection of epitopes to induce specific “on target”

immunogenic response while overcoming self-tolerance.
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6.1 MHC binding affinity

Mutant peptides must be presented by MHC-I or MHC-II in

order to be recognized by T cells. Most neoantigen prioritization

pipelines typically use the output values of the MHC-I or MHC-II

binding prediction methods as the primary ranking parameter. The

generally used MHC binding affinity threshold type is IC50 (half

maximum inhibition concentration) measured in nM. The lower

value shows stronger binding affinity. Usual thresholds are IC50 ≤

50nM (strong) and IC50 ≤ 500nM (low). Another threshold type is

percentile rank (%-rank) which allows to better compare scores

between MHC molecules. Usually %-rank ≤ 0.5 is strong affinity

and %-rank ≤ 2 shows lower affinity. NetMHCpan-4.1 differentiates

%-rank prediction based on either LC-MS eluted ligands (EL) or

binding affinity (BA). The third type is Score, as in SYFPEITHI (71).

They typically do not recommend any threshold. Here, the higher

binding score shows increased chances of binding.

It is important to note that these commonly used threshold

values for identifying potential binders can be excessively strict in

many cases (76) that can result in missing potential binders. To

improve the sensitivity and accuracy of 13 already existing

prediction tools Bonsack et al. (181) calculated new thresholds,

recommended for each of them. They also developed MHCcombine

(182) to facilitate the application of their prediction-improving

recommendations and also to simultaneously compare the outputs

of the selected predictors.
6.2 TCR binding affinity

As mentioned before, the T cell recognition and activation is a

vital part of the immune response. In order to trigger immune

response T cells need to recognize the peptides presented by the

MHC molecules. Addressing the T cell activation outcome still

remains challenging however generally can be determined based on

the biochemical parameters of the pMHC-TCR interaction (11).

The mostly used parameter is TCR-pMHC binding affinity. Gálvez

et al. (183) aimed to uncover the shaping forces behind the TCR

binding affinity with 12 phenotypic models and as a result they

provide valuable insight and observations in the field of TCR

binding affinity. As described in the review by Schaap-Johansen

et al. (11) a number of structure-based methods have been

developed lately which can greatly improve the overall TCR

binding predictions by reducing the false positive predictions.
6.3 Agretopicity

The differential agretopicity index (DAI) has been proposed as a

neoantigen quality metric (184). DAI is a property of the epitope

and defined as the numerical difference between the NetMHC (138)

scores of the WT peptides and their mutated counterparts (184). In

an study of 6,324 patients across 27 cancer types, Rech et al. (185)

found that high DAI neoantigens correlated with patient survival.

The work of Ghorani et al. (186) also supported the hypothesis that
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DAI is a determinant of cancer peptide immunogenicity, by

investigating the association between mean DAI, survival, and

measures of immune activity.
6.4 Binding stability

Assuming that a more stable epitope presentation on the MHC

increases the likelihood of T cell recognition, peptide stability,

measured as the half-life of the binding interaction in units of

hours, has been postulated to correlate with immunogenicity. Tools

such as NetMHCstabpan (187) are often used in epitope selection

pipelines to assess binding stability. Borden et al. (188) used a

model-based approach to find the neoantigen properties that have

predictive value of immunogenicity. The binding stability of the

pMHC class I complex, along with the dissociation constant and the

expression (mRNA and variant allele frequency) were the

characteristics that were of predictive value. These findings were

in consistence with previous studies (189). The authors integrated

binding stability together with other factors such as neoantigen

expression level and dissociation constant into an immunogenicity

score called NeoScore (188).
6.5 Differential expression between tumor
and healthy tissue

In contrast to pathogens seen as foreign invaders, most epitopes

presented on the cancer cell surface are self-peptides unrecognized

by tumor immunosurveillance. Neoepitopes, typically absent in

benign tissues, may escape tolerance and become immunogenic.

Databases such as TissGDB (190), GTEx (191), TCGA (68), THPA

(192, 193) can be consulted to compare gene expression between

healthy and tumor tissues, identifying cancer-specific

signatures (194).
6.6 Dissimilarity to the self-proteome

As observed in the literature, sequence dissimilarity to non-

mutated proteome was predictive of peptide immunogenicity (195,

196). Devlin et al. (197) demonstrated that structural dissimilarity

between the wildtype and mutated peptide in non-anchor positions

can influence T cell recognition and immunogenicity.
6.7 Expression of a peptide source gene
in thymocytes

Medullary thymic epithelial cells (mTEC) contribute to the

development of T cell tolerance by facilitating the recognition of

“self” and expressing tissue-restricted antigens (TRA) (198). This

allows developing T cells to assess the self-reactivity of their antigen

receptors before leaving the thymus (198). The expression of a

peptide source gene in mTEC is considered as a negative
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characteristic for epitope selection, as it may decrease the chances

of immunogenicity due to the central tolerance.
6.8 Hydrophobicity

As described in the methods of TESLA consortium, the number

of hydrophobic residues in the neoantigen can be divided by the

total number of residues to create a “hydrophobicity fraction” (189).

Additionally, the grand average of hydropathicity index (GRAVY)

is used to estimate the hydrophobicity of a given amino acid string

and is calculated as the average of the hydrophobicity of the

individual residues forming the peptide (199). Immunogenic

pMHC were significantly less hydrophobic than non-

immunogenic pMHC (199).
6.9 Clonality

Clonality refers to the fraction of the tumor containing the

neoantigen of interest and of particular importance for

prioritization. The presence of a variant expressed by a small,

sub-clonal population of the tumor makes it less attractive

candidate for tumor therapy (200). In the review of Lang et al.

(201) the impact of clonality on neoantigen recognition is discussed.

Depending on whether the neoantigen is truncal clonal, truncal

clonal but lost in a metastasis (by deletion or gene silencing), clonal

in a certain metastasis (or specific for a certain subclone within a

single metastasis), neoepitope-specific T cells would target either all

tumor cells, all tumor cells of selected lesions, or merely a single

tumor subclone (201). The tools PyClone (202) and its improved

version PyClone-VI (203) provide a numerical estimation of cancer

cell fraction using observed alternate allele frequencies, copy

number, and loss of heterozygosity (LOH) information.

Other characteristics associated with immune response, such as

the variant allele frequency of mutations, the number of predicted

neoepitopes per mutation, peptide proteasomal cleavage

probability, potential for TAP transport in the endoplasmic

reticulum, tumor heterogeneity and HLA loss of heterozygosity

(LOH), are used to further rank candidate neoantigens (200).
7 Integrated software for neoantigen
detection and prioritization

Several integrated software and comprehensive pipelines have

been developed for tumor-specific neoantigen detection. The

purpose of these tools is to make the prediction and prioritization

of neoantigen candidates accessible. Here, we describe some of the

notable tools and frameworks and their approaches.

For seamless vaccine design there have been several end-to-end

pipelines developed. One of the frequently used end-to-end pipelines is

FRED2 (FRamework for Epitope Detection), a Python-based

immunoinformatic framework (204). Among the included tools

there are several HLA genotyping tools (e.g.: OptiType), as well as
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peptide-MHC binding predictors (e.g.: NetMHCpan, NetMHCIIpan),

and also the proteasomal cleavage predictor NetChop (205) is

integrated. FRED2 ensures straightforward workflow and provides

analysis tools to epitope detection and vaccine design (204). Another

end-to-end pipeline is pVACtools, which produces an end-to-end

solution for neoantigen characterization (206). To aid the vaccine

design, pVACtools supports the identification of altered peptides and

prioritizes them by incorporating various data sources, such as clonality

of the mutation, mutant allele expression and peptide binding affinities.

Among the tools integrated inside pVACtools there are binding

predictors (e.g.: MHCflurry), databases (e.g.: IEDB), and a

proteasomal cleavage predictor (NetChop). To extract neoepitopes

from tumor sequencing data such as VCF files and expression files

generated from RNA-seq, MuPeXI (Mutant peptide extractor and

informer) provides a prioritization suggestion based on a combined

score named priority score (207). It generates an output file with the list

of mutated peptides and all the information needed (expression level,

similarities to self-peptides, mutant allele frequency) to select the

peptides for vaccine design (207). For HLA binding prediction

NetMHCpan is integrated. It is a web-based tool, and also available

as a command-line tool. TIminer is also a computational framework

that provides complex immunogenomic analysis including HLA typing

(Optitype), neoantigen prediction (NetMHCpan), characterization of

immune infiltrates and quantification of tumor immunogenicity (208).

Another solution for peptide design includes prioritization

algorithms. One such predictor is PRIME (predictor of
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immunogenic epitopes) (209). It captures molecular properties of

both antigen presentation and TCR recognition. PRIME reveals

experimentally validated biophysical determinants of TCR

recognition and also establishes correlations with T cell potency.

MixMHCpred is integrated for predictions of antigen presentation

and TCR recognition. Beside the above-mentioned features, it

improves the overall prioritization of neoepitopes. Another

notable prioritization algorithm is DeepImmuno (210), a CNN

based tool that predicts the epitope immunogenicity for CD8+ cells

of 9-10-mer peptides. The prediction can run from the command

line or from their web interface. The easy-to-use web interface has

MHCflurry integrated to not only predict the immunogenicity of

the specific HLA-peptide pairs, but the binding affinity score as well.

DeepImmuno includes an independent generative adversarial

network model, which can generate immunogenic peptide with

the possibility of training your own model.

Most of the tools can predict neoepitopes from SNVs, some also

incorporate INDELs (pVACseq (211), MuPeXI (207), TSNAD

(212), CloudNeo (213), Epidisco (214), pTuneos (215),

antigen.garnish (195), NeoPredPipe (216), NeoEpiScope (217),

OpenVax (218)). A few focus solely on INDELs (ScanNeo (219))

or gene fusions (NeoFuse (220), INTEGRATE-neo (221)), while

others allow users to input the variants as peptides (EDGE (97),

DeepHLApan (103)).

A summary of various integrated pipelines and software tools

for neoantigen discovery is provided in Table 5.
TABLE 5 – Integrated software for neoantigen prediction and prioritization.

Intagrated software for neoantigen prediction and prioritization

Tool name Year Short description URL

FRED2
2016
(204)

FRamework for Epitope Detection, provides a
string-of-beads poly-peptide for vaccine

http://fred-2.github.io

MuPeXI
2017
(207)

Mutant peptide extractor and informer, provides
a list of peptides

https://services.healthtech.dtu.dk/services/MuPeXI-1.1/

TIminer
2017
(208)

Tumor Immunology miner, predicted neoantigen
as output

https://icbi.i-med.ac.at/software/timiner/timiner.shtml

TSNAD
2017
(212)

Tumor-Specific Neoantigen Detector https://github.com/jiujiezz/tsnad

CloudNeo
2017
(213)

Cloud pipeline, computes HLA type
and neoantigens

https://github.com/TheJacksonLaboratory/CloudNeo

INTEGRATE-neo
2017
(221)

Gene fusion prediction and neoantigen
computation from gene fusions

https://github.com/ChrisMaherLab/INTEGRATE-Neo

Epidisco
2017
(214)

Highly-configurable genomic pipeline supporting
variant calling, epitope discovery, and
vaccine generation

https://github.com/hammerlab/epidisco

Neopepsee
2018
(222)

Provides a rich annotation of candidate peptides
with immunogenicity-related values

https://sourceforge.net/projects/neopepsee/

pTuneous
2019
(215)

Prioritizing SNV-based candidate neoepitopes https://github.com/bm2-lab/pTuneos

antigen.garnish
2019
(195)

Open-source R package for neoantigen
quality analysis

https://github.com/andrewrech/antigen.garnish

(Continued)
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TABLE 5 Continued

Intagrated software for neoantigen prediction and prioritization

Tool name Year Short description URL

NeoPredPipe
2019
(216)

High-throughput neoantigen prediction and
recognition potential pipeline

https://github.com/MathOnco/NeoPredPipe

ScanNeo
2019
(219)

Identifying INDEL-derived neoantigens using
RNA-seq data

https://github.com/ylab-hi/ScanNeo

DeepHLApan
2019
(103)

Neoantigen prediction including HLA-peptide
binding and immunogenicity

https://github.com/jiujiezz/deephlapan, http://
biopharm.zju.edu.cn/deephlapan

NeoFuse
2020
(220)

Predicting fusion neoantigens from RNA
sequencing data

https://icbi.i-med.ac.at/software/NeoFuse/NeoFuse.shtml

Neoepiscope
2020
(217)

Uses assembled haplotype output of HapCUT2
to enumerate neoepitopes arising from more
than one somatic mutation

https://github.com/pdxgx/neoepiscope

OpenVax
2020
(218)

Identifying somatic variants, predicting
neoantigens, and selecting the contents of
personalized cancer vaccines

https://github.com/openvax/neoantigen-vaccine-pipeline

pVACtools
2020
(206)

Prioritizing neoantigens from VCF, FASTA file,
resulting from gene fusions, generate DNA-
vector neoantigen sequence

http://www.pvactools.org

INeo-Epp
2020
(223)

Random forest classifier for T cell immunogenic
HLA-I presenting antigen epitopes
and neoantigens

http://www.biostatistics.online/ineo-epp/neoantigen.php

neoANT-HILL
2020
(224)

Toolkit for the identification of
potential neoantigens

https://github.com/neoanthill/neoANT-HILL

DeepAntigen
2020
(225)

Neoantigen prioritization based on 3D genome
information and deep sparse learning

https://yishi.sjtu.edu.cn/deepAntigen/

TruNeo
2020
(226)

Predicts neoantigens based on multiple biological
factors such as peptide-MHC binding,
proteasomal cleavage and TAP transport
efficiency predictions

https://github.com/yucebio/TruNeo

NeoFox
2021
(227)

A tool that provides a comprehensive description
of neoantigen candidates by proposed features.
Annotate neoantigen candidates with 16
neoantigen features.

https://github.com/TRON-Bioinformatics/neofox

TSNAD v2.0
2021
(228)

Tumor-Specific Neoantigen Detector,
providing neoantigens

https://github.com/jiujiezz/tsnad, http://biopharm.zju.edu.cn/tsnad/

PRIME
2021
(209)

Predictor of immunogenic epitopes,
prioritization pipeline

http://prime.gfellerlab.org/, https://github.com/GfellerLab/PRIME

DeepImmuno
2021
(210)

DL-empowered prediction of
immunogenic peptides

https://github.com/frankligy/DeepImmuno

ProGeo-Neo v2.0
2022
(229)

Mining tumor specific antigens from WGS/WES
genomic and RNA-seq data, verifying peptide-
MHCs by MaxQuant with mass spectrometry
proteomics data searched against customized
protein database

https://github.com/kbvstmd/ProGeo-neo2.0

Seq2Neo
2022
(230)

Pipeline for cancer neoantigen
immunogenicity prediction

https://github.com/XSLiuLab/Seq2Neo

PGNneo
2023
(231)

Proteogenomics-Based Neoantigen prediction
Pipeline in Noncoding Regions

https://github.com/tanxiaoxiu/PGNneo

LENS
2023
(232)

Neoantigen prediction based on SNVs, INDELs,
fusion events, splice variants, cancer-testis
antigens, overexpressed self-antigens

https://gitlab.com/landscape-of-effective-neoantigens-software

GeNeo
2023
(233)

Toolbox on Galaxy server maintained at the
University of Connecticut

https://neo.engr.uconn.edu/
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8 Tumor neoantigen data collection

The training of novel and improved algorithms requires

continuous accumulation of verified tumor neoantigen data. Several

studies have curated cancer antigen data, and constructed publicly

available cancer antigen resources. These databases support the

community in understanding the landscape of antigen presentation

and provide necessary information for the development of

neoantigen prediction tools. In addition to the well-curated data

sets, several so-called in silico neoantigen databases that omit the

experimental validation step have been built by taking advantage of

existing neoantigen prediction software.

There are several well-curated datasets. One of the widely used,

well-known resource is the Immune Epitope Database and Analysis

Resource (IEDB) (88). It is a freely available comprehensive

repository for diverse immunological data. This database contains

experimental data from various host organisms about peptidic and

non-peptidic epitopes, MHC ligand (Class I and II), T cell and B cell

assays with a chance to gain insight into the possible disease context

such as allergy, autoimmune or infectious diseases (234, 235). The

database exists since 2003 and due to its enormous data content

with over 1,600,000 epitopes and availability, this database is

integrated in many other databases we have mentioned. However,

IEDB’s data sets of verified T cell epitopes primarily consists of

epitopes from bacteria or viruses and were not obtained by

standardized experimental methodologies in the context of

cancer. Furthermore, CEDAR (236) is the cancer epitope focused

companion site of IEDB. This freely available database is similarily

built to its companion and houses over 1,290,000 epitopes. Here, B

cell, T cell and MHC ligand assay results are available in various

hosts focusing on cancer types and stages.

Further curated databases include NeoPeptide (237), dbPepNeo

(238), dbPepNeo 2.0 (239), TANTIGEN (240) and NEPdb (241).

NeoPeptide focuses on cataloguing neoantigens from somatic

mutations across different cancer types from clinical trials and in

vitro experiments. At the time of its creation in 2019 it already

contained 36,000 antigens and over 180,000 epitopes which has

been expanded since (10). It provides details on various neoantigen

characteristic such as mutation site, sequence and MHC restriction.

The dbPepNeo databases include curated information about

neoantigen data validated by mass spectrometry or immunoassays

in human tumors. While version 1 focuses on validated MHC-I

antigens in various tumor types, in version 2 the included

neoepitope candidates increased to over 840,000 while also

adding MHC-II data. Both versions help the user by categorizing

all neoantigen’s confidence based on the strength of the

experimental validation. TANTIGEN focuses on cancer antigens

whose HLA binding is experimentally validated from tumor tissues.

Over 1,000 tumor peptides from close to 300 proteins are

catalogued based on which the T cell epitopes and HLA ligands

are easy-to-list. However, it does not include peptides shown to be

ineffective and lacks any association with clinical data. NEPdb was

constructed via curating published literature with a semi-automatic

pipeline by parsing and filtering abstracts with NLP toolkit. It

includes curated data of 173 MHC-I and MHC-II neoepitopes
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and over 17,000 non-immunogenic peptides from 23 tumor types.

The validation focuses both on in vitro and in vivo T cell assays.

Also, there are databases on verified binding and presentation.

This category includes caAtlas (242), SPENCER (243), IEAtlas

(244), HLA Ligand Atlas (245) and CARMEN (246). caAtlas is a

database that contains information about mass spectrometry results

of 9 cancer types and non-tumor samples. The data focuses both on

MHC-I and MHC-II molecules and comprises around 140,000

modified peptides. SPENCER focuses on small peptides in cancer

patients that are encoded by non-coding RNAs. The database

contains mass spectrometry data of 15 cancer types from over

1,700 patients resulting in the identification of near 30,000 small

peptides encoded by non-coding RNA in tumors. IEAtlas collects

the immunopeptidome data of mass spectrometry datasets to find

epitopes that bind MHC-I/II from non-coding regions. Currently

over 245,000 such epitopes are identified from 15 tumor types and

30 non-tumor tissues. the database HLA Ligand Atlas provides a

collection of natural HLA ligands presented on benign tissues.

Natural HLA ligand information could be important for further

tool development.

Besides the experimentally verified databases there are also a

number of in silico predicted neoantigen databases with an

enormous variety of potential neoantigens. TSNAdb v1 (247)

collected information about millions of potential neoantigens

from somatic mutation data. The predictions of version 1.0 are

based on the HLA data of 16 tumor types collected from TCGA (68)

and TCIA (248) and are generated by NetMHCpan. TSNAdb v2.0

(249) upgrades its toolkit to use DeepHLApan, MHCflurry and

NetMHCpan and predicted neoantigens not only from SNVs but

from INDELs and fusions. The altered criteria in v2.0 decreased the

false-positive predictions resulting in almost 400,000 SNV-derived,

around 140,000 INDEL derived and over 11,000 fusion-derived

predicted neoantigens. TSNAdb includes HLA binding info for

both mutant and wild-type peptides thus, facilitating the assessment

of the DAI (247). TRON Cell Line Portal (TCLP) (250) catalogues

MHC types and predicted neoepitopes amongst other publicly

available data of 1,082 cancer cell lines. The data focuses on both

MHC-I/II neoantigens in a cell-line-specific manner.

The set of verified neo-epitopes is still limited, and we envisage

that larger neo-epitope datasets will lead to additional refinements

in immunogenicity predictions. For a summarized overview of the

above-mentioned neoantigen databases, see Table 6, for a summary

on immunology related databases and datasets see, Table 7.
9 Benchmark for
neoantigen prediction

In 2016, the Tumor Neoantigen Selection Alliance (TESLA) was

established as a collaborative effort to identify the most effective

predictive algorithms for targeting neoantigens through large scale

validation. Supported by the Parker Institute for Cancer

Immunotherapy and the Cancer Research Institute (CRI) (189,

258), TESLA involved 35 public and private research teams

worldwide. Each team employed its own unique neoantigen
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prediction algorithms to identify and prioritize neoantigens. The

initial focus was on advanced melanoma, colorectal cancer and

non-small cell lung cancer (NSCLC). Genomic data from the same

six patient samples (3 melanoma, 3 NSCLC) was provided by the

Alliance. The immunogenicity of candidate neoantigens was

validated through MHC-restricted T cells in subject-matched

peripheral blood mononuclear cells (PBMC). This study

highlighted the significant differences in the prediction

methodologies among the groups. No single methodology

identified every neoantigen, nor a large majority of neoantigens,

indicating the need for a standardized approach.

Besides testing the already existing predicting algorithms, the

other goal of the TESLA was to identify key parameters shaping
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tumor epitope immunogenicity. The Alliance determined that

approximately 50% of immunogenic epitopes are characterized by

strong MHC binding affinity, prolonged half-life, high expression,

and either low agretopicity or high foreignness. A model based on

these five peptide features associated with presentation and

recognition was developed and tested against independent cohorts

of cancer samples. TESLA data is available (259) to qualified

investigators and provides opportunities to benchmark the

performance of neoantigen workflows.

Using the TESLA dataset, Buckley et al. (260) evaluated

performance of seven publicly available methods - IEDB model

(261), NetTepi (262), iPred (263), Repitope (264), PRIME (209),

DeepImmuno (210) and Gao (265) - predicting whether an MHC-
TABLE 6 – Neoantigen databases.

Neoantigen databases

Database name Year Short description URL

TSNAdb
2018
(247)

Predicted and validated neoantigens based on
pan-cancer immunogenomics analyses

https://pgx.zju.edu.cn/tsnadb1/

NeoPeptide
2019
(237)

Catalog of epitopes derived from neoantigens
captured from literatures and
immunological resources

https://github.com/lyotvincent/NeoPeptide

dbPepNeo
2020
(238)

Collection of experimentally
validated neoantigens

http://www.biostatistics.online/dbPepNeo/

NEPdb
2021
(241)

T cell Experimentally-Validated Neoantigens and
Pan-Cancer Predicted Neoepitopes

http://nep.whu.edu.cn/

TANTIGEN 2.0
2021
(240)

Database of T cell epitopes and HLA ligands http://projects.met-hilab.org/tadb

HLA ligand atlas
2021
(245)

Benign reference of HLA-presented peptides https://hla-ligand-atlas.org

caAtlas
2021
(242)

An immunopeptidome atlas of human cancer http://www.zhang-lab.org/caatlas/

dbPepNeo2.0
2022
(239)

Database for Human Tumor Neoantigen
Peptides from Mass Spectrometry and
TCR Recognition

http://www.biostatistics.online/dbPepNeo2

TSNAdb v2.0
2022
(249)

Predicted and validated tumor-specific
neoantigen database

https://pgx.zju.edu.cn/tsnadb

CAD
2022
(251)

Cancer Antigens Database http://cad.bio-it.cn/

SPENCER
2022
(243)

Database for small peptides encoded by
noncoding RNAs

http://spencer.renlab.org

IEAtlas
2023
(244)

Atlas of HLA-presented immune epitopes
derived from non-coding regions

http://bio-bigdata.hrbmu.edu.cn/IEAtlas

CARMEN
2023
(246)

Database generated from 80 different
immunopeptidomics mass spectrometry datasets
collected between 2015-2022

Not available

CEDAR
2023
(236)

Cancer Epitope Database and Analysis Resource https://cedar.iedb.org/

Neodb
2023
(252)

The webserver contains neoantigen prediction
tools; curated, experimentally validated
immunogenic neoantigen dataset; Driver
mutation derived potential neoantigens;
immunogenicity prediction tool

https://liuxslab.com/Neodb/
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presented peptide might invoke a T cell response (i.e. whether a

peptide is immunogenic). Filtering the TESLA dataset, originally

comprising cancer peptides from 13 class I alleles, to retain

alleles for which all models are applicable, and excluding

peptides observed in any model’s training data, resulted in 27

immunogenic and 372 non-immunogenic peptides (lengths 9 or

10 aminoacids) that were experimentally tested against seven

HLAs. They observed high numbers of false positives for all

model. In this benchmark, PRIME identified 26 neoantigen from

the total 27, successfully reaching the highest number of identified

TESLA neoantigens.
10 Challenges and potential solutions
to gain widespread adoption of AI
applications for neoantigens discovery

Learning from a large set of data and identifying patterns of

interest is the greatest strength of AI. The integration of AI

applications in cancer immunotherapy and personalized medicine

holds great promise, however, also comes with various technical

and implementation challenges. Figure 4 summarizes the

introduced bottlenecks of AI-based neoantigens discovery along

with their potential solutions.
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10.1 Challenges related to data

10.1.1 Insufficient amount of available well-
curated data

Data scarceness, data accuracy, and problem complexity contribute

to challenges with models training. Available experimental datasets are

limited in volume, diversity and standardization. Additionally, there is

a lack of experimental data of binding affinity and antigen presentation

for many HLA alleles. Furthermore, for many datasets consistent

biological definitions are not considered or differ between studies, e.g.

distinguishing between pre-existing and de novo T cell responses upon

neoantigen vaccination.

Problem complexity is imposed by the huge MHC–peptide–

TCR combination space, the length variations of TCRs, and inter-

and intra-patient variability of TCRs or MHCs. Running AI

training procedures on a limited or disparate data may result in

overfitting and biased outcomes, compromising the reliability of

future predictions.

10.1.2 The lack of experimentally verified
negative data and the issue of data imbalance

EL/MS experimental approach reports only the presence of a

peptide at the cell’s surface, but cannot identify the absence of a

peptide from the individuals’ immunopeptidome. The prediction of

peptide-MHC binding is a quintessential classification problem. For
TABLE 7 – Immunology-related databases and datasets.

Immunology-related databases and datasets

Database name Year Short description URL

IMGT
2015
(253)

International Immunogenetics
Information System

https://www.ebi.ac.uk/ipd/imgt/hla/index.html

TCLP
2015
(250)

TRON Cell Line Portal http://celllines.tron-mainz.de

MIRA
2015
(175)

Antigen-Specific T cell Receptors https://github.com/mnielLab/NetTCR-2.0/tree/main/data

McPAS-TCR
2017
(172)

Manually curated catalogue of pathology-
associated TCR sequences

http://friedmanlab.weizmann.ac.il/McPAS-TCR/

TCIA
2017
(254)

Cancer Immunome Atlas, links tumor genotypes
with immunophenotypes, providing an index for
immunotherapy response

https://tcia.at/home

SysteMHC Atlas
2018
(255)

Data Repository for
Immunopeptidomic Analyses

https://systemhcatlas.org

VDJdb
2018
(256)

Database of T cell receptor sequences with
known antigen specificity

https://vdjdb.cdr3.net/

IEDB
2019
(88)

Immune Epitope Database https://www.iedb.org

TBAdb, PIRD
2020
(174)

Pan immune repertoire database https://db.cngb.org/pird/

TCRdb
2021
(147)

Database for T cell receptor sequences with
powerful search function

http://bioinfo.life.hust.edu.cn/TCRdb

UcTCRdb
2023
(257)

T cell receptor sequence database with online
analysis functions

http://uctcrdb.cn/
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binary classification, there should be a sufficient number of

observations in both positive and negative classes. Otherwise, the

imbalance will lead to a bias of the classifier trained on these data

and therefore, the creation of artificial negative examples (decoys) is

required. However, insufficient consideration of the source of the

negative examples can lead to further biases (266). Recently a

homology-based method Neglog was proposed (267) to infer

more negative data from very limited experimentally verified

Negatome (i.e., pairs of proteins that do not interact). Neglog

outperformed pure random sampling, and independent test on

negative data is indispensable for bias control, which is usually

neglected by existing studies (267). Negative data sampling also

needs to be properly addressed for computational prediction of

peptide-MHC and TCR–peptide binding.

10.1.3 The influence of dataset homology
Another problem is data similarity. Datasets contain many

epitopes that are either identical or very similar to each other,

which results in data redundancy. If not properly managed,

redundancy can lead to overfitting. By performing homology

reduction procedures, some of the tools take redundancy into

account. The influence of dataset homology on protein secondary

structure prediction was investigated by Chen et al. (268), and a

rigorous evaluation strategy was proposed.

10.1.4 The lack of sample size determination
How much training data is required for AI application? The

minimum dataset size required for effective training of AI models

remains unclear in the biomedical sector. The rule “the more data,

the better” is not realistic in the biomedical sector which faces

technological limitations in acquiring data. Theoretical

investigations concerning sample size planning for classification

models (269) and sample size estimation for effective modelling

of classification problems (270) are available and should

be contemplated.
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10.1.5 Algorithmic and model-driven solutions to
data challenges

There are approaches in the biomedical and general domain

aiming to balance the dataset used for AI training. Data reweighting

helps to compensate under-represented subgroups by duplicating

the minority class data. Data perturbation increases the diversity of

the dataset by adding “noise” to existing samples. Data

augmentation is a process of generating synthetic data exploiting

algorithms such as generative adversarial networks (GANs). GANs

consist of two main components trained simultaneously using

adversarial training: a generator model generating samples similar

to real data, and the discriminator model attempting to distinguish

between real and generated samples. We already mentioned

DeepImmuno (210) using GANs to generate immunogenic

peptides. Federated learning is another approach to work with

limited data sources or skewed distribution in the dataset. In

federated learning, a central machine aggregates learning from

other devices referred to as clients, collaboratively training a

model while ensuring that their data remains decentralized. The

idea to generate a global model via exchanging parameters (e.g. the

weights and biases of a deep neural network) between the local

nodes without explicitly exchanging data samples was motivated by

the issues such as data privacy and data access rights.
10.2 Challenges related to models

10.2.1 The problem of overfitting and lack
of generalizability

Memorizing the training examples without learning any

generalizable patterns by the model is a problem called

overfitting. If a predictor overfits to the training data, its actual

prediction accuracy on a new data will be worse than the one

reported (271). Increasing the complexity of AI model (e.g.

increasing the number of layers of ANN and thus the number of
FIGURE 4

Challenges and potential solutions to promote widespread clinical use of AI applications for neoantigens discovery. We distinguish challenges that
must be addressed for successful AI integration into clinical praxis as related to data, models, AI architecture and technical integration. For each
group of challenges we list various algorithmic, experimental and organizational approaches carrying the potential to overcome the
respective challenges.
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parameters) can result in overfitting and consequently in poor

generalizability of the model. To address this issue, various

methods can be employed. Early stopping technique prevents

overfitting by stopping the training process at the moment the

test error starts to increase. Resampling methods such as Bagging or

Bootstrap, in particular the optimism-adjusted bootstrap (OAD)

(272), aim to increase the generalization capability of the model by

training multiple base learners on randomly sampled portions of

data and then aggregating the learners. Regularization improves the

model’s generalization capability by setting the weights of features

in the model closer to zero, reducing the influence of insignificant

features. Dropout is a kind of regularization technique employed in

deep learning, working by randomly dropping neurons out of the

network during the training with the aim to prevent any neuron

from becoming too influential. Cross-validation divides the dataset

into multiple equal parts and evaluates the model’s performance by

using each segment as a test set in turn. Performance validation and

interpretation, identification and correction of biases, are essential

for more reliable, accurate, and generalizable AI models.

10.2.2 Performance metrics demonstrating the
quality of a model are not standardized

To assess the prediction performance of AI algorithms,

numerous performance metrices are alternatively used. These

include accuracy (Acc), sensitivity (Sn), specificity (Sp), F1 score,

the Matthews Correlation Coefficient (MCC), the area under the

receiver operating characteristic (ROC) curve (AUC), and Positive

Predictive Value (PPV). The findings of in silico studies are

presented in a heterogeneous manner and are difficult to

compare. The suitability of performance metrics may also depend

on the data situation at hand. For example, when diagnosing

classification model performance on highly imbalanced datasets,

ROC-AUC can underrepresent the minority class and be therefore

misleading, while precision–recall area under the curve (PR-AUC),

which summarizes model precision and recall, represents the

balance of classes within the testing dataset more accurately (273).
10.3 The challenge of interpretability: AI
models operate as a “black box”

“Has artificial intelligence become alchemy?” (274) Another

important obstacle experienced by AI applications is the lack of

understanding the methodology and the human inability in

explaining the precise steps leading to predictions. How the

models make the predictions and what the models learn from the

input data remains largely unknown. The AI is in its golden era and

the advances and possibilities are almost endless. However, to trust

model predictions completely, it is vital to understand the processes

that transforms inputs into outputs. There have been several

attempts to improve the interpretability of ML models. Vig et al.

(275) used the transformers attention mechanism to show that

some of the transformer’s nodes were able to learn biological

properties of proteins (e.g. secondary structure, binding sites etc.).

In the context of peptide presentation by MHC class I proteins

it will be important to identify the most influential parts of the input
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amino acid sequences contributing to the output. To tackle this

challenge, the authors of ImmunoBERT (85) presented application

of two interpretability techniques developed in the field of computer

vision, SHapley Additive exPlanations (SHAP) (276) and Local

Interpretable Model-agnostic Explanations (LIME) (277), for

interpreting BERT architecture predictions. Using the tool

Captum (278), one can apply a wide range of feature attribution

algorithms to attribute the predictions of a DL-based image

classifier to their corresponding image features. Adoption of such

algorithms to the analysis of sequence information would provide

new insights in the field.
10.4 Difficulty in integration of
AI applications

10.4.1 Benchmarking the different AI or ML tools
AI or ML tools are excessively difficult to benchmark in the

clinical setting despite the fact that they can be trained with existing

databases on patient data. One clinical study with a prediction tool

cannot be directly compared to another clinical study that uses

another tool, since the patients and the neoantigens are different.

10.4.2 Reproducibility and reusability of
AI models

To improve transparency and reproducibility, guidelines have

been established for developing and reporting ML predictive models

in biomedical research (279). These guidelines promote consistent

reporting of model specifications, including potential limitations of

the model such as assumed input and output data format, pitfalls in

interpreting the model, potential bias of the data used in modeling,

generalizability of the data. In addition, sharing of well documented

code for the model together with transparent descriptions of the

optimized hyperparameters and hardware specifications is another

aspect that would ensure that AI algorithms are transparent and

reproducible. Collaborative initiatives for generation of joint

guidelines and consensus recommendations, as well as translation

them into standardized protocols will play a crucial role in driving

the widespread adoption of AI-based solutions.

10.4.3 AI is computationally intensive
Successful application of AI requires proper computational

infrastructure, including specialized hardware such as graphics

processing units (GPUs), as well as optimized software for

reduced computational needs (e.g. Q SLAM Technology), and

solutions for integrated management of data and resources.
10.5 The ethical and legal implications of
using AI

Algorithms do not accept responsibility or legal liability for their

decisions and errors. Careful development, testing, and evaluation is

required before integrating AI systems for patient care (280, 281).

These challenges must be addressed to fully harness the potential of

AI in cancer immunotherapy and personalized medicine.
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11 Discussion

AI has already proven to be useful in everyday life from refining

the text of manuscripts to troubleshooting codes (282). However,

the risks are higher when applying AI to human health. The

implementation of AI in general clinical practice can be a

sensitive topic. Medical professionals spend decades learning,

practicing, improving and the gained experience along the way is

extremely valuable. Comparing AI that has unknown or

unexplainable processes to the medical professional when it

comes to diagnosis and decision making related to possible

therapy or necessary surgery, is a rather delicate topic for

discussion (283).

Nonetheless, it is undeniable that AI technology is currently

needed in the medical field. One such field where AI´s involvement

is certainly required is cancer immunotherapies. In the past

decades, immunotherapy has become increasingly important as a

new form of cancer therapy. For the development of cancer

vaccines, quick and efficient processing of large data is required.

One challenge is to identify tumor-specific antigens, the majority of

which are unique for individual patients. Combining tumor

sequencing data with the use of predictive algorithms based on

machine learning and artificial intelligence allows clinical

investigators to accelerate identification of therapeutically

relevant neoantigens.

We reviewed multiple tools and a broad selection of prediction

servers for neoantigen detection based on advanced AI

methodologies. These tools are still far from widespread use in

clinical practice as it can be difficult for users to choose the best

server. There is a lack of reference data that should serve as an open

benchmark to compare the approaches and validate the

concordance of predictions among different tools. We encourage

the standardization of techniques and harmonized protocols for

sequencing, mutation detection, immunogenicity testing, and

neoantigen candidate prioritization.

Our work highlights the barriers of applicability and clinical

adoption of AI approaches. The insufficiency of experimental data

for training and associated with it the lack of generalizability of AI-

based models represents the major challenge. Novel approaches

capable to overcome the critical role of data limitations are required

for further development of in silico methods. Transfer learning has

become increasingly relevant in this regard. AI models that can

efficiently use all of the limited available data and transfer

knowledge from other sources are extremely valuable.

Carefulness must be applied to the issue of performance

guarantees both for training the model and for assessing how it

will perform when deployed. Standard statistical and ML methods

should be employed, such as bootstrap or a Bayesian method to

assess prediction confidence intervals, to quantify the uncertainty of

AI model in the output, and analyzing the sensitivity of the model’s

output to certain parameters. Often the target and loss function

used for training may not match the target and loss function

important for the users. Bridging this training-application gap can

be addressed by grounding methods, i.e. supplementing the model’s

training with context-specific information, improving its ability to

function effectively in disparate real-life situations.
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A mechanistic explanation of the relationship between the

peptide sequence, HLA allele and binding affinity remains an

open topic of investigation. AI-based tools provide a potential

solution in two ways: 1) Deep learning approaches can learn

features automatically from unstructured data, bypassing the need

to discover a mechanistic explanation. 2) Explainable AI

techniques, such as attention mechanism, may be able to provide

clues about aspects of the relationship that require further

investigation. The two possibilities are not mutually exclusive and

if early efforts focus on producing accurate and generalizable black-

box models, then later efforts should attempt to use explainable AI

techniques to understand the reasoning the model uses to make its

predictions. As we navigate the path forward in personalized cancer

immunotherapy, several questions remain. How can we expand the

collection of well-curated neoantigen data, particularly for rare

cancer types? What additional factors beyond peptide properties,

such as protein structure and post-translational modifications,

should be considered for neoantigen prediction? How can we

enhance the interpretability of AI models, making them more

transparent and accountable? These questions, among others,

represent exciting avenues for future research and innovation.

By depositing the results of experiments and clinical trials in

public databases, investigators will assist in making neoantigen

prediction models more generalizable. Companies should agree to

mutually exchange information beneficial to all parties in a

benchmarking group and share the results within the group. As

clinical studies will continually evolve to become more inclusive,

harmonized and easily accessible, the aforementioned challenges of

clinical integration of AI will also be bridged.

This review focuses specifically on AI and neoantigens, however,

the use of AI approaches to predict cancer immunotherapy efficacy

(284) and patient’s response to immunotherapy (285) is also worth

mentioning. AI can utilize complex images such as histopathological

slides and follow-up CT scans, extract information from multi-omics

data (genomics, transcriptomics, epigenomics, proteomics,

radiomics), integrating it with clinical data (medical history,

laboratory tests, demographic information) to distinguish

immunotherapy responders from non-responders. One of the

major challenges in immunotherapy is to determine which patients

are likely to benefit from the therapy. Tumor mutational burden

(TMB) was proposed as biomarker and approved by the FDA to

select patients eligible to receive pembrolizumab. The review of

Addala et al. (285) discusses cancer-intrinsic and cancer-extrinsic

features that can be analysed. Besides TMB, genomic intratumor

heterogeneity (ITH) can also be used as cancer-intrinsic feature for

outcome prediction, as it was linked to treatment resistance,

recurrence and reduced patient survival. Advances in single-cell

analysis technologies enable further insights into genomic ITH,

neoantigen formation and presentation at single-cell level. Cancer-

extrinsic features encompass the cellular composition of the tumor

microenvironment (TME). AI deconvolution tools, e.g.

CIBERSORTx (286), provide estimates of the immune cell

proportions in the TME. The complex model capable to integrate

multiple factors including tumor purity, TME composition, tumor

evolution, genomic ITH and immunogenic neoantigen load would be

of great importance. The parameters that govern the immunogenicity
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still remain largely unknown. The review of Xie et al. (287) outlines

further barriers that must be overcome to enable effective anti-cancer

immunotherapies. Tumors can escape from immunological

surveillance through a number of mechanisms, including the loss

of neoantigens induced e.g. by transcriptional repression or

epigenetic silencing, disruption of neoantigen peptides presentation,

and immunosuppressive TME. To compensate for the loss of

targetable neoantigens, personalized neoantigen-specific

immunotherapy should target multiple neoantigens (288). In the

work of Xie et al. (287) additional compensatory strategies to address

the issue of immune evasion of tumor cells are discussed.

The recent publication of Donisi et al. (289) also considers the

mechanisms behind the resistance to immune therapeutic agents, in

particular, the tumor immune microenvironment (TIME), a part of

the TME, or microbiome influencing immune cells in the TME etc.,

and reviews multi-omics and AI approaches, e.g. those for

dissecting the TME or inferring novel microbiome-linked

biomarkers (289).

In conclusion, the field of neoantigen prediction is at the

forefront of personalized cancer immunotherapy. The

collaborative efforts of researchers, computational biologists, and

immunologists have brought us closer to harnessing the full

potential of neoantigens for precision medicine. With continued

advancements in software, databases, and AI, we are on the cusp of

a new era in cancer treatment, one that holds the promise of tailored

immunotherapies that target the unique molecular signatures of

each patient’s tumor. As both academic and industrial endeavors

keep on to tackle the challenges outlined in this article, the future of

personalized cancer immunotherapy appears brighter than ever.
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